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A b s t r a c t  - -  Z u s a m m e n f a s s u n g  

A Measure for m-Conditioning of Matrices in Interval Arithmetic. The new condition number V(A) 
is proposed. This condition number measures ill-conditioning in interval arithmetic. The reliability 
of the condition number V(A) has been proved. It is shown that Bauer's minimum condition 
number [2] and the condition number V(A) are essentially equivalent although different approaches 
were used to derive them. 

Ein Mall fdr die Kondition von Matrizen bei Intervallarithmefik. Es wird ein neues KonditionsmaB 
V(A) vorgeschlagen, das die Kondition yon Matrizen in der Intervallarithmetik angibt. Im 
experimentellen Tell wird die Verl~iBlichkeit dieses KonditionsmaBes V(A) gezeigt. Es ist nach- 
gewiesen, dab die minimale Konditionszahl nach Bauer [2] und das KonditionsmaB V(A) im 
wesentlichen gquivalent sind, obwohl zu ihrer Herleitung grundverschiedene fdberlegungen beniitzt 
werden. 

1. Introduction 

One often deals with matrices which have elements known only to a certain 
degree of accuracy. In such cases it is useful to use interval arithmetic. 

It  is desirable to know the ill-conditioning of a matrix when inverting a matrix or 
when a system of linear algebraic equations is to be solved. Knowing the ill- 
conditioning we can estimate the precision of the computed inversion matrix 
or the precision of the solution of a system of linear algebraic equations. 

The goal of this paper  is to propose a measure of ill-conditioning in matrix interval 
arithmetic and to verify the reliability of this measure. It  is claimed that the 
proposed measure is essentially equivalent with Bauer's minimum condition 
number  [2]. A function was found for the estimation of the proposed measure 
using Bauer's minimum condition number. 

2. The Condition Number V ( A )  

In interval arithmetic a number  is characterized by a low bound and a high bound. 
The notation is as follows: 

a:---[a1, a2], where al <=a<=a2. 
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Four basic arithmetic operations are well known and are defined in [1]. 

Let A x be a matrix whose elements are interval numbers. The inversion matrix 
(AI)-1 is defined as the smallest interval matrix containing the solution set 

{ A - l l A m A  I, A A - I = I } .  

For  simplicity, assume all A e A I are nonsingular. The notation A ~ A x indicates 
that each element of the noninterval matrix A is contained in the corresponding 
interval element of A I. 

An approximation of (AI) - 1 can be computed by using a finite method for 
matrix inversion but performing arithmetic operations in interval arithmetic. It 
is known that for a general matrix A I such a method suffers from an inherent loss 
of accuracy. The interval elements of an approximation of an inversion matrix 
(AX)- 1 will be relatively large. 

To verify this I inverted a matrix with order n=40  by the Gauss method 
performed in interval arithmetic. The interval elements of the inversion matrix 
were on the average ten times larger than the interval elements of the original 
matrix. We can assume that this ratio depends on the ill-conditioning of the 
matrix. 

Eldon Hansen [3] has proposed the method which minimizes the inherent error 
of interval arithmetic. This method was used in the experimental part of this 
paper. The basic idea of this method is as follows: 

Let Ac e A x be a matrix with elements which are "the centres" of corresponding 
intervals. Using ordinary arithmetic compute B = A~- 1. In interval arithmetic com- 
pute A I B. Since A ~ B  = I - E  ~, where the interval elements of E ~ are "small" it 
is, in general, possible to express 

(A • B)- 1 = I + E r + (EI) 2 + .. . .  (1) 

Hence one can obtain (A x B)-1 by truncating this series. We can rewrite (A*) - 1 
as B (A I B)-1. The errors inherent in inverting A I by interval arithmetic are re- 
placed by the errors in inverting A r B. The latter errors are considerably smaller. 
For  an interval matrix A r, this method computes an interval matrix C x containing 
(A r) - 1. In practice the length of each interval element of C r can be made relatively 
small so that "good" bounds for the elements of A-1 are obtained. See [3]. 

Is there a great difference between C x and (AI)-17 Moore showed that there 
exists a bound on the difference between C x and (A I)- 1 which is of second order 
in the widths of the elements of Ak See [1] page 57. In the following we will 
assume that such second order terms and also rounding errors are negligible. 

If we know an interval inversion matrix the question arises how to evaluate this 
matrix with respect to the original inversion matrix. This will be important if the 
order of the matrix is high. 

We can generally assume that the error associated with input data is directly pro- 
portional to the absolute value of that data in standard applications. This 
assumption suggests that we might express interval elements in relation to the 
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"centres" of interval elements. In fact it is the principle of relative error. Since there 
exist great differences among corresponding elements of a matrix and an inversion 
matrix I propose the evaluation of the interval inversion matrix by means of 
percentage. That  is, low and high bounds can be computed for each element of A I 
as follows: 

I _  I ~I . _ r _ ( 1 )  o(2)1 A - (ai;), u i j . -  L"i; , -w -,, 
( 1 )  ( 1 )  aii = (100-  qij ) aUlO0,  (2) 

d~)= (100 + q!])) a~/100, (3) 
i If a~j=0 then we set where aij is the "centre" of the interval element aij. 

i . _  [0, 0] and define ~(1) 0, _(2) 0 a~; . -  t,li j : t t i  j : . 

We can express low and high bounds of an interval inversion matrix in similar 
manner: 

(A I)- 1 1 OJ.."- r~(1) M2)1 
~ -  (C~iJ)'  U "  - -  l - ~ i J  ' ~ i j  .a t  

(1)= (100 -  p[~)) ~ij/100, (4) 

~(2) = (100 + pl~ )) %/100,  (5) i j  

x If e i j=0  then we set where eq is the "centre" of the interval element chj. 
M.1)__ 0 (2) e-~.',j. = [0, 0] and define ~,  ~, Pu = 0. 

The measure for ill-conditioning of an interval matrix - -  the new condition 
number - -  can be defined: 

V(A)  = P ,  
q 

where 
(n(1) n(2)) .~. m a x  w i j  , ~ i j  ~, 

P = / /2  , 

, (i) (2) max tqu,  qu ) 
q =  ~'i , i , j = l ,  2 , . . . , n .  //2 

3. The Justification of the Condition Number V(A) 

To justify the condition number V(A)  I have used a battery of test matrices 
with inversion matrices known explicitly. This battery represents matrices of all 
important  types, e.g. symmetric, non symmetric, well conditioned, extremely 
ill-conditioned, positively definite, negatively definite, sparse matrices, matrices 
without zero element and quasidiagonal. The battery is composed of 16 test 
matrices. The description of the battery can be found in [5]. 

Each test matrix was considered as an A c matrix. For  every element aq the interval 
element a t was computed according to the formula: 

al) ) = (100 -  q) a, /100, 

a~ ) = (100 + q) a l / lO0.  
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This interval matrix was inverted by the Hansen method. Earlier we defined 
A j  1 = B. The elements of matrix B were considered as the "centres" of correspon- 
ding interval elements of the matrix (A I) - 1. 

The factors ~(1) n(2) i , j =  1, 2, n were computed according to (4) and (5). Y i j  , r i j  ~ " ' ' ~  

The condition number V (A) can be computed now: 

V (A) p 
q 

where q is a constant in this case. 

Two variants were computed: 

A for the order of well-conditioned matrices, 
B for the order of ill-conditioned matrices. 

q =0.1 

A : n = 5, 10, 15, 20, 25, 30, 35, 
B : n=5,  6, 7, 8, 9, 10, 11. 

q = 0.2, 0.4, 1 

A : n=  5, 10, 15, 
B : n=5 ,6 ,7 .  

To assure convergence according to (1) the norm of E ~ matrix must be lower than 1. 
I have used the following norm for the interval matrix AX: 

(1) I, I ~!~) I). II AI II = max ~ max (I aij -~j 
i j 

This condition was not fulfilled in many cases especially by ill-conditioned 
matrices. The following value was then used for q : 0.000001. If this value did 
not satisfy the condition the interval inversion matrix was not computed. This 
occurred when computing ill-conditioned matrices of high orders. 

133 interval inversion matrices were computed in interval arithmetic. We can 
expect that the more a matrix will be ill-conditioned the higher will be the con- 
dition number V(A).  

All computations were done using floating-point arithmetic with a 36-binary-bit 
mantissa. 

Table 1 shows the correlation coefficients among V (A) and measures of errors of 
the inversion matrix. The measures ~(1), ~(z), ~(a), ~(4) were computed using 
ordinary arithmetic. Inversion matrix B was computed by the Jordan inversion 
method (diagonalization). 

Table 1 

V(A) 0.643 0.731 0.877 0.883 
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The  nota t ion  is as follows: 

A = (aij) test matrix, B = (bij) computed  inversion matrix, C = (c 0 explicitly given 
inversion matrix.  

( i )_  b c 1. the absolute error  eij - [  ~ -  ij[. 

2. the relative error  el2)_ [ b i j -  cij I 
cij 

If cii=O then (2) eij = 0  wasused.  

3. the error  el~ ) = [ i i j -  dij ], 
where I = (i 0 is the identi ty matrix,  D = (d 0 = A A -  1. 

4. the er ror  el 4)= l i i j - f i i l ,  
where f = (fij) = A - 1 A. 

The formula used to calculate the average error  is: 

v t j  

~(k)= ~ J where k = 1 , 2 , 3 , 4 ,  i , j = 1 , 2 ,  n. 
n 2  ' � 9  

Strong correlat ion was proved for ~(3) and ~(4). It is known that  these values need 
not  reliably indicate the accuracy of  computed  inversion matrices. See [4] and 
also [6], p. 119. Strong correlat ion was also proved for the relative error  ~(2). 

Table  2 shows the correlat ion coefficients among  V(A) and these condi t ion 
numbers :  

M (A) = n max [ aij [ max [ O~ij l, where A -  1 = (el j). 
i , j  i , j  

N(A)  = n- l ( .~ ,  a~) 1/2 (.~ e~)1/2, i , j= l ,  2 , . . . ,n .  
t ,J  z,J  

P (A) _ max 1 2i [ where 2 i are the eigenvalues of A, i--- 1, 2, ..., n. 
min ]  2i I '  

B(A) = m a x  ~ [aij[ max ~. Ichj[. 
i j i J 

B (A)min = 7g (1 A [ { A -  11), where zc (X) is the largest eigenvalue of  non-negat ive 
matr ix  X, [ A [ = (1 aij 1). 

B (A)m~n is Bauer 's min imum condi t ion  number  [2]. It gives the limit for ill- 
condi t ioning of  a matr ix which can not  be lowered. 

V(A) 

Table 2 

M(A) N(A) ~ ~  B(A) 

0.741 0.785 0.713 

The same set of interval inversion matrices N =  133 was used for computa t ion  of  
the correlat ion coefficients. 
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The correlation coefficients for M (A), N (A), P (A), B (A) are approximately on 
the same level as the correlation coefficient between V (A) and ~(2). But the correla- 
tion between V(A) and B (A)min shows very strong dependence. It is nearly a 
functional dependence and this fact is very interesting. 

B (A)mln gives the inherent condition of a matrix. It is the lowest limit which can 
not be traversed. This condition is a quality of the matrix. 

Using the Hansen method we can compute a good approximation of the interval 
inversion matrix. The condition number V(A) is based on the ratio of average 
intervals and measures the minimum condition of an interval matrix using interval 
arithmetic. It is remarkable that the condition numbers V(A) and B (A)min are  
constructed from different backgrounds and yet very good accordance exists 
between them. 

Due to the strong dependence mentioned we can find a function for this relation 
very easily. The least squares method was used. 

V(A)= 1.0145 B (A)min- 175.3113. (6) 
(0.00176) (188.1201) 

The standard errors of the regression coefficients are given in parentheses. 

Let us denote ei as the difference between the functional and experimental 
value. The standard error estimate of ei is 13 401.58. 

The standard error estimate of ei is relatively high but we must keep in mind that 
the values of V(A) exist in the range from 10 ~ up to 108. According to the 
standard error estimate mentioned I recommend using relation (6) if 
B (A)min> 104. If B (A)min is lower we can assume well-conditioning of the matrix 
and expect small interval elements of the interval inversion matrix. 

Relation (6) gives the approximation of the condition number V (A) if we know 
B (A)mi,. The interpretation is simple and provides the size of interval elements of 
the interval inversion matrix. This knowledge is important if we know the elements 
of a matrix with certain accuracy only. 

Table 2 shows strong dependence among V(A) and other condition numbers, 
It is notable that the condition number V(A) is the rough approximation of the 
condition numbers P (A) or M (A). This can be seen by analyzing the samPle men- 
tioned above. According to [5] the condition numbers P (A) and M (A) do not 
differ too much. 

4. Conclusion 

It was shown that there exists strong dependence among V (A) and the absolute 
and the relative error of the inversion matrix. Knowing V(A) we can estimate 
sizes of interval elements of the interval inversion matrix with respect to the 
interval elements of the original interval matrix. The condition number V(A) 
measures the minimum condition of the matrix with high reliability. If we do not 
know the interval inversion matrix we can estimate V(A) using relation [6]. 
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