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Abstract. The wrapping effect is one of the main reasons that the application of interval arithmetic

to the enclosure of dynamical systems is difficult. In this paper the source of wrapping is analyzed

algebraically and geometrically. A new method for reducing the wrapping effect is proposed, based on

an interval ellipsoid arithmetic.

Applications are given to the verification of stability regions for nonlinear discrete dynamical systems

and to the computation of rigorous confidence regions for nonlinear functions of normally distributed

random vectors.

Zusammenfassung. Der Verpackungseffekt ist eine der Hauptursachen dafür, daß die Anwendung

von Intervallverfahren auf die Einschließung dynamischer Systeme schwierig ist. In dieser Arbeit wird

dieser Effekt algebraisch und geometrisch analysiert. Um den Verpackungseffekt zu reduzieren, wird

eine neue Methode vorgestellt, die auf einer Intervall-Ellipsoidarithmetik basiert.

Als Anwendungen werden die Verifikation von Stabilitätsbereichen nichtlinearer diskreter dynamischer

Systeme und die Berechnung von rigorosen Konfidenzbereichen für nichtlineare Funktionen normalver-

teilter Zufallsvariablen skizziert.
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1 Introduction

Consider the simple triangular linear system Ax = b, where
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Clearly

x1 = β, x2 = −β, (2)

xl = −xl−1 − xl−2 for l > 2, (3)

so that

xl =



















−β if l = 3k − 1,

0 if l = 3k,

β if l = 3k + 1.

Suppose we only know that β ∈ [−ǫ, ǫ], If we use naive interval arithmetic to solve the triangular system

we get

x1 ∈ [−ǫ, ǫ], x2 = −x1 ∈ [−ǫ, ǫ],

x3 = −x1 − x2 ∈ −[−ǫ, ǫ]− [−ǫ, ǫ] = [−2ǫ, 2ǫ],

and inductively

xl = [−alǫ, alǫ],

with the Fibonacci sequence a1 = a2 = 1, al+1 = al + al−1, hence al > const. ·1.618l. The interval

bounds grow exponentially, and compared with the optimal bounds

xl ∈







[0, 0] if l = 3k,

[−ǫ, ǫ] otherwise,

the overestimation is excessive for large n. The same kind of overestimation persists when (1) is replaced

by a system with wider bands.

The reason for the overestimation is the dependence of the xl on the same vagely known number β,

while interval arithmetic — due to its memory-less nature — assumes that all the xl vary independently

over their enclosing interval.

Of course, there are interval methods which are more reliable, and in this case even optimal, namely

those which explicitly precondition the system (1) by an approximate (midpoint) inverse. However,

the inverse of A is a full lower triangular matrix which means that work for forming and solving the

preconditioned system is of order O(n2), which is an order of magnitude larger than the work for

solving (1) approximately (and in our case exactly since the matrix entries are so simple). For bounded

systems arising in the solution of time-dependent problems over many time steps, this increase in work
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needed for realistic enclosures limits the scope of current interval methods. Thus it is very important to

understand this overestimation problem in detail, and to device ways of reducing the complexity while

still obtaining reasonable bounds. In this paper we only consider methods which conserve the time-like

recurrent structure of banded equations. Other methods (Gambill and Skeel [5], Alvarado [1],

[2]) which use divide and conquer strategies will not be discussed here.

We obtain an intuitive geometric interpretation of the mechanism underlying the overestimation if we

rewrite the difference equation (3) as

(

xl

xl+1

)

=

(

0 1

−1 −1

)(

xl−1

xl

)

. (4)

If we change notation we can view this as the particular case

A =

(

0 1

−1 −1

)

, b =

(

0

0

)

, xl ∈ IR2 (5)

of the discrete dynamical system

xl+1 = Axl + b. (6)

Geometrically, (6) describes an affine transformation of xl to xl+1. The set of allowed positions of the

initial value x0 =
(

β
−β

) (

β ∈ [−ǫ, ǫ]
)

— corresponding to
(

x1

x2

)

in (2) — is a line segment, and, as affine

transforms of x0, all xl are line segments, too.
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Figure 1: Optimal solution sets

In the first step, the effect of interval arithmetic is the replacement of the initial line segment by the

smallest box x0 =
(

[−ǫ,ǫ]
[−ǫ,ǫ]

)

containing it. In the next step, this box is transformed into a parallelogram,

and the smallest box containing it is x1 =
(

[−ǫ,ǫ]
[−2ǫ,2ǫ]

)

. In the next step, x1transforms into another

parallelogram whose interval enclosure is the box x2 =
(

[−2ǫ,2ǫ]
[−3ǫ,3ǫ]

)

, etc. One sees that the tiny precious

birthday present xl is wrapped into layer after layer of wrapping paper until a very conspicuous present

xl results, whose size has no longer anything to do with its contents. This is the so-called wrapping

effect, already observed in the early days of interval calculations (Moore [16], [17]).

In general, the behavior of the iteration (6) depends on the spectrum of A. If all eigenvalues of A

have absolute values < 1, the xl tend to a limit point x∗ which is the solution of the linear system

x∗ = Ax∗ + b. If some eigenvalues have absolute values > 1 then, for most starting points, the iteration

will diverge, ‖xl‖ → ∞ for l→∞.
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Figure 2: The wrapping effect

The volume of a set changes under the transformation (6) by a factor of |det A|, the product of the

absolute values of the eigenvalues of A. Therefore we can assess the amount of overestimation per step

by monitoring the overestimation factor

q = vol xl+1/|det A| vol xl, (7)

where vol[x, x̄] = (x̄1 − x1) · · · (x̄n − xn) is the volume of a box x = [x, x̄] in IRn.

2 Simplices, parallelepipeds, hyperoctahedra and ellipsoids

It is clear that interval boxes are not sufficiently variable in shape to model all affine transforms of an

initial box; to eliminate the wrapping effect for the case of the iteration (6) or any iteration

xl+1 = Alxl + bl (8)

we need to use a class of enclosure sets which is closed under affine transformations and still simple

enough to be described with little effort.

A natural class of such sets is the class of all polytopes, but working with general polytopes is time-

consuming. The simplest polytopes, the simplices, work and have indeed be used for enclosures

(Conradt [3], Jansson [10], Rump [22]). Parallelepipeds are another natural affinely closed class

of polytopes, and have been used in all recent enclosure methods for ordinary differential equations

(Eijgenraam [4], Lohner [14], [15]); their special advantage is that the boxes belongs to this class,

hence they can be handled easily by interval methods. Hyperoctahedra form another simple affinely

closed class, but have received no attention so far. See also the survey article Nickel [20].

A very important affinely closed class consists of the set of (hyper-)ellipsoids. Since ellipsoids arise

naturally in many applications, notably as confidence regions of stochastic variables, and since they are

invariant under a much bigger symmetry group than the other classes mentioned, they have received

considerable attention around 1968 (Kahan [11], Jackson [8], [9]). But in the absense of a simple

way of calculating with ellipsoids — the Minkowski sum of two ellipsoids has a complicated shape and

is expensive to enclose by another ellipsoid — they have not been used in actual codes for rigorous

computation. However, as pointed out by a referee, approximate calculations with ellipsoids have

found successful applications to several problems in linear control theory, see Kurzhanski & Vályi

[13], Ovseevich & Chernousko [21] and the references there. In particular, the discrete case of the
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reachable set problem amounts to finding enclosures of (8) where Al is known exactly and x0 and the

bl vary in specified sets.

As we shall see, the use of ellipsoids in combination with intervals allows the efficient handling of

ellipsoids and makes them again an interesting competitor for the best representation of multivariate

enclosure sets.

In this section we represent ellipsoids in a form which, for different norms, would give other families

of affine closed classes of convex sets which can be easily represented on a computer; parallelepipeds

and hyperoctahedra become cases of this concept when the 2-norm is replaced by the ∞-norm or the

1-norm, respectively. We show how the chosen representation allows a very simple implementation of

the iteration (8) without overestimation. But there are problems of numerical stability which often

lead to a blow-up of the enclosures when implemented in (outward rounded) finite precision arithmetic.

The next section is therefore devoted to the derivation of a stable version of the enclosure method.

In the following, we use freely interval arithmetical extensions of vector and matrix operations (cf.

Neumaier [19]), writing interval quantities in boldface types. ‖ · ‖ denotes the Euclidian vector and

matrix norm.

An ellipsoid is a set of the form

E(z, L, r) :=
{

z + Lξ | ξ ∈ IRn, ‖ξ‖ ≤ r
}

, (9)

with fixed z ∈ IRn, L ∈ IRn×n (lower triangular), r ∈ IR+. Thus ellipsoids are the images of a ball
{

ξ ∈ IRn | ‖ξ‖ ≤ r
}

under affine mappings ξ → z + Lξ. Since ‖ξ‖ is invariant under orthogonal

transformations, lower triangular matrices are sufficient to represent all ellipsoids (including degenerate

cases); for other norms, L would have to be unrestricted.

Proposition. Suppose (8) holds with nonsingular Al. Then

xl ∈ E(zl, Ll, r) =⇒ xl+1 ∈ E(zl+1, Ll+1, r), (10)

where

zl+1 = Alzl + bl, Ll+1 = AlLl. (11)

Proof. If xl = zl + Llξ then xl+1 = Al(zl + Llξ) + bl = (Alzl + bl) + (AlLl)ξ = zl+1 + Ll+1ξ. 2

While this proposition seems to handle completely all linear dynamical systems, this only holds under

the assumption of exact arithmetic. In finite precision arithmetic, one must account for the rounding

errors in the formation of zl+1 and Ll+1.

The simplest way to do this is to allow the zl and Ll themselves to have interval components, and to

compute (11) by outward rounding. But the recurrence for the zl is precisely the same as for the xl, so

the wrapping effect appears in the zl and magnifies rounding errors exponentially; and the same holds

for each column of the Ll. Thus the proposition is useless for actual computation. To avoid excessive

overestimation we must therefore keep zl and Ll real, and account for the rounding errors made by

increasing the ellipsoid radius r.
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3 The enclosure of affine transforms of ellipsoids

We study the adaption of r in a slightly more general setting motivated by the fact that in many

realistic situations the entries of the Al are not precisely known and are allowed to vary in intervals.

Thus we want to study the transformation of an ellipsoid under all affine mappings

x→ Ax + b
(

A ∈ A, b ∈ b
)

, (12)

where A is an n× n interval matrix and b an n-dimensional interval vector.

Theorem 1. Suppose that x ∈ E(z, L, r). Select arbitrary z̄ ∈ IRn and nonsingular L̄ ∈ IRn×n, and let

r̃ := ‖L̄−1(Az + b− z̄)‖+ ‖L̄−1AL‖r. (13)

Then

Ax + b ∈ E(z̄, L̄, r̃) for all A ∈ A, b ∈ b. (14)

Proof. By assumption, x = z + Lξ for some ξ with ‖ξ‖ ≤ r. Therefore

Ax + b = A(z + Lξ) + b = Az + b + ALξ

= z̄ + (Az + b− z̄ + ALξ) = z̄ + L̄ξ̄,

where

ξ̄ = L̄−1(Az + b− z̄) + L̄−1ALξ ∈ L̄−1(Az + b− z̄) + (L̄−1AL)ξ

satisfies

‖ξ̄‖ ≤ ‖L̄−1(Az + b− z̄)‖+ ‖L̄−1AL‖ ‖ξ‖ ≤ r̃. 2

Of course, if we want to have a good enclosure we must choose z̄ and L̄ properly. When A and b are

precisely known (so that we can use ordinary arithmetic) we see that the choice z̄ = Az + b, L̄ = AL,

r̄ = r is consistent with (13) and recovers the previous proposition. In the presence of roundoff error

or other uncertainties, this suggests the choice

z̄ = mid(Az + b), L̄ = mid(AL), (15)

where the interval expressions are computed with outward rounding to take correctly care of rounding

errors. However, (13) shows that this will be disastrous when L̄ is ill-conditioned since it blows up

the radius r̄ to a very large number. And, unfortunately, repeated iteration of (12) using (15) yields

always, sooner or later, such ill-conditioned L = (mid A)lL0, unless all eigenvalues of midA have the

same absolute value. Therefore, we must look for a regularized version which keeps r̄ reasonably small.

Let us introduce some notation. For a vector x, we denote by |x| the vector with components |xi|. Ai·
denotes the i-th row of a matrix A, and ν(A) denotes the hybrid norm of A (Neumaier [18]), i.e. the

vector with components νi(A) := ‖Ai·‖. It is easy to see that

|Ax| ≤ ν(A)‖x‖,

and

‖ν(A)‖ =
√

trAT A = ‖A‖F (≥ ‖A‖)
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is the Frobenius (or Schur) norm of A. We write

z̄ := mid(Az + b), d := |Az + b− z̄|, (16)

B := mid(AL), d′ := ν(AL−B). (17)

From (13) and monotony, we get, for any nonsingular diagonal matrix D,

r̃ ≤ ‖L̄−1D‖ ‖D−1(Az + b− z̄)‖+
(

‖L̄−1B‖+ ‖L̄−1D‖ ‖D−1(AL−B)‖F
)

r

≤ ‖L̄−1D‖ ‖D−1d‖+
(

‖L̄−1B‖+ ‖L̄−1D‖ ‖D−1d′‖
)

r,

hence

r̃ ≤ ‖L̄−1B‖r + ‖L̄−1D‖q (18)

where

q = ‖D−1d‖+ ‖D−1d′‖r. (19)

In (18) and (19) all intervals are eliminated, making it more suitable for analysis. We want to choose L̄

such that the volume of the new ellipsoid is small. Now this volume is proportional to r̃n det L̄, and the

next result shows how a nearly optimal L̄ can be found. Since a change of r̄ is equivalent to rescaling

L we aim at a radius r̄ ≈ 1, thus having small L̄ when rL and hence rB are small.

Theorem 2. Suppose that

r2BBT + q2DDT = L̄L̄T , (20)

r̄ = ‖L̄−1B‖r + ‖L̄−1D‖q. (21)

Then r̄ ≤ 2, and for arbitrary nonsingular L̃ we have
(

‖L̃−1B‖r + ‖L̃−1D‖q
)n

|det L̃| ≥ |det L̄|. (22)

In particular, choosing L̄ by (20) implies optimality of L̄ within a factor of 2 for the radius.

Proof. We use the abbreviations U = L̄−1B, V = L̄−1D to rewrite (20), (21) as

r2UUT + q2V V T = I,

‖U‖r + ‖V ‖q = r̄.

With W = L̃−1L̄, the left hand side of (22) becomes
(

‖WU‖r + ‖WV ‖q
)n

|det L̄|/|det W |.

Now

‖W (rU, qV )‖2 = ‖W (rU, qV )(rU, qV )T WT ‖ = ‖WWT ‖ = ‖W‖2,

hence

|det W | ≤ ‖W‖n ≤ ‖W (rU, qV )‖n ≤
(

r‖(WU, 0)‖+ q‖(0,WV )‖
)n

=
(

r‖WU‖+ q‖WV ‖
)n

so the left hand side of (22) is ≥ |det L̄|.
On the other hand,

‖U‖ ≤ r−1, ‖V ‖ ≤ q−1,

hence r̄ ≤ 2. 2
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Of course, this optimality result is based on the upper bound (18) which is not exact, but which is

easily computable. The diagonal matrix D can still be chosen freely, and its optimal choice is unsettled.

However, a natural choice for D comes from balancing the contributions of the components to q in (19),

and suggests that we take

D = Diag(d1 + d′1r, . . . , dk + d′kr). (23)

(This forces D−1d + D−1d′r = (1, . . . , 1)T , leading to
√

n ≤ q ≤
√

2n.) As one can see from (16) and

(17), D will have entries of the order of the radii of A and b, so that the contributions in (20), (21) to

L̄ and r̄ remain small as long as B is well conditioned. Thus L̄L̄T ≈ r2BBT remains small when rB

was small and Q = rL̄−1B satisfies QT Q ≈ I so that r̄ ≈ ‖Q‖ ≈ 1 and everything is stable.

The matrix L̄ is determined by (20) only upto an orthogonal transformation, and is best chosen as

a Cholesky factor of the left hand side of (20). One sees that because of the regularizing diagonal

term in (20), L̄ will be well-conditioned even when B = mid(AL) is ill-conditioned or singular; so

the instability mentioned earlier has been removed successfully. However, the formation of L̄ by (20)

directly is numerically unstable when B is ill-conditioned, and we must proceed in a slightly different

way. The first possibility is to add to the matrix N = r2BBT + q2DDT extra diagonal terms to

force it positive definite (e.g. Nii ← Nii(1 + ǫ1/2)). Another possibility uses the fact that the matrix

M := (rB, qD) ∈ IRn×2n satisfies MMT = r2BBT + q2DDT = L̄L̄T ; hence we can obtain L̄ from an

LQ-factorization (= transposed QR factorization) of M . Small diagonal entries in L̄ due to roundoff

can be corrected by replacing the diagonal entries L̄ii with L̄ii + sgn L̄ii · η · νi(M), where η = n3/2ǫ

and ǫ denotes the machine accuracy.

Collecting together the various formulas we find the following

Algorithm. (Ellipsoid propagation algorithm)

Purpose: Enclose the transformation of the ellipsoid {z + Lξ | ‖ξ‖ ≤ r} (L lower triangular)

by x→ Ax + b within the ellipsoid {z̄ + L̄ξ̄ | ‖ξ̄‖ ≤ r̄} (L̄ lower triangular)

! The rounding mode for computing each left hand side is indicated by

! ⊇ (outward), ≈ (approximate), ≥ (upwards)

z̄ ⊇ Az + b, z̄ ≈ mid z̄, d ≥ |z̄ − z̄|
B ⊇ AL, B ≈ mid B, d′ ≥ ν

(

B −B
)

D ≈ Diag(d1 + d′1r, . . . , dn + d′nr)

q ≥ ‖D−1d‖+ ‖D−1d′‖r
M ≈ (rB, qD)

L̄Q̄ ≈M

For i = 1, . . . , n, change L̄ii to L̄ii + sgn L̄ii · η · νi(M)

Enclose the solution of L̄C = B by C and compute an upper bound γ

on the largest singular value of C

Enclose the solution of L̄C = D by C and compute an upper bound δ

on the largest singular value of C

r̄ ≥ γr + δq.
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4 Bounds for the range over an ellipsoid

The wrapping effect does not only occur for linear transformations, but even more when one transforms

a set by a nonlinear transformation. In this case, even exact arithmetic does not allow optimal enclosures

since nonlinear mappings generally distort the shapes of ellipsoids (or simplices, parallelepipeds and

hyperoctahedra), and clearly the amount of unavoidable wrapping increases with the amount of

nonlinearity present in the set. In particular, this implies that one will be able to obtain realistic

enclosures of general nonlinear transformations only for sufficiently narrow sets (where nonlinearities

contribute in the order of the squared diameter only). On the other hand, realistic enclosures of an

image of a big set can be obtained only for mappings which are nearly linear.

We now show that the techniques of the previous section suffice to enclose nonlinear images of narrow

ellipsoids by another ellipsoid. The key is the observation that for any C1-function F : IRn → IRm

(the dimensions need not be equal!) which is defined by a Lipschitz expression (a notion explained in

Neumaier [19]), any bounded set E ⊆ IRn and all centers z ∈ E, one can find a slope matrix A such

that we can represent F as centered form

x ∈ E =⇒ F (x) = F (z) + Ã(x− z) for some Ã ∈ A. (24)

Thus if we know an enclosure

b ⊇ F (z) (25)

of F (z) which accounts for roundoff, we find that

F (x) ∈
⋃

{Ax + b | x ∈ E},

so that the theory of the previous section applies when E is an ellipsoid.

The only difficulty is the computation of the slope matrix A. An optimal computation of A using the

full ellipsoid information seems difficult; therefore we compute A using an interval enclosure for the

ellipsoid E by a box x; then recursive techniques (Krawczyk & Neumaier [12], Neumaier [19])

allow the computation of the slope matrix A for the box x, and this is obviously also a slope matrix

for the subset E of x. The optimal box is given by

Theorem 3. The smallest box containing the ellipsoid E(z, L, r) is

x := ⊓⊔E(z, L, r) = z + [−r, r]ν(L). (26)

Proof. The i-th component of x is given by the hull of all xi = (z + Lξ)i with ‖ξ‖ ≤ r. Now, by the

Cauchy-Schwarz inequality,

|xi − zi| = |(Lξ)i| = |Li·ξ| ≤ ‖Li·‖2‖ξ‖2 = νi(L)‖ξ‖2 ≤ νi(L)r,

and clearly the bound can be attained with either sign of xi − zi. Hence formula (26). 2

In practice, when doing a sequence of nonlinear transformations, it is important to update the box

containing the new ellipsoid E(z̄, L̄, r̄) by

x̄ =
(

A(x− z) + b
)

∩
(

z̄ + [−r̄, r̄]ν(L̄)
)

. (27)
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Figure 3: Updating the box by (27)

This often eliminates the ends of long and thin ellipsoids which (due to overestimation) no longer contain

points of the (iterated) image of the original set; these ends would inflate the box (26) considerably.

This is particularly relevant when A ≥ 0, where it is well known that the formula x̄ = A(x − z) + b

gives optimal boxes (though large volume overestimation).

Another trick is often important to guarantee reasonable results when the nonlinear transformation

F (x, λ) depends on a parameter vector λ which varies in a box λ (or an ellipsoid). Treating the λi

as interval constants in the centered form (24) often leads to significant wrapping, especially after a

sequence of several transformations involving λ. In this case, the correct way to treat these parameters

is by extending the state vector x to x′ =
(

x
λ

)

and enclosing it by higher-dimensional ellipsoids. While

this incurs in the first step a volume overestimation factor of the unit ball volume, this factor will often

have been gained after a few more steps, due to reduced wrapping. For wide intervals in λ, however,

this need no longer be the case, and one may have to resort to methods of global optimization (Hansen

[6]).

Examples. We iterate (27) for a two-dimensional discrete dynamical system

xl+1 = Alxl + bl (28)

where Al ∈ A, bl ∈ b = 10−12
(

[−1,1]
[−1,1]

)

, x0 ∈ x0 =
(

[−1,1]
[−1,1]

)

, and various matrices A. Thus we start with

a square of side 2, and assume small vagueness in the vectors bl but (except in case 4) large vagueness

in the coefficients of Al.

In each case we list the side βl of a cube with the same volume as xl and the side γl of a cube with the

same volume as the ellipsoid. For comparison we also iterate in naive interval arithmetic

yl+1 = Ayl + bl,

starting with y0 = x0, and record the quotient β′

l/βl, where β′

l is the side of a cube with the same

volume as yl. The computations were done with the CALCULUS system [7] of Siegfried Rump, whose

help with the examples is gratefully acknowledged. On the machine used, ǫ = 10−17.
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Case 1: A =

(

p p

−p p

)

, p =
[

4
10 , 5

10

]

.

l βl γl β′

l/βl

10 1.33E− 01 6.64E− 02 1.51E + 01

20 6.22E− 03 3.11E− 03 3.22E + 02

30 2.92E− 04 1.46E− 04 6.86E + 03

40 1.37E− 05 6.84E− 06 1.47E + 05

50 6.42E− 07 3.21E− 07 3.12E + 06

60 3.01E− 08 1.51E− 08 6.65E + 07

70 1.43E− 09 7.11E− 10 1.41E + 09

80 7.69E− 11 3.85E− 11 2.61E + 10

90 1.39E− 11 6.92E− 12 1.45E + 11

100 1.09E− 11 5.44E− 12 1.84E + 11

The ellipsoids contract until about the size of rad b; naive interval arithmetic does not contract.

Case 2: A =

(

0 1

−1 −p

)

, p =
[

1, 10
9

]

.

l βl γl β′

l/βl

10 1.21E + 01 5.79E + 00 3.02E + 01

20 5.60E + 01 2.42E + 01 1.31E + 03

30 2.05E + 02 9.79E + 01 7.19E + 04

40 7.09E + 02 3.69E + 02 4.18E + 06

50 2.69E + 03 1.35E + 03 2.21E + 08

60 1.09E + 04 5.02E + 03 1.11E + 10

70 3.99E + 04 1.89E + 04 6.03E + 11

80 1.36E + 05 6.86E + 04 3.56E + 13

90 4.85E + 05 2.45E + 05 2.01E + 15

100 1.83E + 06 8.76E + 05 1.08E + 17

All matrices in A have determinant 1, so the dynamical system is volume preserving. However, the

ellipsoid volume grows exponentially, with an average factor of (8.76 · 105)1/100 ≈ 1.147, but much less

than the boxes in naive calculation.
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Case 3: A =

(

0 1

1 p

)

, p =
[

1, 10
9

]

.

l βl γl β′

l/βl

10 3.64E + 02 7.78E + 03 1.00E + 00

20 7.32E + 04 8.98E + 08 1.00E + 00

30 1.48E + 07 1.04E + 14 1.00E + 00

40 2.96E + 09 1.20E + 19 1.00E + 00

50 5.95E + 11 1.39E + 24 1.00E + 00

60 1.20E + 14 1.60E + 29 1.00E + 00

70 2.41E + 16 1.84E + 34 1.00E + 00

Again the system is volume preserving but we get boxes exploding with a factor ≈ 1.714 per iteration

and ellipsoids exploding even faster. The intersection in (27) is here very effective. Since A ≥ 0, naive

interval calculation gives optimal boxes (but not optimal volumes), explaining β′

l = βl. In this example,

the ellipsoids are clearly not useful.

Case 4: A =

(

8.0 −2.6

9.0 −2.8

)

.

a) with direct computation of L̄ from (20):

l βl γl β′

l/βl

10 3.96E + 07 2.36E + 05 1.05E + 03

20 3.87E + 14 2.30E + 12 2.53E + 06

30 3.78E + 21 2.25E + 19 6.07E + 09

40 3.69E + 28 2.20E + 26 1.46E + 13

50 3.60E + 35 2.15E + 33 3.52E + 16

Again the system is volume preserving, but with eigenvalues 0.2 and 5 which cause the ellipsoids

to flatten rapidly. The growth rate of the box volumes is about 2/3 of that of the naive calculation,

a consequence of the diagonal needle shape of the ellipsoids.
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b) with L̄ computed as stated in the algorithm:

l βl γl β′

l/βl

1 2.24E + 01 1.42E + 00 1.00E + 00

2 1.30E + 02 1.42E + 00 1.88E + 00

3 6.51E + 02 1.42E + 00 4.08E + 00

4 3.26E + 03 1.42E + 00 8.89E + 00

5 1.63E + 04 1.42E + 00 1.94E + 01

6 8.14E + 04 1.42E + 00 4.22E + 01

7 4.07E + 05 1.42E + 00 9.19E + 01

8 2.04E + 06 1.42E + 00 2.00E + 02

9 1.03E + 07 1.43E + 00 4.34E + 02

10 5.42E + 07 1.51E + 00 8.92E + 02

20 1.27E + 18 1.28E + 10 8.99E + 02

30 2.97E + 28 5.79E + 20 8.99E + 02

Here the ellipsoid volume hardly grows initially, but after a while the volumes grow at the same

rate as in the naive calculation.

The rapid blow-up of the ellipsoids in case 4, where the ambiguity in (28) is only small, O(10−12),

suggests that the method proposed does not yet choose nearly optimal enclosing ellipsoids, so

that there is further room for improvement.

5 Application: Stability regions

A discrete dynamical system

xl+1 = F (xl) (29)

is called stable in a region E when, for any initial state x0 ∈ E, the state vectors xl defined by (29)

remains bounded for all l. A sufficient condition for this is — when E is bounded — that

F (x) ∈ E for all x ∈ E. (30)

If F is also continuous, then Brouwer’s fixed point theorem guarantees a fixed point of F under these

conditions.

Clearly we can verify (30) by the techniques of the present paper when E = (z, L, r) is an ellipsoid.

Since the image is to be enclosed by the same ellipsoid, the natural choice here is z̄ = z and L̄ = L.

Then, using (24) and (13), a sufficient condition for (30), hence for stability, is

∥

∥L−1(Az + b− z)
∥

∥ + ‖L−1AL‖r ≤ r. (31)

Since an initial enclosure is here not given we are free to choose z and L arbitrarily, and we want to

choose it to make the verification of (31) most likely. Since we know that E must contain a fixed point,
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we choose z as an approximation to such a fixed point; then F (z) ≈ z implies that the first norm in

(31) will be small.

The second norm in (31) must be made < 1. Since in the limit r → 0, where the ellipsoid shrinks to the

point z, the slope matrix tends to F ′(z) (assuming F to be differentiable), we have F ′(z) ∈ A. Thus

we try to make ‖L−1F ′(z)L‖ small, and in particular < 1.

Since the norm of a matrix is an upper bound for the spectral radius, and the latter is invariant under

similarity transformations, F ′(z) must have spectral radius ρ
(

F ′(z)
)

< 1, i.e., z must be an attractive

fixed point. In this case we can transform F ′(z) to a block-diagonal form by the modal matrix S

whose columns are eigenvectors of real eigenvalues, or real and complex part of eigenvectors to complex

eigenvalues. (This assumes that F ′(z) is nondefective. In the nearly defective case one must consider

higher-dimensional invariant subspaces.) The diagonal blocks of S−1F (z)S will have the form (λ) for

real eigenvalues and
(

Re λ
− Im λ

Im λ
Re λ

)

for complex eigenvalues. Thus if we take for L an approximation to

S (silently dropping the assumption of L being lower triangular) we find that L−1F ′(z)L and hence

L−1AL (for small r; the entries of A have radius O(r)) are approximately block-diagonal. Now let

C ⊇ L−1(AL), C ≈ mid C, R ≥ |C − C|. (32)

By construction, C is nearly block-diagonal, and R = O(r). The form of the diagonal blocks implies that

CCT is approximately diagonal, with diagonal entries ≈ |λ|2 < 1. Thus ‖CCT ‖∞ will approximately

equal the square of the spectral radius of F ′(z), and since

‖L−1AL‖ ≤ ‖C‖ ≤ ‖C‖+ ‖R‖ ≤
√

‖CT C‖∞ +
√

tr RT R

we get the stability condition

‖L−1(Az + b− z)‖2 +
(
√

‖CT C‖∞ +
√

tr RT R
)

r ≤ r (33)

as verifiable sufficient condition for stability in E(z, L, r). Moreover, by our analysis, the left hand side

is ρ
(

F ′(z)
)

r + O(r2) < r for sufficiently small r, so that (33) verifies some stability region around any

attractive fixed point. By checking (33) for various r (using a bisection procedure in [0, r]) one can find

the maximal radius in which stability can be verified.

6 Application: Confidence regions

Let x be an n-dimensional random vector with mean z, covariance matrix Σ and Gaussian distribution.

We want to find a confidence region Ē for the transformed random vector

x̄ = F (x)

which contains x̄ with specified probability α (or higher).

Since (x− z)T Σ−1(x− z) is χ2(n) distributed, one can compute a radius rα such that

(x− z)T Σ−1(x− z) ≤ r2
α with probability α. (34)

If we use a Cholesky factorization LLT of Σ and introduce ξ = L−1(x − z) we find x = z + Lξ and

ξT ξ = (x− z)T L−T L−1(x− z) = (x− z)T Σ−1(x− z). Hence (34) can be rewritten as

x ∈ E(z, L, rα) with probability α. (35)
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Therefore, the image of E(z, L, rα) under the transformation F will contain x̄ with probability α, and

the enclosing ellipsoid will therefore satisfy

x̄ ∈ Ē(z̄, L̄, r̄α) with probability ≥ α. (36)

Thus we have a rigorous confidence region for x̄ to the confidence level α, and since the probability is

at least α, overestimation leads to an error on the safe side.
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15. R. Lohner. Einschließung der Lösung gewöhnlicher Anfangs- und Randwertaufgaben und Anwen-

dungen. Dissertation, Univ. Karlsruhe (1988).

16. R. E. Moore. Interval Arithmetic and Automatic Error Analysis in Digital Computing. PhD thesis,

Appl. Math. Statist. Lab. Rep. 25, Stanford University (1962).

17. R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ (1966).

18. A. Neumaier. Hybrid norms and bounds for overdetermined linear systems. Linear Algebra Appl..

To appear.

19. A. Neumaier. Interval Methods for Systems of Equations. Cambridge University Press (1990).

20. K. Nickel. Using interval methods for the numerical solution of ODE’s. Freiburger Intervall-Berichte

83/10 (1983), 13–44.

21. A. I. Ovseevich and F. L. Chernousko. On optimal ellipsoids approximating reachable sets. Problems

of Control and Information Theory 16 (1987), 125–134.

22. S. M. Rump. On the solution of interval linear systems. Computing 47 (1992), 337–353.


