
Interval Tools for ODEs and DAEs

Nedialko S. Nedialkov
Department of Computing and Software

McMaster University, Canada
nedialk@mcmaster.ca

Abstract

We overview the current state of interval methods and
software for computing bounds on solutions in initial value
problems (IVPs) for ordinary differential equations (ODEs).
We introduce the VNODE-LP solver for IVP ODEs, a suc-
cessor of the author’s VNODE package. VNODE-LP is
implemented entirely using literate programming. A ma-
jor goal of the VNODE-LP work is to produce an interval
solver such that its correctness can be verified by a human
expert, similar to how mathematical results are certified for
correctness.

We also discuss the state in computing bounds on solu-
tions in differential algebraic equations.

1. Introduction

We consider the initial-value problem (IVP)

y′(t) = f(y), y(t0) = y0, y ∈ R
n, t ∈ R. (1)

Since interval methods for IVPs for ordinary differential
equations (ODEs) are typically based on Taylor series,
which require the computation of Taylor coefficients (TCs)
for y up to some order k ≥ 1, we assume that f is as differ-
entiable as needed.

The initial condition can be in an interval vector y0, that
is, y0 ∈ y0. If we denote the solution of (1) by y(t; t0, y0),
we denote by y(t; t0, y0) the set of solutions originating
from each initial condition in y0:

y(t; t0, y0) =
{
y(t; t0, y0) | y0 ∈ y0

}
.

Given tend > t0, we wish to compute interval vectors that
are guaranteed to contain the solution to (1) at points tj for
which t0 < t1 < t2 < · · · < tN = tend. Namely, we want
to find yj such that

y(tj ; t0, y0) ⊆ yj for all j.

When computing these yj , we use interval methods to
enclose roundoff and truncation errors in the computed
bounds, thus obtaining rigorous bounds on the true solution
of the ODE [24, 44].

When describing the theory of these methods, it is con-
venient to work with an autonomous ODE. However, this
is not a restriction, as the theory can be applied to non-
autonomous systems, or a non-autonomous system can be
converted into an autonomous one. Also for convenience,
we require that tend > t0, but in general tend may be less
than t0.

Section 2 lists software packages for computing bounds
on the solution of (1) and lists various applications. Sec-
tion 3 outlines some of the theory behind interval methods
for IVP ODEs. Section 4 gives an overview of VNODE-
LP, elaborates on literate programming (LP), and presents
numerical results to illustrate some of the issues in these
methods. Section 5 outlines Pryce’s [52] structural anal-
ysis for solving systems of differential algebraic equations
(DAEs) and summarizes work to date on Taylor series meth-
ods for DAEs. Conclusions are in the last Section 6.

In this paper, we assume knowledge of interval arith-
metic and basic interval techniques (see for example [2,
37]). Intervals, interval vectors, and interval matrices will
be in bold font.

2. Software and applications

In Table 1, we list packages for computing bounds on
the solution of an IVP ODE. We refer to the methods im-
plemented in the packages AWA [33], ADIODES [54], VN-
ODE [43], VNODE-LP [40], and VODESIA [18] as “tradi-
tional” interval methods for IVP ODEs. The COSY VI [9]
solver is based on Taylor models [48], and VSPODE [32]
can be viewed as a mixture of traditional methods and Tay-
lor models.1 All require computing TCs, while ValEncIA-
IVP [4] needs only the Jacobian of f .

1To the author’s knowledge, VODESIA is not publicly available, and
VSPODE is available by request from the authors.

package year language
AWA 1988 Pascal-XSC
ADIODES 1997 C++
COSY VI 1997 Fortran

C++ interface
VNODE 2001 C++
VODESIA 2003 Fortran-XSC
VSPODE 2005 C++
ValEncIA-IVP 2005 C++
VNODE-LP 2006 C++

Table 1. Packages for computing bounds in
IVP ODEs.

A notable contribution to this area are the automatic dif-
ferentiation (AD) packages FADBAD [7] and TADIFF [8],
and now FADBAD++ [55]. They have been instrumental in
VNODE, VNODE-LP, and VSPODE for computing TCs of
an ODE solution and TCs of the solution to the associated
variational equation, and in ValEncIA-IVP for evaluating
the Jacobian of f .

In general, traditional methods produce tight bounds on
solutions in linear ODEs and in nonlinear problems, when
the computed enclosures remain sufficiently small. If the
overestimations in the computed bounds start growing, then
these bounds typically blow up quickly. In particular, on
nonlinear ODEs, if the initial condition set is not very small,
or long integration is desired, these methods usually break
down because of overestimations on the computed solution
sets.

Taylor model integration is more effective than tradi-
tional methods at producing tight enclosures on a solution
to a nonlinear ODE, with an initial condition set that is not
very small and over longer integration intervals. However,
Taylor models become expensive computationally on larger
problems (more than 5–10 equations), while a traditional
method, from the author’s experience, can deal with a few
hundred equations.

While applications of interval methods for ODEs were
scarce ten years ago, we see a variety of applications in the
last few years; in particular, after the VNODE solver be-
came available, and COSY VI with its Taylor models be-
came popular.

Application of these methods include rigorous computa-
tion of asteroid orbits [11], studying long-term stability of
large particle accelerators [12], global optimization for pa-
rameter estimation in chemical engineering [31], and simu-
lation of wastewater treatment processes [26]. The VNODE
package has been employed in rigorous multibody simula-
tions [3], reliable surface intersection [38, 50], robust eval-
uation of differential geometry properties [29], computing
bounds on eigenvalues [14], parameter and state estimation
[25, 53], rigorous shadowing [21, 22], and theoretical com-
puter science [1].

3. Theory

We outline the theory of a traditional interval method
for IVP ODEs (Subsection 3.1), discuss briefly Taylor mod-
els (Subsection 3.2), and show how they work in VSPODE
(Subsection 3.3).

3.1. Traditional methods

Suppose that we have computed yj at tj such that

y(tj ; t0, y0) ⊆ yj .

We advance to the next point in time in two phases.
ALGORITHM I tries to find an interval [tj , tj+1] and an

a priori enclosure ỹj such that y′ = f(y), y(tj) = yj has a
unique solution for all yj ∈ yj and all t ∈ [tj , tj+1], and

y(t; tj , yj) ⊆ ỹj for all t ∈ [tj , tj+1]. (2)

Proving existence and uniqueness, and finding [tj , tj+1]
and ỹj , is usually based on applying a fixed-point theorem
[19, 33, 39]. In practice, if the stepsize hj+1 = tj+1 − tj
(determined in this phase) is smaller than a value for the
smallest allowable stepsize, then normally the integration
cannot proceed [40]. That is, we cannot validate existence
and uniqueness.

ALGORITHM II uses ỹj to enclose the truncation error of
the method and computes a tighter enclosure yj+1 at tj+1

such that

y(tj+1; t0, y0) ⊆ yj+1 ⊆ ỹj . (3)

Figure 1 depicts bounds produced in these two phases.2

y

t

tight bounds
a priori bounds

Figure 1. A priori and tight bounds.

Methods for implementing the above two phases are usu-
ally based on Taylor series. One reason for their popularity

2For this visualization, the tight bounds are connected with lines, which
do not necessarily enclose the true solution.

is that it is relatively easy to enclose the truncation error of
the method; see also [44]. Before we describe how these
two algorithms work, we introduce convenient notation for
TCs.

Taylor coefficients. Denote

f [0](y) = y,

f [i](y) =
1
i

(
∂f [i−1]

∂y
f

)
(y) for i ≥ 1.

Given the IVP y′(t) = f(y), y(tj) = yj , we have for the
ith TC of its solution

y(i)(tj)
i!

= f [i](yj).

Such coefficients can be computed through source-code
translation [15] or operator overloading, as in TADIFF and
FADBAD++, for example. These packages can compute
TCs with a user-supplied data type. In particular, given an
interval as an input, they can generate interval TCs.

We note that to compute k coefficients, we require O(k2)
work. Given a stepsize h, one can generate scaled TCs di-
rectly, that is hif [i](yj), instead of computing first f [i](yj)
and then multiplying it by hi.

Computing a priori bounds. In VNODE, VNODE-LP,
and VSPODE, Algorithm I implements the High-Order En-
closure (HOE) method [45]. It is based on the following
result: if yj is in the interior of ỹj , and

yj +
k−1∑
i=1

(t − tj)if [i](yj) + (t − tj)kf [k](ỹj) ⊆ ỹj (4)

(k ≥ 1) for all t ∈ [tj , tj+1] and all yj ∈ yj , then there
exists a unique solution to y′ = f(y), y(tj) = yj for all
yj ∈ yj and

y(t; tj, yj) ∈ yj +
k−1∑
i=1

(t− tj)if [i](yj) + (t− tj)kf [k](ỹj)

for all t ∈ [tj , tj+1] and all yj ∈ yj .
When k = 1, we obtain the method in AWA, but it re-

stricts the stepsizes similarly to Euler’s method. An advan-
tage of the HOE method is that it allows larger stepsizes
compared to AWA. Moreover, a good stepsize control can
be conveniently incorporated in the HOE method. Details
are in [40, 45].

Computing tight bounds. Using ỹj , we wish to compute a
tighter enclosure yj+1 such that (3) holds. A basic approach
is to use Taylor series. Writing a Taylor series expansion,
we can compute

yj+1 := yj +
k−1∑
i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

(hj = tj+1 − tj), which contains the true solution, but the
width of yj+1 is

w(yj+1) ≥ w(yj), and usually w(yj+1) > w(yj),

even if the solutions are contracting—“naive” method.
To obtain a scheme that could follow contracting solu-

tions, we apply the mean-value evaluation: for any yj , ŷj ∈
yj ,

yj +
k−1∑
i=1

hi
jf

[i](yj) + hk
j f [k](ỹj)

⊆ ŷj +
k−1∑
i=1

hi
jf

[i](ŷj) + hk
j f [k](ỹj)

+

{
I +

k−1∑
i=1

hi
j

∂f [i]

∂y
(yj)

}
(yj − ŷj),

(5)

where I is the n × n identity matrix. The above Jacobians
can be evaluated through AD by generating TCs for the so-
lution to the associated variational equation [33, 39]. The
FADBAD++ [55] package can readily evaluate these Jaco-
bians [40, 43].

ŷj

tj tj+1 t

true solutions

uj+1 + zj+1yj

yj+1

Figure 2. The enclosure at tj+1 is formed from
an approximate point solution, an enclosure
on the local excess, and an enclosure on the
propagated global excess.

Based on (5), we can form an enclosure yj+1 consisting
of (see also Figure 2)
(a) a point approximation uj+1 = ŷj +

∑k−1
i=1 hi

jf
[i](ŷj);

(b) an enclosure zj+1 = hk
j f [k](ỹj) of the truncation error;

this enclosure can be viewed as the excess introduced on the
current integration step over the true solution set, or local
excess [39]; and
(c) an enclosure Sj(yj − ŷj), where

Sj = I +
k−1∑
i=1

hi
j

∂f [i]

∂y
(yj),

of the propagated global excess [39] to tj+1. One can view
yj − ŷj as an enclosure of the global excess at tj .

Thus,

yj+1 := uj+1 + zj+1 + Sj(yj − ŷj). (6)

Since we also enclose roundoff errors in the above compu-
tations, when executed in machine interval arithmetic, we
have a rigorous enclosure on the true solution of (1).

There are two major sources of overestimation in (6).
First, we have a high-order Taylor series expansion in time,
but only a first-order Taylor series expansion in space. In
general, we cannot expect to compute tight bounds for non-
linear ODEs when the initial set, here yj , is not sufficiently
small. For linear ODEs, we do not have overestimations in
the Jacobian evaluations, as they do not depend on yj .

Second, there is typically wrapping effect [37, 42] origi-
nating from the product Sj(yj − ŷj). Because of the wrap-
ping effect, the scheme (6) can follow contracting solutions
in a few special cases only [42].

Wrapping effect. For simplicity in the illustration that fol-
lows, Figure 3.1, assume n = 2, Sj ∈ Sj is a 2 × 2 point
matrix, and denote aj = yj − ŷj . We are interested in the
set {Sja | a ∈ aj}, cf. (6), but we compute in interval arith-
metic the box Sjaj , which can introduce significant over-
estimation over the parallelepiped {Sja | a ∈ aj}. Then,
we have to work with this box on the next step, may have
another overestimation, and so on. Such overestimations
can quickly accumulate, leading to the wrapping effect and
a blow up in the computed bounds.

Lohner’s QR factorization method [33] for reducing the
wrapping effect puts a box in a moving orthogonal coor-
dinate system, and this box matches one of the edges of
the enclosed parallelepiped. We can always “match” the
longest edge, and intuitively, introduce a smaller overesti-
mation.

Reducing the wrapping effect. Instead of working with
box enclosures yj , we can also represent an enclosure on
the solution in the form

yj ∈ { ŷj + Ajrj | rj ∈ rj},
where ŷj ∈ R

n, Aj ∈ R
n×n is nonsingular, and rj ∈ IR

n.
(IRn denotes the set of n-dimensional interval vectors.)

Instead of computing with (6), we proceed as follows.
We set initially

A0 = I, ŷ0 = m(y0), and r0 = y0 − ŷ0,

where m(·) denotes componentwise midpoint. Then on
each step, we find

yj+1 = uj+1 + zj+1 + (SjAj)rj ,

ŷj+1 = uj+1 + m(zj+1),

{Sja | a ∈ aj}

(a) (b)

(d)

Sjaj

(c)

aj

Figure 3. (a) aj = yj − ŷj; (b) wrapping in the
original coordinate system; (c) and (d) wrap-
ping in a moving orthogonal coordinate sys-
tems that matches one of the edges of the
enclosed set.

select a nonsingular Aj+1, and form

rj+1 =
{
A−1

j+1(SjAj)
}
rj + A−1

j+1

{
zj+1 − m(zj+1)

}
.

The selection of Aj+1 is crucial for the performance of
this scheme. If Aj+1 = m(SjAj), we have the paral-
lelepiped method [19, 33]. It frequently breaks down be-
cause the Aj become ill conditioned, and the computed
bounds become too wide.

In Lohner’s QR method, we select Aj+1 = Qj+1 from
the QR factorization Qj+1Rj+1 = m(SjAj). We enclose
in a moving orthogonal coordinate system, and we can al-
ways “match” the longest edge of the enclosed set by a suit-
able permutation of the columns of m(SjAj), [33]. An
eigenvalue-type analysis shows that the QR method pro-
vides good stability for the underlying interval method [42].

3.2. On Taylor models

The above approach uses a parallelepiped to enclose a
solution set, which may not be convex. Inherently, methods
of this type cannot follow accurately complicated solution
sets and can produce large overestimations.

An integration based on Taylor models [10, 35] repre-
sents a solution enclosure as a multivariate polynomial in
y0, where y0 ∈ y0, plus a small remainder interval. As a

result, such enclosures are not necessarily convex and can
describe a solution set much more accurately than a paral-
lelepiped.

Let F be the set of continuous functions on x ∈ IR
n to

R, let p : R
n → R be a polynomial of order m, and let r be

an interval. A Taylor model is (cf. [48, §2.3]){
f ∈ F | f(x) ∈ p(x) + r for all x ∈ x

}
.

Arithmetic operations and elementary functions can be im-
plemented on Taylor models such that each of these opera-
tions results in a Taylor model [10, 34].

In practice, given a sufficiently differentiable g on x ∈
IR

n and x0 ∈ x, one can apply a (multivariate) Taylor
expansion of g around x0 to construct a polynomial ap-
proximation p(x − x0) to g(x) and enclose the error term
(for all x ∈ x) in this expansion in an interval r. Then
g(x) ∈ p(x−x0)+r for all x ∈ x. We refer to p(x−x0)+r
as a Taylor model Tg of g.

Figure 4 illustrates a Taylor model of a function. If its
range is enclosed by an interval, we would propagate a box
through a computation. With Taylor models, we propagate
a Taylor model Tg , a much tighter enclosure of g than an
interval enclosure.

x

Tg
g(x)

Figure 4. Function and its Taylor model en-
closure.

In this paper, we show how Taylor models are incorpo-
rated in VSPODE. A good exposition of how “full” Taylor
model integration works is in [48].

3.3. Taylor models in VSPODE

Lin and Stadtherr [32] consider the IVP

y′ = f
(
y(t), θ

)
, y(t0) = y0 ∈ y0, θ ∈ θ, (7)

where t ∈ R, y ∈ R
n, y0 ∈ IR

n, θ ∈ IR
l, θ is a parameter,

and f is assumed sufficiently differentiable, so TCs for y up
to some order k ≥ 1 can be computed.

The goal is to enclose the solution to (7) for all y0 ∈ y0

and all θ ∈ θ. The method implemented in VSPODE works

as follows. Initially, set Taylor models

y0 ∈ Ty0 = m(y0) +
(
y0 − m(y0)

)
+ [0, 0]n and

θ ∈ Tθ = m(θ) +
(
θ − m(θ)

)
+ [0, 0]p,

where [0, 0]n denotes the n vector with all components
[0, 0].

We denote the solution to (7) by y(t; t0, y0, θ). Assume
that, at tj ,

y(tj ; t0, y0, θ) ∈ pj(y0, θ) + vj , (8)

where pj : R
n+l → R

n is a polynomial in y0 and θ of some
degree, say m, and vj ∈ IR

n. That is, we have a Taylor
model at tj .

Then at tj+1, for any yj ∈ pj(y0, θ)+vj and any θ ∈ Tθ,

y(tj+1; t0, y0, θ) ∈
k−1∑
i=0

hi
jf

[i](yj , θ) + hk
j f [k](ỹj , θ)

⊆
k−1∑
i=0

hi
jf

[i](pj + vj , Tθ) + wj+1, (9)

where the f [i] are functions of both y and θ, and

wj+1 = hk
j f [k](ỹj , θ),

in which ỹj is an a priori enclosure over [tj , tj+1].
The term wj+1 is computed with the HOE method. The

TCs f [i], for i = 1, . . . , k − 1, can be enclosed by perform-
ing Taylor model arithmetic through a TC computation.
That is, suppose we have a program for computing TCs that
works with a generic data type (TADIFF and FADBAD++
allow user-defined types). If we have a Taylor model class
with overloaded arithmetic operations and elementary func-
tions, we can execute TC computation with our program
and objects of this class. Hence, we can enclose the f [i], and
therefore y(tj+1; t0, y0, θ), for all y0 ∈ y0 and all θ ∈ θ.
However, since intervals are involved in evaluating the code
list of each f [i] in (9), the widths of the enclosures that we
would compute using (9) grow similarly to the widths in
the naive Taylor series method described earlier (but likely
much slower).

Applying the mean-value theorem to the f [i] and evalu-
ating them with pj and Tθ, we have

y(tj+1; t0, y0, θ) ∈
k−1∑
i=0

hi
jf

[i](pj , Tθ) + wj+1

+

(
k−1∑
i=0

hi
j

∂f [i]

∂y
(yj , θ)

)
vj.

(10)

When evaluating
∑k−1

i=0 hi
jf

[i](pj , Tθ), we can construct a
polynomial pj+1(y0, θ) of degree m, enclose the resulting

higher order terms, and include this enclosure and wj+1 in
an interval (vector) uj+1 [32]. That is, we have

k−1∑
i=0

hi
jf

[i](pj , Tθ) + wj+1 ⊆ pj+1(y0, θ) + uj+1. (11)

Denoting

V j =
k−1∑
i=0

hi
j

∂f [i]

∂y
(yj , θ),

we have from (10) and (11) that

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + V jvj . (12)

If we implement a scheme based on (12), the product
V jvj would typically give rise to the wrapping effect. To
reduce it, instead of (8), VSPODE uses the representation{

pj(y0, θ) + Bjs | y0 ∈ y0, θ ∈ θ, s ∈ sj

}
,

where Bj ∈ R
n×n is nonsingular, and sj ∈ IR

n, as an
enclosure on the solution set at tj . Then (12) becomes

y(tj+1; t0, y0, θ) ∈ pj+1(y0, θ) + uj+1 + (V jBj)sj .

For the next step, Bj+1 and sj+1 are computed as in
Lohner’s method.

We evaluate Jacobians of f [i] over yj (and in this case
θ) as in traditional methods and deal with the wrapping ef-
fect as in Lohner’s method. Hence, propagating the global
excess in VSPODE is similar to propagating global excess
in traditional methods. However, due to the more elaborate
enclosures of TCs, this excess often remains smaller (and
the enclosures tighter) in VSPODE compared to the excess
in traditional methods; see for comparison the numerical re-
sults in [32].

4. VNODE-LP

4.1. Motivation

In general, interval methods produce results that can
have the power of a mathematical proof. As shown in the
previous section, when computing an enclosure of the so-
lution of an IVP ODE, an interval method first proves that
there exists a unique solution to the problem and then pro-
duces bounds that contain it. When solving a nonlinear
equation, an interval method can prove that a region does
not contain a solution or compute bounds that contain a
unique solution to the problem.

However, if such a method is not implemented correctly,
it may not produce rigorous results. Furthermore, we can-
not claim mathematical rigor if we miss to include even a
single roundoff error in a computation. Therefore, it is of

paramount importance to ensure that an interval algorithm
is encoded correctly in a programming language.

In the author’s opinion, interval software should be pro-
duced in a form such that program correctness can be cer-
tified in a human peer-review process, like a mathematical
proof is checked for correctness. This is in contrast to me-
chanical software verification, when a proof tool is applied
to verify code against given specifications.

A major goal of the VNODE-LP work is to implement
and document an interval solver for IVPs for ODEs such
that its correctness can be verified by a reviewer.

4.2. Literate programming

To accomplish our goal, we have chosen the LP ap-
proach. The author has found LP particularly suitable for
ensuring that an implementation of a numerical algorithm is
a correct translation of its underlying theory into a program-
ming language. With LP, theory, code, and documentation
are interwoven in LATEX-like web files.3 The source code is
extracted in a tangle process, and the documentation is cre-
ated in a weave process. With VNODE-LP, we have used

web file(s)

source
code

latex file

ctangle

cweave

Figure 5. Producing C++ and LATEX files from
web files

the CWEB package [28]. The LP document [40], which
contains theory, code, examples, user guide, etc., is gener-
ated by executing cweave [28] on VNODE-LP’s web files;
see Figure 5. The C++ code of VNODE-LP and all the ex-
amples in [40] are generated by executing ctangle [28]
on those files (Figure 5).

Some of the benefits of using LP follow.

• We can combine theory, source code, and documenta-
tion in a single document.

• With LP, we can produce nearly “one-to-one” trans-
lation of the mathematical theory of a method into a
computer program. In particular, we can split the the-
ory into small pieces, translate each of them, and keep
mathematical expressions and the corresponding code
close together in a unified document. This facilitates

3“web” is unrelated to the World Wide Web.

verifying the correctness of smaller pieces and of a
program as a whole.

• Since theory and implementation are in a single doc-
ument, it is easier to keep them consistent, compared
to having separate theory, source code, and documen-
tation.

Finally, if the correctness of the manuscript [40] is con-
firmed by reviewers in a peer-review-like process, we may
trust in the correctness of the implementation of VNODE-
LP, and accept the bounds it computes as rigorous. When
claiming rigor, we presume that the operating system, com-
piler, and the packages VNODE-LP uses do not contain er-
rors.

4.3. Overview

In its basic usage, VNODE-LP attempts to compute
bounds on the solution of

y′ = f(t, y), y(t0) ∈ y0

at a given point tend �= t0. (Here, y0 ∈ IR
n, and t0, tend ∈

R.) If VNODE-LP cannot reach tend, for example if the
bounds are too wide, bounds on the solution at some t∗ be-
tween t0 and tend are returned.

This package is applicable to ODE problems for which
derivatives of the solution exist to some order. Hence, the
code list of f should not contain functions such as abs or
min.

When integrating from t0 to tend, VNODE-LP can also
return on each step an enclosure yj on the solution at point
tj such that (3) holds, and an enclosure ỹj on the solution
over [tj , tj+1] such that (2) holds. Examples of how such
enclosures are obtained are given in [40].

The HOE method (cf. Section 3) is implemented in Algo-
rithm I, and the interval Hermite-Obreschkoff method [39]
is implemented in Algorithm II. (The latter can be viewed
as a generalization of a Taylor series method.) VNODE-LP
features variable stepsize control and constant order. The
stepsize is varied such that an estimate of the size of the lo-
cal excess per unit step in Algorithm I is below a tolerance.
Namely, hj is selected such that

hk
j

∥∥w(f [k](ỹj))
∥∥ � hj

(
atol + rtol · ∥∥yj

∥∥),
where atol and rtol are absolute and relative tolerances, re-
spectively, with default values of 10−12, and ‖ · ‖ is the
infinity norm.

Typical values for the order can be between 20 and 30
(cf. Subsection 4.5), and a default order is set to 20. There
is also improved wrapping effect control compared to VN-
ODE [43] by combining the parallelepiped and QR factor-
ization methods [40].

4.4. Packages and platforms

VNODE-LP compiles with either of the interval arith-
metic (IA) packages PROFIL/BIAS [27] or FILIB++
[30]. The interface to an IA package is encapsulated in
about 25 short wrapper functions that call functions from it
[40]. In principle, one should be able to incorporate a differ-
ent IA package without major difficulties by implementing
these wrapper functions.

The automatic differentiation is done through FAD-
BAD++ [55], and the necessary (non-rigorous) linear al-
gebra is done through LAPACK and BLAS.

To date, VNODE-LP has installed successfully with the
GNU C++ compiler as shown below:

IA OS Architecture
FILIB++ Linux x86

Solaris Sparc
PROFIL Linux x86

Solaris Sparc
Mac OSX PowerPC
Windows with Cygwin x86

4.5. Performance

We report numerical results to illustrate some of the is-
sues in this area. The computations are performed on a
3 GHz dual-core Pentium with 2GB RAM and 4MB L2
cache. The operating system is Linux (Fedora), the com-
piler is gcc version 4.1.1, and the IA package is PRO-
FIL/BIAS. VNODE-LP and the supporting packages are
compiled with option -O2.

Work versus order

We integrate the Lorenz system

y′
1 = 10(y2 − y1)

y′
2 = y1(28 − y3) − y2

y′
3 = y1y2 − 8/3 y3

(13)

with

y(0) = (15, 15, 36)T , t ∈ [0, 20]

and atol = rtol = 10−7, 10−9, 10−11, and 10−13. In Fig-
ure 6, we plot the user CPU time (in seconds) taken by
VNODE-LP versus the order of the method. As can be seen
from this figure, choosing the optimal value for the order
is not crucial for the efficiency of the integration: any or-
der around 20 yields good performance. Experience shows
that, in general, the value for the order that results in the
least amount of work is located in a rather flat minimum.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 15 20 25 30 35 40 45 50

C
P
U

t
i
m
e

(
s
)

order

10-7

10-9

10-11

10-13

Figure 6. Work versus order for the Lorenz
system.

Work versus problem size

We give the DETEST [23] problem C3

y′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−2 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0

...
0 · · · 1 −2 1
0 · · · 0 1 −2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
y

with y(0) = (1, 0, . . . , 0)T to VNODE-LP.
We integrate with problem sizes n = 40, 60, . . . , 300 for

t ∈ [0, 5]. In this and the remaining examples, we use the
default order 20 and atol = rtol = 10−12. In Figure 7, we
plot in a log-log scale the CPU time per step versus n; for
each n, VNODE-LP takes 8 steps.

10-1

100

101

102

103

 260 200 140 100 80 60 40

C
P
U

t
i
m
e
/
s
t
e
p

(
s
)

n

Figure 7. CPU time versus n for the DETEST
C3 problem.

On this problem, the linear algebra contributes the most
in the total amount of work. From Section 3 (and this plot),
it is obvious that this work grows like n3. The O(n3) com-
plexity comes from the matrix operations in reducing the

wrapping effect, and this complexity is a serious obstacle
towards solving larger problems.

Remark. To keep the dependence on an IA package as
minimal as possible, the author has implemented the in-
terval linear algebra through the C++ standard template li-
brary, not exploiting PROFIL’s matrix and vector opera-
tions, which are optimized in terms of minimizing rounding
mode switches. The present implementation of VNODE-LP
does not attempt to minimize the number of these switches
in matrix and vector operations. If such optimizations are
taken into account, the running time would be reduced, but
it will be still O(n3).

Stiff problems

We integrate Van der Pol’s equation (written as a first-order
system)

y′
1 = y2

y′
2 = μ(1 − y2

1)y2 − y1

with y(0) = (2, 0)T and tend = 200. We vary μ and report
the number of steps and CPU time used by VNODE-LP in
Table 2.

μ steps CPU time (s)

101 2377 0.8
102 11697 3.6
103 126459 36.1
104 1180844 336.4

Table 2. Number of steps and CPU time when
integrating the Van Der Pol system.

As μ increases, the stiffness of this problem increases,
and VNODE-LP is forced to take very small stepsizes, re-
sulting in an inefficient integration. For an efficient integra-
tion of stiff problems, we need a scheme that would allow
much larger stepsize, and no such scheme is available to
date.

In passing we note that, for the same order of the trun-
cation error, an interval Hermite-Obreschkoff method al-
lows larger stepsizes than an interval Taylor series method
[39, 41]. However, as shown in [39], these methods have
a restriction on the stepsize due to the associated formula
for the truncation error. As a consequence, their stability is
determined not only by the stability function of the under-
lying formula, as in a standard ODE method, but also by the
associated formula for the truncation error.

Interval initial conditions

We illustrate how the bounds behave when integrating the
Lorenz system with

y(0) ∈
⎛⎝15 + [−10−4, 10−4]

15 + [−10−4, 10−4]
36 + [−10−4, 10−4]

⎞⎠ . (14)

In Figure 14, we plot the bounds on y1 versus t. In the

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

 0 1 2 3 4 5 6

y
1

t

lower bound
upper bound

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

 5.7 5.8 5.9 6 6.1

y
1

t

bounds
midpoint

Figure 8. Bounds on y1 versus t for the Lo-
renz system (13) with (14).

second plot, we show the computed bounds and their mid-
points. Clearly, one should expect a divergence of these
bounds. Once they start growing, typically they explode in
size very soon. Here, a Taylor model integrator, such as
COSY VI, may be able to compute tighter bounds over a
longer time interval.

5. On solving DAEs

While several interval solvers for IVPs for ODEs are
publicly available, no software is available for computing
rigorous bounds on the solution of IVP DAEs. A promising
approach for building an interval method (and a solver) for
DAEs is Pryce’s structural analysis [52] combined with a
Taylor series expansion of the solution of a DAE. We out-
line this analysis and summarize work to date.

5.1. Pryce’s structural analysis

We consider an IVP for a DAE system with n equations
fi in n dependent variables xj = xj(t). We write infor-
mally

fi

(
t, the xj and derivatives of them

)
= 0 (15)

(1 ≤ i ≤ n). The fi are assumed sufficiently smooth. They
can be arbitrary expressions built from the xj and t using
+,−,×,÷, other standard functions, and the differentiation
operator dp/dtp.

A common measure of the numerical difficulty of a DAE
is its differentiation index νd [13], the number of times the
fi must be differentiated (w.r.t. t) to obtain equations that
can be solved to form an ODE system for the xj . As shown
in [46, 47], a method based on Pryce’s SA and Taylor series
does not find high index inherently hard.

The steps of this SA are summarized below.

1. Form the n × n signature matrix Σ = (σij), where

σij =
{

order of derivative of xj in fi, or
−∞ if xj does not occur in fi.

2. Find a Highest Value Transversal (HVT), which is n
positions (i, j) in Σ with one entry in each row and
column such that

∑
σij is maximized.

3. Find the smallest “offsets” ci, dj ≥ 0 satisfying

dj − ci ≥ σij for all i, j = 1, . . . , n and

dj − ci = σij on the HVT.

Steps 2 and 3 are equivalent to a linear assignment
problem and its dual.

4. Form the system Jacobian J, where

Jij =

⎧⎨⎩
∂fi

∂x
(σij)
j

if dj − ci = σij

0 otherwise.

Example. Consider the simple pendulum,

0 = f = x′′ + xλ

0 = g = y′′ + yλ − G

0 = h = x2 + y2 − L2,

which is an index-3 DAE. The dependent variables are x,
y, and λ; G (gravity) and L (length) are constants. The
signature matrix and the offsets are

Σ =

x y λ ci()
f 2◦ −∞ 0∗ 0
g −∞ 2∗ 0◦ 0
h 0∗ 0◦ −∞ 2

dj 2 2 0

There are two HVTs, which are marked by ∗ and ◦. The
system Jacobian is

J =

⎡⎢⎢⎣
∂f

∂x′′ 0 ∂f
∂λ

0 ∂g
∂y′′

∂g
∂λ

∂h
∂x

∂h
∂y 0

⎤⎥⎥⎦ .

If J is nonsingular at a consistent point, then the SA suc-
ceeds, and the DAE is solvable in a neighborhood of this
point [51, 52]; see also [46].4 Provided that the SA suc-
ceeds, it derives a structural index

νs = max
i

ci +

{
1 if some dj = 0
0 otherwise,

which is the same as that found by the method of Pantelides
[49]. It is shown in [52] that νd ≤ νs; often they are the
same.

In the pendulum example, J is nonsingular for any values
of x and y, and the index is νs = νd = 3.

To solve (15) by Taylor series, one can use AD to gener-
ate functions for evaluating TCs of the equations fi. Equat-
ing these coefficients to zero gives equations that are solved
for the TCs of the solution components xj(t). The off-
sets prescribe how to organize the computation of TCs
[46, 51, 52] for the solution components of (15); that is,
what equation to solve and for which TCs of the solution.

We believe that the computation of TCs described in [46]
(in the point, approximate case) can be extended to comput-
ing interval enclosures of such coefficients. Hence, Algo-
rithm I and Algorithm II could be carried out in the DAE
case. A key issue is to ensure that the initial values on the
first and subsequent integration steps are consistent with the
DAE. That is, they must satisfy the constraints of the DAE,
which can include hidden constraints. Pryces’s SA identi-
fies the constraints of the DAE using the offsets ci. Namely,

f ′
i , f ′′

i , . . . , f
(ci−1)
i = 0

must hold for all i = 1, . . . , n, from which we can deter-
mine xj , x′

j , . . . , x
(dj−1)
j for j = 1, . . . , n.

For example, for the simple pendulum the values for x,
x′, y, and y′ must satisfy the obvious and hidden constraints

x2 + y2 − L2 = 0 and

xx′ + yy′ = 0,
(16)

respectively. In an interval setting, given intervals enclos-
ing x and x′, one may apply an interval Newton method to
enclose y and y′, or given intervals for x, x′, y, y′, one may
verify that they contain a point satisfying (16).

4Although applicable to a wide range of DAEs, there are problems on
which this SA fails; that is, when J is singular at a point at which the DAE
is solvable. Examples of such problems are discussed in [46, 51, 52].

5.2. Work to date

Chang and Corliss [15] show how to generate Taylor se-
ries for the simple pendulum DAE. Then Corliss and Lod-
wick [17] show how to use interval techniques to obtain
bounds on the solution of a simple linear DAE with AWA.
They assume that consistent initial conditions are given, and
consistency on subsequent steps is a result of AWA’s vali-
dation algorithm. In [16], they investigate the role of con-
straints in an interval method for DAEs when applied to the
simple pendulum, and in particular, how to use these con-
straints to verify consistency of user-supplied initial condi-
tions; to suggest consistent initial conditions if necessary;
and to tighten initial conditions (on first and subsequent
steps) by a Gauss-Seidel iteration or intersecting with the
constraints.

Hoefkens [14] uses Pryce’s structural analysis to convert
a DAE into a generalized ODE, which is then solved in a
rigorous way using Taylor models and the COSY package
[5]. We note that transforming a DAE into an ODE usu-
ally increases the size of the problem to be solved and may
destroy its original sparsity pattern.

The rest of this summary includes work on computing
approximate DAE solutions using Taylor series. The au-
thor has developed a C++ package DAETS for solving high-
index, fully-implicit, arbitrary order DAEs in the form (15).
This package takes a C++ description of the DAE, generates
Σ through operator overloading, finds the problem offsets,
and computes TCs using FADBAD++. Then an approx-
imate solution is obtained by summing these coefficients
(with appropriate stepsize) and projecting it to satisfy the
constraints of the DAE. Theory, algorithmic details, and ex-
amples produced by DAETS are given in [46, 47].

Walther and Griewank [20] report of a similar imple-
mentation (to DAETS) of a Taylor series method based on
Pryce’s analysis, but using the ADOL-C package.

Finally, Barrio [5] uses MATHEMATICA to compute Σ,
set up an ODE system, and then generate FORTRAN 77
code for evaluating TCs for the ODE system. In [6], he
studies the applicability of Taylor series methods for sensi-
tivity analysis of ODEs and DAEs, where DAEs are solved
using Pryce’s SA and very high-order Taylor series.

6. Conclusion

In the area of interval methods for IVPs for ODEs, we
would like to be able to compute efficiently tight bounds on
solutions of much larger problems than the current tools can
handle. A major obstacle is the O(n3) complexity, when
dealing with the wrapping effect on each integration step.
Beating this complexity in a general method may be diffi-
cult, but one may develop more efficient methods for classes

of ODEs. For example, the wrapping effect does not oc-
cur when integrating quasi-isotone problems [44]. The DE-
TEST C3 (Subsection 4.5) is such a problem, but it was
integrated with a general-purpose ODE solver, which does
not take into account quasi-isotonicity.

Although high-order Taylor series may be reasonably ef-
ficient for mildly stiff ODEs, we do not have an interval
method suitable for stiff ODEs. A major challenge and op-
portunity in this area is to devise an efficient interval method
for stiff problems.

The DETEST test set [23] and now the Test Set for IVP
Solvers [36] are standard in assessing and comparing (ap-
proximate) IVP ODE solvers. As the area of interval ODE
solving is maturing, and various interval solvers for IVPs
ODEs are available, we need a sound and comprehensive
methodology for assessing and comparing these solvers.

Finally, building an interval DAE solver of the quality
of existing interval ODE solvers is a challenge, but feasible
with the recent progress on both theory and implementation
of Taylor series methods for DAEs.

Acknowledgments. George Corliss and John Pryce pro-
vided insightful comments, which helped to improve this
paper. This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada.

References

[1] D. Achlioptas. Setting 2 variables at a time yields a new
lower bound for random 3-SAT. Technical Report MSR-TR-
99-96, Microsoft Research, Microsoft Corp., One Microsoft
Way, Redmond, WA 98052, December 1999.

[2] G. Alefeld and J. Herzberger. Introduction to Interval Com-
putations. Academic Press, New York, 1983.

[3] E. Auer, A. Kecskeméthy, M. Tändl, and H. Traczinski. In-
terval algorithms in modelling of multibody systems. In Nu-
merical Software with Result Verification, volume 2991 of
LNCS, pages 132–159. Springer-Verlag, 2004.

[4] E. Auer, A. Rauh, E. P. Hofer, and W. Luther. Validated
modeling of mechanical systems with SmartMOBILE: Im-
provement of performance by ValEncIA-IVP. In Reliable
Implementation of Real Number Algorithms: Theory and
Practice. Springer-Verlag, to appear.

[5] R. Barrio. Performance of the Taylor series method for
ODEs/DAEs. Appl. Math. Comp., 163:525–545, 2005.

[6] R. Barrio. Sensitivity analysis of ODES/DAES using the
Taylor series method. SIAM J. Sci. Comput., 27:929–1947,
2006.

[7] C. Bendsten and O. Stauning. FADBAD, a flexible C++
package for automatic differentiation using the forward and
backward methods. Technical Report 1996-x5-94, Depart-
ment of Mathematical Modelling, Technical University of
Denmark, DK-2800, Lyngby, Denmark, August 1996.

[8] C. Bendsten and O. Stauning. TADIFF, a flexible C++ pack-
age for automatic differentiation using Taylor series. Techni-
cal Report 1997-x5-94, Department of Mathematical Mod-

elling, Technical University of Denmark, DK-2800, Lyngby,
Denmark, April 1997.

[9] M. Berz. COSY INFINITY version 8 reference manual.
Technical Report MSUCL–1088, National Superconducting
Cyclotron Lab., Michigan State University, East Lansing,
Mich., 1997.

[10] M. Berz and K. Makino. Verified integration of ODEs
and flows using differential algebraic methods on high-order
Taylor models. Reliable Computing, 4:361–369, 1998.

[11] M. Berz, K. Makino, and J. Hoefkens. Verified integration of
dynamics in the solar system. Nonlinear Analysis: Theory,
Methods & Applications, 47:179–190, 2001.

[12] M. Berz, K. Makino, and Y.-K. Kim. Long-term stability of
the tevatron by verified global optimization. Nuclear Instru-
ments and Methods, A558:1–10, 2005.

[13] K. Brenan, S. Campbell, and L. Petzold. Numerical Solution
of Initial-Value Problems in Differential-Algebraic Equa-
tions. SIAM, Philadelphia, second edition, 1996.

[14] B. M. Brown, M. Langer, M. Marletta, C. Tretter, and
M. Wagenhofer. Eigenvalue bounds for the singular Sturm-
Liouville problem with a complex potential. J. Phys. A:
Math. Gen., 36(13):3773–3787, April 2003.

[15] Y. F. Chang and G. F. Corliss. ATOMFT: Solving ODEs and
DAEs using Taylor series. Comp. Math. Appl., 28:209–233,
1994.

[16] G. F. Corliss and W. Lodwick. Role of constraints in the
validated solution of DAEs. Technical Report 430, Mar-
quette University, Department of Mathematics, Statistics,
and Computer Science, Milwaukee, Wisc., March 1996.

[17] G. F. Corliss and W. A. Lodwick. Correct computation of so-
lutions of differential algebraic control equations. Zeitschrift
für Angewandte Mathematik und Mechanik, special issue
Numerical Analysis, Scientific Computing, and Computer
Science, pages 37–40, 1996.

[18] S. Dietich. Adaptive verifizierte Lösung gewöhnlicher Dif-
ferentialgleichungen. PhD thesis, University of Karlsruhe,
Karlsruhe, Germany, February 2003.

[19] P. Eijgenraam. The Solution of Initial Value Problems Using
Interval Arithmetic. Mathematical Centre Tracts No. 144.
Stichting Mathematisch Centrum, Amsterdam, 1981.

[20] A. Griewank and A. Walther. On the efficient generation
of Taylor expansions for DAE solutions by automatic differ-
entiation. In J. Dongarra, K. Madsen, and J. Wasniewski,
editors, PARA’04, State-of-the-art in scientific computing,
volume 3732 of LNCS, pages 1103–1111. Springer-Verlag,
2006.

[21] W. Hayes. Rigorous shadowing of numerical solutions of
ordinary differential equations by containment. PhD thesis,
Department of Computer Science, University of Toronto,
Toronto, Canada, 2001.

[22] W. Hayes and K. R. Jackson. Rigorous shadowing of nu-
merical solutions of ordinary differential equations by con-
tainment. SIAM J. Numer. Anal., 42(5):1948–1973, 2003.

[23] T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedg-
wick. Comparing numerical methods for ordinary differen-
tial equations. SIAM J. Numer. Anal., 9(4):603–637, Decem-
ber 1972.

[24] K. R. Jackson and N. S. Nedialkov. Some recent advances in
validated methods for IVPs for ODEs. Appl. Numer. Math.,
42:269–284, August 2002.

[25] M. Kieffer and E. Walter. Nonlinear parameter and state
estimation for cooperative systems in a bounded-error con-
text. In Numerical Software with Result Verification, volume
2991 of LNCS, pages 107–123. Springer-Verlag, 2004.

[26] M. Kletting, A. Rauh, H. Aschemann, and E. Hofer. Consis-
tency tests in guaranteed simulation of nonlinear uncertain
systems with application to an activated sludge process. J.
Comput. Appl. Math., 199(2):213–219, 2007.

[27] O. Knüppel. PROFIL/BIAS – a fast interval library. Com-
puting, 53(3–4):277–287, 1994.

[28] D. E. Knuth and S. Levy. The CWEB System of Structured
Documentation. Addison-Wesley, Reading, Massachusetts,
1993.

[29] C. kuo Lee. Robust evaluation of differential geometry prop-
erties using interval arithmetic techniques. Master’s the-
sis, Massachusetts Institute of Technology, Department of
Ocean Engineering, May 2005.

[30] M. Lerch, G. Tischler, and J. Wolf von Gudenberg.
FILIB++—interval library specification and reference man-
ual. Technical Report 279, Universität Würzburg, Germany,
2001.

[31] Y. Lin and M. A. Stadtherr. Deterministic global optimiza-
tion for parameter estimation of dynamical systems. Ind.
Eng. Chem. Res., 2006. in press.

[32] Y. Lin and M. A. Stadtherr. Validated solution of initial
value problems for ODEs with interval parameters. In R. L.
Muhanna and R. L. Mullen, editors, Proceedings of 2nd NSF
Workshop on Reliable Engineering Computing, Savannah,
GA, February 2006.

[33] R. J. Lohner. Einschließung der Lösung gewöhnlicher
Anfangs– und Randwertaufgaben und Anwendungen. PhD
thesis, Universität Karlsruhe, 1988.

[34] K. Makino and M. Berz. Remainder differential algebras
and their applications. In M. Berz, C. Bischof, G. Corliss,
and A. Griewank, editors, Computational Differentiation:
Techniques, Applications, and Tools, pages 63–74. SIAM,
Philadelphia, Penn., 1996.

[35] K. Makino and M. Berz. Suppression of the wrapping effect
by Taylor model-based validated integrators. Technical Re-
port MSU HEP 40910, Department of Physics and Astron-
omy, Michigan State University, East Lansing, MI 48824,
USA, 2004.

[36] F. Mazzia and F. Iavernaro. Test set for initial value problem
solvers. Technical Report 40, Department of Mathematics,
University of Bari, Italy, 2003. http://pitagora.dm.
uniba.it/˜testset/.

[37] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood
Cliffs, N.J., 1966.

[38] H. Mukundan, K. H. Ko, T. Maekawa, T. Sakkalis, and
N. M. Patrikalakis. Tracing surface intersections with a val-
idated ODE system solver. In G. Elber and G. Taubin, edi-
tors, Proceedings of the Ninth EG/ACM Symposium on Solid
Modeling and Applications. Eurographics Press, June 2004,
June 2004.

[39] N. S. Nedialkov. Computing Rigorous Bounds on the Solu-
tion of an Initial Value Problem for an Ordinary Differential
Equation. PhD thesis, Department of Computer Science,
University of Toronto, Toronto, Canada, M5S 3G4, Febru-
ary 1999.

[40] N. S. Nedialkov. VNODE-LP — a validated solver for initial
value problems in ordinary differential equations. Techni-
cal Report CAS-06-06-NN, Department of Computing and
Software, McMaster University, Hamilton, Canada, L8S
4K1, July 2006. VNODE-LP is available at www.cas.
mcmaster.ca/˜nedialk/vnodelp/.

[41] N. S. Nedialkov and K. R. Jackson. An interval Hermite-
Obreschkoff method for computing rigorous bounds on the
solution of an initial value problem for an ordinary differ-
ential equation. Reliable Computing, 5(3):289–310, 1999.
Also in T. Csendes, editor, Developments in Reliable Com-
puting, pp. 289–310, Kluwer, Dordrecht, Netherlands, 1999.

[42] N. S. Nedialkov and K. R. Jackson. A new perspective
on the wrapping effect in interval methods for initial value
problems for ordinary differential equations. In A. Facius,
U. Kulisch, and R. Lohner, editors, Perspectives on En-
closure Methods, pages 219–264. Springer-Verlag, Vienna,
2001.

[43] N. S. Nedialkov and K. R. Jackson. The design and imple-
mentation of a validated object-oriented solver for IVPs for
ODEs. Technical Report 6, Software Quality Research Lab-
oratory, Department of Computing and Software, McMaster
University, Hamilton, Canada, L8S 4K1, 2002.

[44] N. S. Nedialkov, K. R. Jackson, and G. F. Corliss. Validated
solutions of initial value problems for ordinary differential
equations. Appl. Math. Comp., 105(1):21–68, 1999.

[45] N. S. Nedialkov, K. R. Jackson, and J. D. Pryce. An effec-
tive high-order interval method for validating existence and
uniqueness of the solution of an IVP for an ODE. Reliable
Computing, 7:449–465, 2001.

[46] N. S. Nedialkov and J. D. Pryce. Solving differential-
algebraic equations by Taylor series (I): Computing Taylor
coefficients. BIT, 45:561–591, 2005.

[47] N. S. Nedialkov and J. D. Pryce. Solving differential-
algebraic equations by Taylor series (II): Computing the
System Jacobian. BIT, 2007. To appear.

[48] M. Neher, K. R. Jackson, and N. S. Nedialkov. On Taylor
model based integration of ODEs. SIAM J. Numer. Anal.,
45:236–262, 2007.

[49] C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM. J. Sci. Stat. Comput., 9:213–231,
1988.

[50] N. M. Patrikalakis, T. Maekawa, K. H. Ko, and H. Mukun-
dan. Surface to surface intersection. In L. Piegl, editor, In-
ternational CAD Conference and Exhibition, CAD’04, Thai-
land, May 2004.

[51] J. D. Pryce. Solving high-index DAEs by Taylor Series.
Numerical Algorithms, 19:195–211, 1998.

[52] J. D. Pryce. A simple structural analysis method for DAEs.
BIT, 41(2):364–394, 2001.

[53] N. Ramdani, N. Meslem, T. Raı̈ssi, and Y. Candau. Set-
membership identification of continuous-time systems. 14th
IFAC Symposium on System Identification, Newcastle,
Australia, 2006.

[54] O. Stauning. Automatic Validation of Numerical Solutions.
PhD thesis, Technical University of Denmark, DK-2800,
Lyngby, Denmark, October 1997.

[55] O. Stauning and C. Bendtsen. FADBAD++ web page, May
2003. FADBAD++ is available at www.imm.dtu.dk/
fadbad.html.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

