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7 On Solving Two-point 
Boundary-value Problems using 

Interval Arithmetic 

1. Introduction 

IN this chapter we show how interval arithmetic can be used to bound 
the solution to certain two-point boundary-value problems for ordinary 
differential equations. Our method can be applied to non-linear equa- 
tions but in some such cases we assume initial crude bounds to  be given. 
However, for the linear case, no initial bounds are required. 

To simplify the presentation, we consider only a single equation of 
second order. The method to be discussed can be easily extended to the 
more general case. In  [6] (p. 83), Moore indicates that the problem 

can be solved, with strict bounds on the error, by formulating the prob- 
lem as an integral equation and using the method of Chapter 9 of [6]. 
See also Chapter 6 of this book. In the following, we present an alterna- 
tive procedure for solving the more general equation 

Y" = f ( x ~ Y ~ Y ' )  
with boundary conditions 

For brevity, we replace equations (1.2) by the special simple conditions 

However, use of (1.2) instead of (1.3) introduces no difficulties. Our 
method is essentially an interval analytic extension of the difference 
approximation method in common use (see, for example, [2]). The 
modification of our method to use (1.2) instead of (1.3) follows the same 
steps as those of section 12 of Chapter 4 of [2]. 
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We assume the problem expressed by (1.1) and (1.2) has a unique 
solution, bounded in [a, b], and that its f i s t  four derivatives are con- 
tinuous and bounded in [a, b]. We impose further conditions at  the end 
of section 3. 

We also assume f is a rational function of x, y, and y'. If this is not 
the case, it may be possible to obtain a system of differential equations 
entailing only rational functions. For details of such a step, see, for 
example, section 11.2 of [6]. This assumption is not necessary, in general, 
since there are means for computing intervals containing the 'value' of 
irrational functions with interval arguments. For example, see Chapter 1 
by Moore. We consider some irrational examples in sections 10 and 11. 

2. The basic step of the method 
Divide the interval [a, b] into sub-intervals 

X i =  [X~,X,+~] (i = 0,1, ..., n-1) 

where x, = a and xn = b. The meshpoints xi need not be equally 
spaced although we assume them to be. At each interior meshpoint 
x,, ..., x,-,, we write discrete approximations for the derivatives in the 
differential equation (1.1). The error in these approximations can be 
analytically expressed and then bounded by use of interval arithmetic. 
The simplest central difference approximations are the well-known 
formulae 

1 y! - -(y. - h2 
' - 2h .&+I Y - 1 - Y " ,  (( = I,..., n-1) (2.1) 

1 h2 
and y=-(y+l-2yi-yl)--$4(i)  1 n - 1 ,  (2.2) 

h2 12 

where h = xi+,-xi and y6 denotes y(x,), etc. The quantities 6, and r] ,  

are unknown except that ti E X r  and r]{ E X: where 

x: = Xi U Xi-l = [xi-,, x,+~]. 

We later show how to bound the error terms. For now, assume we 
know intervals A, and B, such that ~"'(6,) E A, and $*)(r],) E B, for 6, and 
11.1 in X:. Substituting these bounding intervals for the respective 
quantities in (2.1) and (2.2) and substituting the results into (1.1) (with 
x = xi), we obtain 
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Since yo and y, are given, we thus have n- 1 equations in the n- 1 
unknowns y,, ..., y,-,. If the equations are linear, we can solve them by 
(say) the interval arithmetic method recommended in [5] (for which a 
computer program is given in [TI). If the equations are non-linear, a 
method in [4] or [6] can be used. We thus obtain an interval y: con- 
taining yi (i = 1, ..., n- 1). 

3. Obtaining Ai and Bi 

We now consider how the bounds Ai and Bt can be obtained. To do 
this, we assume we have bounds on y and y'; that  is, assume we know 
y(x) E Y ,  and yf(x) E YL for x E Xi. In  later sections we discuss how to 
find the intervals Y ,  and Y;. 

Differentiating equation (1. I), we have 

where f, r af/ay and fun r af/%'. Substituting for y" in (3.1) from (1.1), 
we obtain 

Y"' = p(x, y, yl), (3.2) 

where P(X, Y, yl) -- f ~ + ~ l f r + f f ~ e  (3.3) 

is a function of x, y, and y' alone. 

Similarly we find $*' = PI(X, Y, Y') (3.4) 

by differentiating (3.2) and substituting for y" as before. 
We can bound y" over an interval Xi by evaluating p(X,, Y,, Yi) using 

interval arithmetic. Denote 

Ai = p(&, Y,, Y;) U p(Xi-1, &-I, K-i)- (3-5) 

Similarly, Bi = q(Xi,Y,, Y;) u q(Xi_,,Y,-,, Yip,). (3.6) 

The intervals Ai and Bi are the quantities required in (2.3). 
We assume that  p(X,, Y,, Yi) and q(X,, Y,, Yi) are bounded for all 

i = 0, ..., n-1. This rules out many interesting differential equations. 
For example, we cannot solve y" = ylx if 0 E [a, b]. 

4. Improving Yi 

We assume the bounding intervals Y ,  and Yi were initially crude. We 
now consider how to improve these bounds. 

Using Taylor series with remainder we easily find 
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for any point x E Xi, where Oi E Xi and 4, E X,. Denote 

Y; = f (X,, 5, Yi). (4.2) 
From (1.1), y"(9,) E Yi and ~"(4,)  E Y; and hence from (4.1), 

for anyx E Xi, where w{[O, 1lY;)denotes the width of the interval [O, l]Y;. 
Denote 

Then yl(x) E Y; for any x E Xi and Y; is the (improved, in general) bound 
we sought. We use the same notation Y; for the old crude bound and 
the new improved bound on y'(x) for x E Xi. At any stage of our method, 
Y; denotes the current best approximation. In  practice we should use 
the intersection of the old and new intervals. 

5. Improving 5 
We now use the improved bound Y; to improve Y,. Using Taylor series, 

we easily find 

Y(X) = B[~i+~i+l+(xi+l-x)~'(~i)-(x-xi)~'(~i)I (5.1) 
for any x E Xi, where pi E Xi and vi E Xi. Since Y'(~,)  E Y; and yl(vd) E Yi, 
we have 

y(x) E B[Y:+Y~+I+ (xi+l-Xi)Y;- (Xi-xi)Yll 
h 

= ?(Y:+Y:+~) +l (LO, llY;-[o, 11Yi) 

for any x E Xi. Denote 
h 5 = l(y:+y:+l) +5 w(lo,1ly;)[- 1,lI. (5.2) 

Then y(x) E Y ,  for x E Xi. This new value of Y,  replaces the original crude 
value; and, as before for Y;, the intersection of the two can be used. 

6. The iterative method 
We are now able to describe the method we propose. We proceed in 

the following steps. 
(a )  Procure crude bounds 5 and Y; for i = 0, ..., n-1 (see sections 

8-11). 
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(b) Evaluate Ai using (3.5) and B, using (3.6) for i = 1, ..., n- 1. 
(c) Using (1.3), solve equations (2.3) for y{ (i = 1, ..., n-1). 
(d) Find improved bounds Yi (i = 0, ..., n-1) using (4.3). 
(e) Find improved bounds & (i = 0, ..., n- 1) using (5.2). 
(f)  Iterate steps (b)-(e). 

The iteration can proceed either until the error bounds are sufficiently 
sharp or until successive iterates differ by a sufficiently small amount. 
Note that for fixed finite precision arithmetic, a stage will be reached 
where no improvement occurs. 

We have assumed convergence. If this does not occur, the fact is 
almost immediately revealed. In  theory, the likelihood of convergence 
is enhanced by reducing h. In practice, this may not help because the 
number of interval equations (2.3) increases and may be difficult to solve 
sharply. 

We wish next to present a general procedure for obtaining crude 
bounds when the differential equation is linear. To do this, we first 
require some preliminary concepts which we now consider. 

7. Computation with variable intervals 
Let M, and N, be intervals whose end-points are specifically given 

numbers. Let W be an unspecified variable interval. We cannot un- 
ambiguously express M, W explicitly in terms of the end-points of M, 
and W since the end-points of M, W depend upon the unknown signs 
and magnitudes of W. To compute with variable intervals, we can 
represent them as N, W. Then M,(N, W) can be 'computed' by evaluating 
N,,, = MrN, and representing the result in the form N,,, W. 

If we assume W is symmetric about the origin so that W = [-w, w], 
we can simplify the arithmetic. We can then replace N, = [n:, n a  by 
a positive real number n, since 

N,[-w,wl = n,[-w,wl, 
where n, = IN, 1 = max ( ln,ll, InFI). Similarly 

W1.w = WlllMrI. (7.1) 
In the next section, we take advantage of this simplification. 

8. Obtaining & and Y;  in the linear case 
If boundary conditions of the form (3) are given, we choose to seek 

bounds of the form Yi = {y(a)+y(b))12+ U (8.1) 

and y - y(b)--y(a) + v, 
2 ' -  b-a 
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where U = [-U,U] and V = [-v,v] SO that U and V are symmetric 
about the origin. If the boundary conditions are not of the form (3), we 
can simply choose = U and Yi = V. 

Using the analytically expressed bounds (8.1) and (8.2), we perform 
steps (b)-(e) of our method described in section 6. We use the arithmetic 
described in section 7. 

Let and Fi denote the new bounds on the solution and its derivative, 
obtained in this way. We find 

8 = M,+c, U+d, V (8.3) 

and Ti = M:+c: U+di V (8.4) 

for i = 0 ,..., n-1, where c, 2 0 ,  d, 2 0, ci 2 0, and di 3 0. Denote 
M, = bi,qi], Mi = [pi, qi], = [gf,fjF], and = [Z?, ZF] .  From (8.3) 
and (8.4), fjf = pa-ci~-drv, 

z? = q;+c:u+d;v, (8.5) 
for i = 0, ..., n-1. 

Let r = {y(a)+y(b))/2 and s = {y(b)-y(a))/(b-a). Then from (8.1) 
and (8.5), the differences between the old and new left end-points of the 
bounds on y(x) in Xi are 

and the changes in the right end-points are 

Similarly, the changes in the end-points of the interval containing y'(x) 
in Xi are Azt  = p;-s-c;u+(l-~)v (8.8) 

and Azp = qi-s+c;u-(1-di)v (8.9) 

for i = 0, ..., n-1. 
The new bounds are strict improvements over the old if 

We now argue that for h sufficiently small, the inequalities (8.10) will, 
in fact, hold provided the initial bounds are not already too sharp. 
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We performed steps (b) - (e )  of the procedure in section 6. Each of these 
steps involved use of a formula in which the error term was multiplied 
by a positive integer power of h. Hence the non-negative numbers c,, 
d,, ci, and d; are all O(h). We assume h is so small that 

From (8.11), we see that the coefficients 1-ci in (8.6) and (8.7) and 
1 -d; in (8.8) and (8.9) are positive. This (along with another condition 
given later) enables us to satisfy conditions (8.10) by choosing u and v 
to be related in an appropriate way. 

Since we seek only crude bounds, we shall not attempt to obtain a best 
result but shall sacrifice sharpness (in the crude bounds) for simplicity 
of method. We do not, of course, drop the requirement that our bounds 
be strict. 

Using (8.6)-(8.9) and noting (8.11), we rewrite (8.10) as 

for i = 0, ..., n-1. We assume di > 0 although the case d,. = 0 causes 
no difficulty. However, di = 0 only iff is independent of y. For simpli- 
city, we omit discussion of such cases. Define 

a, = min{(p,-r)/di}, a, = min{(r-q;)/di}, 

a = m n { ( - 1 - )  ah = min{(s-q;)/(l-a;)), 

/3 = min{(l -ci)/di), and /3' = max{ci/(l -d;)), 

where the max and min are taken over all i = 0, ..., n- 1. Define 
a = min(a,, a,) and a' = min(a;, ah). Then (8.12) and (8.13) are satisfied 
if u 2 0 and v 0 are such that 

and (8.14) and (8.15) are satisfied if 

The right members of (8.16) and (8.17) can be viewed as lines in the 
(u, v) plane. Relation (8.16) says the point (u, v) must lie below the line 
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and (8.17) says (u, v) must lie above the line 

It is easily seen that 0 < P = O(l/h) and 0 < Pf = O(1). Hence for h 
sufficiently small, Pf < P (8.20) 
and there exist points (u, v) satisfying both (8.16) and (8.17). Hereafter, 
we assume (8.20) to hold. 

In  general, conditions (8.11) and (8.20) can be satisfied by choosing h 
sufficiently small. However, this is not always the case. If equations 
(2.3) are nearly linearly dependent, y$ may be large in magnitude. 
Subsequently, terms which are supposedly relatively small may not be 
so and our method can fail. Note that for the eigenvalue problem wherein 
equations (2.3) are, in fact, linearly dependent, our method fails 
completely. 

We choose (u, v) to lie on the line whose slope is the average of the 
slopes of the lines (8.18) and (8.19) and which passes through their point 
of intersection. That is, we choose (u, v) to lie on the line 

A point on this line satisfies (8.16) and (8.17) if u = uo+Au for all 
Au > 0 where 

UO = -(a+af)/(P-Bf). (8.22) 

It is easily seen that u, = O(1). Note we also require u > 0. 
Substituting for v from (8.21) into (8.6) and (8.7) and using the defini- 

tions of a, a', p, and p', we find 

and AY? < - ~ ( ~ - ~ l ) ( u - u o )  
2 (8.24) 

respectively. Whatever value of u > u, we use in (8. l ) ,  we now see that 
we could replace it by 

where d = min(di) for i = O,.. . , n- 1. That is, we could reduce u-u, by 

Now 1-(/3-P)d/2 2 (1 +ci+dP1)/2 > 0 and hence u-u, can always be 
reduced by a positive fixed fraction of itself if u > u,. 

8533330 a 
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Similarly, from (8.8) and (8.9) we find that v-v, can be reduced by 
an amount 

P-P' (1 -dt)(v-v,), A(v-v,) = - 
P +rs' (8.26) 

where d' = max(di) for i = 0, ..., n- 1 and 

0 - 
.P' +Pa' v ---. 

P-P' 
Hence both u-u, and v-v, can be reduced by fixed positive fractions 

of themselves if u > u, and v > v,. We have assumed y and y' bounded 
for all x E [a, b]. Suppose we choose u and v satisfying (8.21) and so large 
that (8.1) and (8.2) do, in fact, bound y and y' in [a, b]. If 

u > UI = max(O,u,) and v > v, = max(0, v,), 

we can reduce both u and v, keeping (8.21) satisfied, until as the limit 
of an infinite sequence of steps, u = u, and v = v,. (Actually we will 
find u < u, and v < v, since we have used bounds rather than true 
values of AyF, etc.) Thus, letting u = u, in (8.1) and v = v, in (8.2) 
yields actual bounds on y and y' for x E [a, b ] .  

It is quite easy to obtain results which are slightly sharper, in general. 
Replace < by < in (8.12)-(8.15) and substitute for v in terms of u from 
(8.21). Find the smallest value of u satisfying all these relations for all 
i = 0, ..., n-1. This value, substituted into (8.1), yields bounds on y. 
Substituting this value of u into (8.21) and solving for v yields a value 
which when used in (8.2) yields bounds on y'. 

I n  general, still better results can be obtained by solving a linear 
programming problem. We minimize +(u,v) = u subject to the con- 
straints (8.10). The values of u and v for the solution point (u,v) yield 
bounds as before. 

Proof of the validity of the statements in the last two paragraphs can 
be obtained in the manner used to prove u = u, and v = v, provide 
actual bounds. 

In practice, a relatively large value of h could be used in obtaining the 
crude error bounds. If the bounding procedure cannot be completed 
because (8.11) or (8.20) fails to hold, then h can be reduced and the 
process repeated. However, the crude bounding procedure is quite 
simple to apply. Moreover, it yields sharper results for moderately 
small h. Hence there is no great advantage in using large h. 
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9. Example 

We illustrate the above analysis with an example considered by 
Collatz on pp. 178 and 179 of [I]. Consider 

y" = 2x-2y- l/x (9.1) 

with boundary conditions 

y(2) = y(3) = 0. (9.2) 
Following Collatz, we let h = 113. In general practice, however, it is 
necessary to choose a machine representable value of h. 

Differentiating (9.1), we find 

y(" = 4x--3(4y/x- 1 - 2y') = q(x, y, y'). (9.3) 
We shall not need y" since y' does not occur in (9.1) so we shall not have 
to use (2.1). We shall be evaluating (9.3) with the variables replaced by 
intervals. Hencz we ought to write the equation in such a way as to 
obtain sharpest results. The given form is better, for example, than 
4~-~(4y-x(l  f 2y1)}. 

Equations (8.1), (8.2), and (9.2) dictate that we seek bounds of the 
form & = U and Y;  = V. We thus replace y by U and y' by V in (9.3) and 
replace x by suitable intervals. To reduce the labour, we have used 
intervals Xr to find Bi rather than use Xi and Xi-, separately. In  general 
practice this should not be done since 

!?(Xi-1, u ,  V) lJ q(X,, u, V) c q(XZ, u ,  V); 

that is, the left-hand member of this relation yields sharper results, 
usually. We find 

Bl = q(XT, U, V) = [-0.500, -0-210]+ U+V, 

Substituting these results into (2.3) and using (9.2), we obtain 

Solving these equations, we get 

= [0~0419,0~0429]+0~000690U+0~000753V. 

We next find Yi = [-0-500, -0.4281 +0.500U 

using (4.2), and 

= [0~0483,0~219]+0~170U+0~00263V 
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using (4.3). Similarly, we find Y;  and Y!. Next we obtain 

Yo = [-0~0148,0~0680]+0~0571 U+O-00132V 

as well as Y, and Y, using (5.2). 
Writing (8.6)-(8.9) for i = 0, 1, and 2, we have 

Ayk = -0.0148+0.9429~-0.00132~~ 

Ayp = 0-018+0.9564u-0.00245~~ 

Thus (8.18) and (8.19) become (approximately) 

0 = -51.5+390~-v 

and 0 = -0.22-0.17u+v, 

respectively. Rounding to  one significant digit (for convenient hand 
calculation) we approximate (8.21) by 

It does not matter that we approximate (8.21) so poorly since we choose 
not to compute u, and v,. Instead we use the alternative method 
described above. 

Substituting for v from (9.5) into (9.4) we find Ayt >, 0, Ay? < 0, 
Ax? >, 0, and Ax? < 0 for i = 0,1, and 2 if u = 0.152. If we had used 
(8.22), we would have found u, = 0.133. The alternative method 
(which is better) has yielded a worse result because we rounded (8.21) 
so drastically to get (9.5). Using higher-precision arithmetic to  obtain 
(9.5), we could have got u, = 0.133. Using u = 0.152, equation (8.1) 
reveals that y E [-0.152,0.152] for all x E [2,3]. Solving (9.5) for v and 
using (8.2), we find that y' E [-0.4,0.4]. 

We could now use our iterative process beginning with step ( b )  in 
section 6. However, we already know what the result of performing 
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steps (b)-(e)  will be. Except for the fact that the arithmetic might differ 
slightly, we would obtain the improvements given by (9.4) for the bounds. 
We thus find Y,, = [-0-023, 0.0773],Yl = [0.01,0.765], Y, = [-0.017, 
0.05911, Yo = [0.021,0.246], Y; = [-0.102,0.09], and Y', = [-0.208, 
-0.0481. 

We now begin our iterative process. We find y: = [0.0434,0-04471 and 
yi = [0.0418, 0.04271. As before we have evaluated B, and B, in the 
form B, = q(X:, Y,-, U Y,, Yi-, U Y;). To improve sharpness in the final 
time through the iterative process, we use 

Bi = q(Xi-l,Y,-l, Yi-,) u q(X,,Y,, Y;). 

We find y: = [0.0440,0.0446] and yi  = [0.0422,0.0427]. Very little 
improvement could be obtained by further iteration. 

Our step-size h is too large to  yield high accuracy. However, if we con- 
sider the mid-points of y: and y; to be approximate values of y, and y,, 
we know that the relative errors are less than 0.007 and 0.006, respec- 
tively. 

Collatz [l] solved this same problem approximately and using an 
explicit expression for y(4) in terms of x obtained estimates 

yf = [0.043288,0.044708] and yi = [0.041464,0.042884]. 

I n  practice, of course, we do not know y(4) explicitly in terms of x alone. 
Without this information, we havc obtained error bounds, not estimates, 
which arc sharper. 

10. Crude bounds for lion-linear equations 

We now consider ways in which crude bounds on y and y' can be 
obtained for non-linear differential equations of the form (1.1) with 
boundary conditions given by (1.3). 

It should be noted that no initial bounds on y' are required iff (x, y, y') 
in (1.1) is independent of y'. I n  this case (4.3) provides bounds on y' 
assuming bounds on y are known. 

I n  very special situations initial bounds may be quite simple to  obtain. 
Suppose, for example, the differential equation is 

Suppose g(x) is bounded for x E [a, b]. Evaluating g([a, b]) in interval 
arithmetic, let G be the interval obtained. Then yM(x) E Gfor allx E [a, b]. 
Hence (4.3) provides bounds Y; (i = 0, ... , n- 1). We merely let h = b-a 
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so that yi = y(a) and yi+, = y(b). These quantities are given by (1.3). 
Similarly, (5.2) yields a bound on y(x) for all x E [a, b]. 

In  problems for which it is applicable, a crude form of the method 
discussed by Moore in Chapter 6 could be used to get initial bounds on y. 

We now quote a theorem due to  Gendzhoian [3] which can be useful: 

THEOREM. Given y" = f (x, y, y'), y(0) = y(1) = 0. Assume that for 
0 < x < 1 and yz+y'2 < co, the following conditions hold: 

(i) f is continuous in x, y, and y'. 
(ii) f is continuously differentiable with respect to y and y'. 

(iii) 0 ,< f, < M and If,,l < M. 

Let N > 0 be such that If (x, 0,O) I < 2eN12 and let a = +{M+(M2+4)112) 
and R = max(N, a). Then -v(x) < y(x) < v(x) for 0 < x ,< 1 where 

In  certain cases, i t  can be determined that the conditions of this 
theorem hold. Note that an upper bound for the constant N can be 
obtained by evaluating f (x, 0,O) in interval arithmetic with x replaced 
by the interval [O,l]. 

If for all x E [a, b], the function f (x, y, y') does not grow too rapidly as 
a function of y and y', we can obtain crude bounds on y and y' in a way 
similar to that of the last section. 

Denote Y = [yL, yR], Y' = [zL, zR]. If we substitute the fixed interval 
X = [a, b] for x and the variable intervals Y for y and Y' for y' in 

f (x, Y, Y'), we have f (X, Y, Y') = [gL7 gRl, (10.1) 

where gL and gR are functions of yL, yR, zL, and zR. 
From (4.3), y' E F' for x E X where 

b-a 
(10.2) 

b-a 

Thus from (5.2), y E for x E X where 

b-a 
F = t { ~ b )  +y(b)} +37w( [0 .  11J1)[- 1 , l l  

= ${~(a )+~(b ) )+&{~(b ) -~ (a )+(b -a )~w([O,  ll[gL, gRI))[-1, 11. 
(10.3) 

- 
Denote Y = [fjL, fjR], F' = [fjL, fjR], AyL = fjL-yL, AyR = gR-yR, 
AzL = ZL-zL, and AzR = IR-zR. 

The bounds (10.2) and (10.3) are strictly better than the bounds Y 
and Y', respectively, if 

AyL > 0, AyR < 0, AzL > 0, AzR < 0. (10.4) 
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This will be the case if gL and gR grow at  less than a linear rate as func- 
tions of their arguments provided that -yL, yR, -xL, and xR are suffi- 
ciently large positive numbers. In  particular cases, linear growth of gL 
and gR may be acceptable. 

For alinear differential equation, gL, gR, ZL, and ZR are linear functions 
of yL, yR, zL, and zR. Hence it  was necessary (in general) in the last 
section to  subdivide X and use (2.3) to assure that, corresponding to  
(10.4), we could satisfy (8.10). With the assumption that gL and gR grow 
sufficiently slowly, the additional step is unnecessary. 

The following example illustrates the ideas just discussed. We develop 
the results in a way that might occur in practice. That is we impose 
conditions as they appear necessary or convenient. 

Consider the problem 

y'' = 4O(y~')l1~, y(1) = 40, y(2) = 320 

whose solution is y = 40x5. Note that f (x, y, y') = 40(yy')lI3 is indepen- 
dent of x. This simplification is neither necessary nor particularly helpful. 
Substituting Y for y and Y' for y' in f, we obtain Y" = 40(YY')lI3. 

From (10.2), 
7' = 280+2Ow{[O, 1]Y1/3(Y')113)[- 1,1]. 

For convenience, assume 0 E Y and 0 E Y'. Then 

7' = 280 +20w{[(yL)l13, (yR)1/3][(xL)1/3, ( z ~ ) ~ / ~ ] ) [ -  1,1]. 

Since y(1) > 0 and y(2) > 0, assume yR -yL. Since y(2)-y(1) > 0, 
assume xR -zL. Then 

[(yL)l13, (yR)1/3][(xL)1/3, (xR)lI3] 

= [min{(yLxR)1/3, (yRzL)lI3), (yRzR)1/3] c [- (yRzR)lI3, 

Since we may enlarge 7' if we like, we accept 

From (10.3), we obtain 

H = [40, 320]+40(yRxR)113[- 1,1]. (10.6) 
Hence AyL = 40-4O(yRxR)lB+yL, 

AyR = 320+40(yRzR)l13-yR. 

Choose yL = -yR. Then AyL > 0 and AyR < 0 if 

~ ~ - 4 0 ( ~ ~ ~ ~ ) ~ / ~ - 3 2 0  > 0. 
From (10.5), AxL = 280-40(yR~R)113-zL, 

AxR = 280+40(yRxR)113-xR. 



88 SOLVING T W O - P O I N T  B O U N D A R Y - V A L U E  P R O B L E M S  7.10 

Choose xL = x R .  Then AxL > 0 and AxR < 0 if 

xR-40(yRzR)1/3-280 > 0 .  (10.8) 

Choose zR = yR. Then both (10.7) and (10.8) are satisfied if 

yR-40(yR)213-320 ) 0 .  (10.9) 

The largest root of this cubic in (yR)li3 is near 40.2 and (10.9) is satisfied 
if (yR)lI3 > 40-2. Since (40.2)3 < 64965, we concludc that inequalities 
(10.4) arc satisfied if -yL = y R  = - x L  = x R  64965. Using the 
argument applied in the last section, we conclude that both y and y' are 
contained in the interval 64965[- 1 , 1 ]  for all x E X. The best possible 
bounds on y and y' are [40,320] and [ Z O O ,  32001, respectively. 

Thus the bounds are not very good. Howcver, subdividing X and 
using these crude bounds in the iterative method described in section 6, 
good bounds can be obtained. 

11. Additional notes 
We have shown how, under certain conditions, strict bounds can be 

obtained on the solution of a two-point boundary-value problem. We 
not only get bounds on the value of the solution at the mesh points but 
also uniform bounds on the solution between mesh points. If desired, 
the method could be easily extended to yield interval polynomial bounds 
between the mesh points. 

We have implicitly assumed that a and b were rational numbers that 
can be expressed in single precision in the computer. If this is not the 
case, then h, x,, x,, ... are irrational, in general. These numbers could 
be replaced by intervals. However, it seems easier to replace x by, say, 
x = a+(b-a) t .  Then t  takes the values 0 and 1 a t  the end-points of the 
interval in which the differential equation is to be solved. Alternatively, 
we could choose h to be rational and let only x,-a and/or b-x,-, be 
irrational. In  this case alternative expressions for (2.1) and (2 .2)  must 
be written for i = 1 and/or i = n-1 .  

Equations (2.1) and (2 .2)  are commonly replaced by alternative 
expressions in practice (see [ 2 ] ) .  If the necessary cxtra derivatives off 
can be easily obtained, it seems probable that higher order approxima- 
tions should be used. Similarly (4.1) and (5 .1)  could be replaced. For 
example, suppose the boundary conditions are of the form y'(a) - yb and 
yl(b)  = yk. Then in the crude error bounding method in section 10, it 
may be better to use, say, an interval version of 

~ ' ( 4  = i {y l (a)- l  y'(b)+(b-x)y"(~)--(x-a)y"(+)) 
in place of (10.2). 
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To avoid use of we could replace (2.2) by 

where ti E Xi and 7; E Xi-,. If this equation is used instead of (2.2), we 
can drop the condition that y have a bounded fourth derivative. 

Equation (11.1) may be especially useful in obtaining crude error 
bounds. For example, consider the differential equation 

y" = y' +sin y. 
For this example, we find 

yttt = yf ( l  +cos y) +sin y 

and = yf(l  +2 co~y)-(y ' )~  sin y+(1 +cos y)sin y. 

I n  order to  use the procedure in section 10, we could replace 

Y; = f (X,, Y,, Y;) = Y;+sin Y ,  

by F; = Y;+ [- l ,1]  since sin yi E [- l,1]. Similarly, we could replace 

Yy = p(X,,Y,, Y;) = Y;(l+cosY,)+sinq 

by = [O, 2]Yi+[-1,1]. However, if we attempt to  do this for 
the result is not linear in & and Yi. Hence the method in section 10 could 
not be used. But if we replace (2.2) by (11.1), we do not require a bound 
on The bounds on y; and yy are linear in & and Y; and hence we 
can apply the crude bounding procedure of section 8. 

The procedure whose steps are listed in section 6 yields bounds on y' 
over the intervals Xi. If bounds on y' a t  the mesh-points xi are desired, 
we obtain sharper results by noting that y; E Yi-, n Y;. Sharper results, 
in general, can be obtained using (2.1), which becomes 

Note we can attempt to improve y: (i = 1 ,.. . , n- 1) by replacing yi by 
Y: n Y ,  n q-,. 
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