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1 Introduction

The solution of initial value problems for ordinary differential equations has
proceeded to the stage where one can not only compute approximate solutions
automatically, but also give (approximate) accuracy estimates based on local
control of truncation error versus roundoff error. But due to the diversity
of behaviour of dynamical systems, this local error control can be unreliable
when a certain global accuracy need to be achieved.

There are methods for rigorous error control going back to MOORE [11]
which are based on interval arithmetic (see [12] for a modern treatment of
interval analysis). However, Moore observed that naive methods can lead
to severe overestimation even on simple problems, due to so-called wrapping
(cf. [13]). The current best rigorous code, due to LOHNER [9] takes measures
against wrapping. It has no automatic step size control, but techniques of
EBGENRAAM [3] allow to control the step size adaptively. However, both
Lohner’s and Eijgenraam’s methods use initial bounds related to explicit
ODE methods like Euler’s, and thus have severe step size restrictions for stiff
systems.

In this paper, we

e relate local errors and global errors, using one-sided Lipschitz condi-
tions (Theorem 2.8);

e survey the properties of logarithmic norms, needed for explicit work
with the one-sided Lipschitz condition;

e prove a new existence theorem (Theorem 3.5) giving conditions under
which an initial value problem has a solution which remains close (in a
quantitatively specified sense) to a given approximation;

e give explicitly a set of sufficient conditions verifiable by computer (using
interval arithmetic), and show that for uniformly dissipative problems,
these conditions give global bounds for all times, with a global error of
the approximation;

e indicate an adaptive strategy for the automatic enclosure of solutions
of general initial value problems, with the property that no step size
restrictions are expected for stiff problems.



2 Logarithmic norms

In this section we review and extend the known properties of logarithmic
norms. Some of the results discussed here are not needed for the remaining
sections, but are included for the sake of completeness.

Logarithmic norms were introduced by DAHLQUIST [2] and Lozinsk1y [10].
They are extensively used in the book by COPPEL [1] (in particular, pp. 3, 41,
59) and the article by STROM [17], where further properties and references
may be found.

Let V be a Banach space and define, for u,v € V', u # 0,

Ju + b — JJu]
(1, v) 1= . (1)
Allu]

2.1. Proposition. For h > 0, pu,(u,v) is monotone increasing in h and
bounded from below by —||v||/||u||; hence the limit

pu(u,v) = lim sup pn (e, 0) = im g (u, 0) = inf pup (u, v) (2)

ex1Sts.

Proof. By the triangle inequality,

lu+ hol| = ull| < [[hv]| and, for h >k,

_ I tu o+ B = Al — R a0

ps ) = e ) = ol

p(u, v) is called the logarithmic derivative of the vector norm ||-||; ¢f. Remark
2.4 below. We first note some simple properties:

2.2. Proposition.

(i) We have
[+ hol| > (lul[ (1 + hpa(u, v)), (3)

and, for h — 0,

[+ hol| = [[ul[(1 + hp(u, v)) + o(h).



(11)) We have
p(u,u) =1 for wu#0, (4)

v+ su
p(u,v) < w—s for s>0, (5)

plow,v) = ~p(uwv), (o, ov) = ap(wv) for a0, (6)

Proof. All statements are straightforward consequences of (1) after taking
limits; for (5) use s = 1/h. o

Central for the application of logarithmic norms is the following result, again
a direct consequence of the definition.

2.3. Proposition. The forward derivative

8+f(t) — hl_igrlo f(t + h})L B f(t) (8)

of the norm of a differentiable vector function x is given by

O lz()l = plx(t), 2(t)) lz()]]- (9)
In (9), the 2-sided derivative exists iff p(x, —i) = —u(x, ). .
2.4. Remark. If N : V — TR, given by N(u) := |ul|| is Frechet-
differentiable at wu, it follows that
N’
) = 3" = (log M)



2.5. Examples.

(i) For the norm ||z|l; = \/{x|z) in a Hilbert space with inner product
(- | -) we have

Re(ulv)
el ) =T
and the norm || - || is smooth for = # 0.

(ii) For the norm ||z]|» in V' =IR" we have
Poo (U, v) = max {(sgnu;)v; | i with |u;| = ||u|leo} .

and the norm ||z||» is smooth if x has a unique absolutely largest
component. O

The usefulness of logarithmic norms can be seen from the following stability
theorem.

2.6. Theorem. Assume the one-sided Lipschitz condition
p(z =y, F(t,z) = F(t,y)) < pp(t) forall z,y € R (10)

and let
¢
K(s,t) = //LF(T)dT, [= (t — s)up in the autonomous case.|  (11)

Then, for any two solutions x1, xo of
i(t) = F(t, x(t)), (12)

the difference
r(s,1) = e Dz (1) — (1)

18 monotone decreasing in t.
Proof. By (9) and (8), 07 [|lz1(t) — za()|| < pup(t) - ||l1 (8) — 22 (1),

O r(s,t) = —pp(t)r(s,t) + e ||z (1) — 2o(1)]| < 0. g



2.7. Corollary. Fort > s, for any two solutions 1,z of (11),

l21(t) = 22 (1) ]| < e |z (s) — ()] (13)
As a consequence we can deduce the following result on local error propaga-
tion, which appears to be new.

2.8. Theorem. Assume the one-sided Lipschitz condition (10). Let 0 =
to <ty <--- bea grid such that

tit1
/ pp(t)dt <k <0 for each i. (14)
t;
For a solution xz(t) of (12), consider an approzimating grid function x;,
i=0,1,... whose local error (per step) satisfies
||xl(tl+1) _x’iJrlH <, 1=0,1,... (15)

where x;(t) is the solution of (12) with x;(t;) = x;, then

Ji(ts) = all < max (Jl2(0) = woll, 7= ). (16)

1—e"r
Proof. Let €; := ||z(t;) — z;|| , then, for i =0,1,...
€iv1 < [[z(tiv1) — i(tivn)[| + [[2itivr) — zigal| < -6 +7 by (13)-(15).

This implies, since k < 0,

: 1 — el r ,
€ < e +r :<e— )e“‘+
P="0 1 —er 0 1 —er

r
S max (60, 1*) |

1 —er — ek

2.9. Remarks. (i) If {z;} is generated by a one-step method
Tiy1 = Ty + hiFoum (hi, ti, ), hi =tiv1 — ti, (17)

the local error bound r of (15) is a bound for p; + h;o; where p; is the local
roundoff error (per step) and o; is the local discretization error.

(ii) In principle, one could use this for global error control by providing
estimates for k and r at each step.
1 1 1 K
iii) Note that = ——+-——+0(K).
(iii) Note at T—— /<;+2 12—1— (k%)




Working with p(u,v) directly is sometimes cumbersome, and can be simpli-
fied using bounds in terms of logarithmic matrix norms. For a linear mapping
A € Lin(V) of V into itself (a nxn-matrix if V = 1R"), we define its norm

1Al = sup [[Aul|/1[ull (18)

and its logarithmic norm

p(A) = liifril[l]p(llf +hA[ = 1) /h. (19)

Note that both ||A]| and u(A) may be infinite if dim V' = oo, but we always
have, from the triangle inequality,

p(A) <Al w(A+ B) < u(A) + u(B). (20)

Clearly, (18) implies
[Au] < [[A[[lul], (21)

and from (2), (19) we find the inequality
pu(u, Au) < p(A), (22)
and hence by (7) the important bound

2.10. Proposition.
lu,v) < u(A) + l[o = Aull /]l if u #0. (23)

With an appropriate choice of A, this formula yields computable bounds for
p(u, v) which are sufficiently good for the applications in Section 4.

In the finite-dimensional case (22) is sharp, i.e., we have

n(A) = iilo)/ﬁ(“a Au). (24)

The logarithmic norm is related to the spectral abscissa

p(I+hA)—1

a(A) :=sup{ReA | A € Spec A} = ’lllII[I) - :

(25)



which satisfies
a(A) < pu(A) < [|A]l. (26)

In general,
pa(A) = a(Agym) = sup{A | A € Spec Agym},

where .
Agym 1= §(A + A¥),

and for n x n-matrices,

foo(A) = max{Re A;; + > |Au| |i=1,...n}.

ki
In particular,
po(A) < p <= pl — Agym positive semidefinite. (27)
We have a(A) = pu(A)
e if || - || is monotone and A is diagonal, or
o if ||| = ‘|ls and A is quasimonotone, i.e. its off-diagonal entries are
nonnegative, or
e if |-|| =1 |2 and A is normal (and in particular if A is self-adjoint).
Further properties of j(A) are
plaA) = au(A) if a>0, (28)
p(A+al) = u(A) + Rea. (29)

2.11. Proposition. The following inequalities hold:

e[| < etV (30)
[(sI —A)7H < (Res—p)™" if p(A) <p<Res (31)

. 1 if p(A) <0
(I = A)~H (I + A)ll2 s{ i (A < e (0.1) (32)
pa(A) — a(A) <\ /5(tr AA — | tr A2)) (33)



Proof. For (30): For &(t) = Axz(t), we obtain ur = p(A) in (10). With
21(0) = 29, 22(0) = 0, we have from (13), with s = 0,

|21 (2) = @a()]] = [l o]l < V|

which implies (30).
For (31): Let B = (sI — A)~! so that (sI — A)B = I giving
1+ hs|||Bl = [|B + hsB|| = [[(I + hA)B + hi|| < [T + hA[[||B[| + h,

Lo Al =1 [iths[ -1
1B h - h

In the limit h — 0, we find || B||™" +pu(A) > Res. With u(A) < u < Res, we
may conclude ||B|| < (Res — p)~'. For (32) and (33), see STROM [17] o

2.12. Remark. (32) does not hold for || - || in place of || - ||2; e.g., if

-9 9 -1 4
A= , then f15(A) =0, but (I —A) (T +A) =3 has
0 0 0 3
norm g > 1. Im particular, this implies that the following result of HAIRER
ET AL. [6] does not generalize to || - |-

2.13. Theorem.

(i) Suppose R(z) is analytic in Re z < 0, continuous on Rez = 0. If
Rzl <1 forall z€@© with Rez<0

then
p2(A) <0=[[R(A)[; <1

(ii) Suppose R(z) is analytic in Re z < p, continuous on Rez = pu. Then

I1R(A)ll2 < ¢r(p2(a))  where @r(u) :=sup{|R(z)| | Rez < u}.



This theorem can be refined further; see SCHMITT [15].

For practical applications to rigorous enclosures, it is important to be able to
calculate strict bounds for logarithmic norms using approximate arithmetic
only.

Using a guess fig for po(A), one can compute a rigorous bound for ps(A) as
follows.

Calculate an approximate modified Cholesky factorization
pol — Agym ~ LLT — E (34)

with diagonal E > 0 (using, e.g., the algorithm of SCHNABEL AND Eskow
[16]), and observe that (20) and (27) imply for arbitrary L

p2(A) < po + [l o] — Ay — LL |2 (35)

The norm term bounds rounding errors and truncation errors in the modified
Cholesky factorization. In this special case where Ay, is nearly diagonal,
sufficiently good bounds are already obtained by using (35) with L = 0 and
fto = min A;;.

With the use of interval arithmetic and || B||» < ||B||r = Vtr BBT, a rigorous
upper bound for (35) can be found. If the initial guess was good, then E ~ 0
in (34) and the correction term in (35) will be small. If the correction term
is large, one can repeat the process with an improved g, obtained, e.g., by a
few Lanczos iterations with Agy,. For a related technique to bound smallest
singular values of matrices see RuMP [14].

3 A semilocal existence theorem

In this section we use differential inequalities and Peano’s existence theorem
for solutions of initial value problems to deduce verifiable conditions that the
solution of an initial value problem exists and remains in a prescribed tube
for some calculable time interval. We begin with an auxiliary result which
establishes a sufficient condition that a function remains < 0.

3.1. Lemma. Let f : [t,t] — R be a continuous function. If there are
constants v,d € R, 6 > 0, such that, for t € [t,t], the implication

o<sw<s = tim LENZIO oy 1)

10



holds, then
f@) <0 = f(t) <0 forall teltt]. (2)

Proof. For given e € (0,5/(e” — e)) | let T be the set of ¢ € [t,7] where
f(t) < e(e™ —e™). (3)

Note that (3) implies f(t) < 0 for ¢ € T. We will show that 7' = [¢,¢] if
f(t) <0, independently of ¢; hence € — 0 will yield (2).

a) Take t € T, t < t, and assume f(t) > 0. By (1), for every € > 0, there is
a positive h < t — t such that

f(t+h) < (1 4+~h)f(t) +eh for he]0,h].
We choose €y = eye?t and find, with 1+ vh < e and (3),

f(t+h) < ee(e™ — ™) + eveth
= (MR _ 1ty — eet(eM — 1 — yh)
< e(eXtHh) _ ety

Thus ¢t +h € T for h € [0, A].

b) Now assume f(t) < 0 at t < ¢, ¢t € T. By continuity, there is a positive
h <t —t such that f(t+h) <0and t+h €T for h € [0, h].

For f(t) < 0, there is a maximal ¢* such that [¢,¢*] < T since T is closed.
By a) and b), t* =t. 5

3.2. Remarks. (i) Instead of constant , we may assume v = 3(¢) where
B : [t,t] — R is continuously differentiable. The proof works, with ~¢
replaced by (3(t) and similar changes. But this extended form seems not to
be more useful.

(ii) One cannot put 6 = 0 in (1). A counterexample is: ¢t = —1, t = +1,
f(t) =t

The following comparison theorem is a generalization of the well-known
Gronwall inequality (see e.g. [7]).

11



3.3. Theorem. For s >0, let u : [0,s] = V (a Banach space), ¢ : [0, s] —

={z € R | 2 > 0} be continuously differentiable functions. For fized
§ >0, let ts be the infimum of all t € [0, s| where the following two relations
are simultaneously satisfied:

p(t) < llu@®)] < @(t) + (4)
p(t) < p(ult), U)() (5)

but if (4) and (5) are incompatible, let t; = s. Then
[u(O) < ¢(0) = Ju@) <) forall tel0,ts]. (6)

Proof. The function f : [0,s] — R defined by
f(@) = @)l = () (7)

is continuous. Hence the set T := {t € [0,%5] | 0 < f(t) < J} is either empty
(in which case there is nothing to prove) or compact. In this case,

| | .
sup [i(t)] < o0, inf [u(t)] > nf (1) >0 (®)

so that we can define (cf. (2.5))

v o= sup p(u(t), u(t)) < sup [a(@)]l/lu@)] < oo. (9)

teT

Take t € T, t < t5, so that, by the construction of 5, (5) cannot hold because
(4) holds:

o(t) > p(u(t), u(t) o(t). (10)
For h > 0 and t + h € T we have

[ut + )| = [lu(t) + hi(t)]| + of

= (14 hp(u(t), u(t))

= (L4 hp(u(t), u(t))

< (L+hy) f(8) + o(t)

by (2.3),(7), (9) and (10), so that
f{t+h) = |WU+MH—(VH0SG+hwﬂﬂ+MM-

Hence (1) holds for t = 0, ¢ = t; and (6) follows from (2) by the Lemma. 7

12



3.4. Remark. Clearly, t5 is a decreasing function of §, hence the conclusion

(6) is strongest for § — 0. It would be interesting to show that ¢y = sup ts;
5>0

then we could put § = 0 in (4). However, at present I cannot exclude the
possibility that ty > sup ts.

5>0
We shall now apply the comparison theorem (Theorem 3.3) to give a
constructive existence test for a solution of the initial value problem

F(t,z(t),2(t)) =0 with =z(tg) =x9, Z(to) = 20. (11)

Here F' is a mapping from 2 C R x V x V into V where Q2 O D x E,
D CRxV, ECYV, and the initial values satisfy

F(to, Zo, ZU) = 0, (to, 1'0) € int D, 20 € int K. (12)
Explicit ordinary differential equations are obtained as the special case
F(t,z,z) = Fo(t, z) — 2; (13)

however, it will be useful to consider the implicit form (11) since the
solution of (11) for & may complicate the expression and lead to additional
overestimations.

Actually, (11), a differential-algebraic equation (DAE), includes much more
general situations than (13). We will consider only DAEs of index zero:
For each triple (o, xq, 20) satisfying (12) there are neighborhoods U C D
of (tg,20) and U’' C E of zy such that, for every (t,z) € U, the equation
F(t,z,z) = 0 has a unique solution z € U’ and z depends continuously on
(t,x).

By the local implicit function theorem, F' has index zero in D x E if it is
continuous in D x E, continuously differentiable with respect to z, and if the
partial derivative F,(¢,z, z) has a bounded inverse for (¢,z,2) € D x E. In
particular, F' has index zero if

F(t,z,2) = Fy(t,z) — G(t, )z, (14)

with continuous Fy : Dy — V and G : Dy — Lin(V), and if G(¢,z) has a
bounded inverse for (¢, x) € Dy. Clearly, this covers the case (13) of explicit
ODEs with continuous Fj.

13



The index zero property may be tested, either by symbolic computation or
by numeric computation with intervals.

In the following, we aim to construct, for a solution z(¢) of (11), enclosures
of the form

IS (@ (to + h) = p(R))| < ¢(h) for 0<h<h (15)

Here,

e p(h) is a “known” approximation of an “unknown” solution z(ty + h)
which a priori need not even be known to exist,

e S is an invertible linear mapping € Lin(V) which, for || - || = || - [|2,
defines the axes of an error ellipsoid.

e is a “simple” positive function (constant, linear, exponential) which
bounds the error.

The comparison theorem may be used to prove the following sufficient
conditions for a bound (15), with a time-dependent linear mapping S(h).

3.5. Theorem. Let s >0, D C R XV closed, E CV compact, D x E C
QCRxV xV, and suppose that F': Q — V has index zero in D X E.

Let p : [0,s] - V, S :[0,s] — Lin(V), ¢ : [0,s] — Ry be continuously
differentiable and S(h) invertible for h € [0,s] . Let h* be the infimum of all
h € [0, s] for which there exist u,v € V such that

F (to + h, p(h) + S(h)u, p(h) + S(h)u + S(h)v) =0, (16)
(o + b, p(h) + S(h)u, p(h) + S(h)u + S(h)v) € A(D x E),  (17)

Jul| < @(h). (18)

For fized 6 > 0, let hs be the infimum of all h € [0, h*] for which there exist

u,v € V such that the following relations are simultaneously satisfied: (16)
and

(to + h, p(h) + S(h)u, p(h) + S(h)u + S(h)v) € D x E (19)
e(h) < |ull < o(h) +0 (20)
p(h) < p(u,v) o(h). (21)

14



If (12) holds and
15(0)~ (zo — p(0))]| < (0) (22)
then any continuously differentiable solution x : [tg,tq + h] — V of the

initial value problem (11) with h € |0, hs] can be extended to a continuously
differentiable solution x : [to, to + hs] — V which satisfies

(tLa() €D,  @(t)eE for tEe [toto+ hg (23)
1S(h) = (2(to + k) — p(W))|| < @(h)  for D [0, hy). (24)

3.6. Remarks. (i) h < h*, defined by (16)—(18), keeps the solution away
from the boundary of D x E whereas h < hg, defined by (16) and (19)—(21)
keeps the solution within (24).

(ii) If D =[t,00) x V, E =V, then h* = s since (17) is never satisfied.

Proof. Consider the solution z : [to,to + h] — V of (11) of the Theorem,
h € [0, hs].
(i) At first we show that (23), (24) hold for ¢ € [tg, to + h):

Let h' < h be maximal such that (23), (24) hold for ¢ € [to, o + '], with
h' >0 by (12) and (22); suppose h' < h. For 0 < h < h , let

u:=u(h) := S(h) * (x(ty + h) — p(h)), v:=wv(h) = u(h). (25)
Then, for t : =ty + h,
w(t) = p(h) + S(h)u,  &(t) = p(h) + S(h)u+ S(h)v,

so that (16) holds.

If (¢,2(t),2(t)) € (D x E) for some h € [0,h'], then (17) holds and (18)
follows from (24). Thus h > h* contradicting h* > h; > h > h' > h .
Therefore

(t,z(t), (t)) € Int(D x E) for all h € [0,h] (26)

and (23) and hence (19) holds for h € [0, k"], h" € (W', h] sufficently close to
h'.

Now we apply the comparison theorem (Theorem 3.3) with A in place of ¢:
(20) and (21) correspond to (4)and (5) (cf. (25)), hence (6) asserts that (22)

15



implies (24) for b < min(h, hs) = h. Thus ' has not been maximal and
h' = h.
(ii) Now we show that the solution may be extended to to + hs:

Suppose h < hs, then the argument above (26) yields (¢, z(t),i(t)) €
Int(D x E) for £ = ty + h. Since F has index 0 there are neighborhoods
U C D of (t,z(t)) and U' C E of () such that, for (¢,z) € U, the equation
F(t,z,z) = 0 has a unique solution z = z(t,z) € U’ depending continuously
on (t,x).

By Peano’s theorem, our original solution x of (11) in [tg,ty + h] may be
somewhat further extended by the solution of 2/(t) = z(t,2(t)) which also
satisfies (11). Let ¢t* be the supremum of all ¢ < ¢y + hs such that z(¢) can
be extended to t*, and assume t* < ty + hy.

Then we choose an increasing sequence t; — t* and extend each solution x;
in [tg, %] to a solution x;yq in [tg,t;11]. Thus x(t) := zy(t) for t € [t,t141),
[ =0,1,...,is a solution in [#o,t*). Since &(t) € E, § := sup ||Z(¢)|| is finite
and z(t) is Lipschitz continuous. This implies that z(¢;) is a Cauchy sequence
whose limit, used as z(t*), extends = continuously to [to, t*].

Since F is compact, {@(¢;)} has a convergent subsequence with limit 2* € F
which satisfies F(t*, z(t*),z*) = 0, and 2* = tligl t(t) since F' has index 0.
Thus z(¢) is a continuously differentiable solution of (11) in [to,t*] and can
be further extended by the previous arguments. Hence t* =ty + hs . o

4 Bounds for initial value problems

In this section we show how logarithmic norms can be used to obtain global,
rigorous and realistic enclosures for a class of ordinary differential equations
containing those satisfying a uniform dissipation condition. This is done by
rewriting Theorem 3.5 in a form more amenable to computer calculation.
In particular, the global optimization problem for the determination of hs
in Theorem 3.5 can be avoided if we do not insist on finding the optimal
hs. Suboptimal lower bounds may be obtained by global linearization using
arithmetic on sets (e.g., interval arithmetic). We use the following notation:

Let a,b €V, A, B € Lin(V), f : Tin(V) = R; [4] denotes a “set of A's", [a]

16



a “set of a’s” etc. Then

f(AD) ={f(A) [A€[Al} CcR
[A]+[B]:={A+ B | Ae[A],B e [B]} C Lin(V)
[A]l-[B] :={A-B| A€ [A],B € [B]} CLin(V)
[A)'[B] :=={A'B | A€ [A],B€[B]} C Lin(V)
[A'[b] :={A"b | Ae[A,beb]} CV
[Al-[o] :={A-b|A€[A,beb]} CV

etc.

Such sets are introduced to control the rounding errors and the nonlinearities.
Therefore, we may use “supersets” of the specified sets (i.e. sets including
them) in an obvious fashion where necessary or convenient. In particular,
we may use interval arithmetic (see e.g. Neumaier [12]) to calculate boxes
containing these sets.

As in the previous section we consider the initial value problem
F(t,z(t),2(t)) =0 with x(ty) = zo, Z(ty) = 20, (1)
where the initial values satisfy
F(to, zo,20) = 0, (to, wo) € int D, zp € int E, (2)
and we consider enclosures of the form

IS(h)= (@ (to + h) = p(h)]| < @(h) for 0 <h<h (3)

For the sake of simplicity, the following theorem is formulated only for the
case where F is defined for all x, z, so that h? = s by Remark 3.6(ii). The
method extends to the general case but leads to a very messy formulation.

The transformation of Theorem 3.5 to computable form is based on lin-
earization of the problem function (2) in a neighborhood of the approximate
solution. Instead of truncating the Taylor series we maintain rigor by using
the mean value theorem for the linearization. Thus we get an exact linear
expression for F' — or rather a preconditioned form CF, c¢f. (5) —, however
with coefficients which depend on unknown intermediate points. These co-
efficients can be enclosed rigorously by intervals, using interval arithmetic.
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With this linear formulation, one can simplify the condition of Theorem
3.5 by using properties of the logarithmic norm (in particular, Proposition
2.10). This reduces computations to finding rigorous upper bounds for some
interval expressions (namely (6) — (9) below) and a simple check on the
closure condition.

We shall first give a general version of the linearization (Theorem 4.1) and
then a constructively computable version (Proposition 4.3). Then we show
(Corollary 4.5) that under suitable conditions, bounds can be obtained over
arbitrarily long time intervals. An example how these results are applied is
given in Example 4.11, after a discussion of natural choices for the various
quantities occuring in the conditions guaranteeing the bounds.

4.1. Theorem. Let dim(V) < co. Let w,s > 0, D = [tg,tg + s| x V, and
suppose that F - D x V. — U has index 0 in D x V . Let p : [0,s] = V
and S : [0,s] — Lin(V') be continuously differentiable, S(h) invertible for
h € 0, s].
Suppose that there are sets [a],[b] C V, [A],[B] C Lin(V) such that, for
u,v € V with

Jull <w (4)

and h € [0, s|
C(h)-F (to + h.p(h) + S(h)u, p(h) + S(h)u + S(h)v) = a+bh+Bu—Av (5)

for suitable a € [a], b € [b], A € [A], B € [B], and C : [0, s] — Lin(V).
Suppose further that all A € [A] are invertible, and define real constants u,
a, B, v such that

6

7
8
9

n([AV[B]) < p
15(0)~" (o — p(0))]| < @
I[AT [alll + ap < 5

AT [B]]] + By < v

and the function ¢ : [0, s] = Ry with

(6)
(7)
(8)
(9)

p(h) = a+ Bh+ vh* exp,(ph) (10)
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where

expy (1) = { (e"—=1—=7)/7% forT #0, (1)

If (2) and the closure condition
o(h) <w for helo,hn] 0<h<s, (12)

hold, then there exists a continuously differentiable solution x : [ty, to+h] — V
of (1) which satisfies (3).

4.2. Remark. w of (4) is an a priori estimate of the (transformed) error of
p(h). C is a preconditioner for the implicit formulation (1) of the differential
system. The regularity assumption for [A] is a strengthening of the index 0
hypothesis. In (6), (8), (9), it would suffice to use [A~'B], [A"'a] and [A~'D]
respectively.

Proof. Without loss of generality, we restrict ourselves to the compact set
D = [ty, to + s] x Dy where Dy is a compact set containing all p(h) + S(h)u
for h € [0, s], ||u|| < w in its interior. Since F' has index 0, F'(¢,z, z) = 0 has,
for each (¢, z) € D one solution z depending continuously on (¢, z); therefore
the range of z(¢,x) is in the interior of a bounded set E (compact because
dim(V) < 00). Thus D and E have the properties required in Theorem 3.5.

For sufficiently small € > 0, let
e(h) = a+ (B +e)h+ (v + ep)h® exp, (uh) (13)
and take § = d(e) > 0 so small that
0c(h)+6<w for helo,n] (14)
this is possible because of (12). After some computation we find that
Ge(h) = ppe(h) + (B — ap) + (v = Bp)h + €. (15)

We wish to apply the semilocal existence theorem (Theorem 3.5) with ¢, in
place of ¢ and h < h; (and h* = s, see above). Assume h > hg, i.e. there
exists an h < h such that (3.16) and (3.19-21) are simultaneously satisfied
for some u,v € V.
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By (3.20) and (14), (4) is satisfied; hence by (3.16) and (5), we have
0=a+ bh+ Bu— Av, i.e.

v=A""(a +bh) + A~ Bu,

with suitable a € [a], b € [b], A € [A], B € [B]. By Proposition 2.10, this
implies

p(u,v) < p(A7B) +[[A7 (@ + bh)||/||u]
and by (3.20) and (3.21), with ¢ replaced by ¢., we get

e(h) < plu,v)pe(h) < p(A7 B)ge(h) +[|A™ (a + bh)]|.
By (6), (8), (9), this implies

Ge(h) < ppe(h) + (B — ap) + (v — Bu)h

which is a contradiction to (15). Hence h < hs.

Since (3.22) is a consequence of (7) and (13), the assumptions of Theorem
3.5 are valid, and there exists a solution x(t) of (1) satisfying (3), with ¢,
in place of o, for h € [0,h]. With ¢ — 0, the conclusion of the theorem is
obtained. ¢

Theorem 4.1 can be applied constructively once it is known how to find
reasonable enclosures for a, b, A, B in (5). We now consider this problem
for the most important special case

F(t,z,2) = Fy(t,x) — Gz, (16)

G € Lin(V) invertible with bounded inverse. (More general situations with
|F'(t,z,z) — F(t,x,0)|| > v(t,z)||z|]| can be treated in a similar but messier
way.)

For simplicity we shall force b = 0; this simplifies the formulae a little without
degrading the enclosure much.

4.3. Proposition. Suppose

[t] = [to, to + 5], (17)
[z] 2 {p(h) + S(h)u | h € [0, ], [lu]| <w}, (18)
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[H] D closed convex hull of {C OF, (t,x) |t elt],x €z ]} (19)
[a] 2 {CFy(to + h,p(h)) — (CG)p(h ) | h €0, s]} (20)
[A] 2 {(C )()|h€[0a5]} (21)
(B] 2 {H-S(h)~ (CG)S(h) | h € [0,s], H € [H]}; (22)

then (5) holds with a € [a], b = 0, A € [A], B € [B]. Moreover, (9) is
satisfied with v = Bu, and (10) simplifies to

p(h) = a+ Bhexp,(uh) (23)

where
T—1 #0
exp; (1) 1= { ie T ;Z: : — 0? (24)

Proof. By the mean value theorem,
C- Fy(to+h,p(h) + S(h)u) = C - Fy (to + h,p(h)) + H - S(h)u,  (25)

where

1
- OF,
H=C- 0/% (to + h, p(h) + 7S(h)u) dr € [H].

Thus,

C - F(to+ h.p(h) + S(h)u, p(h) + S(h)u + S(h)v)
=C - Fy(to + h,p(h) + H - S(h)u — (C )( (h) + S(h)u+ S(h)v)
= C - (Fo(to + h,p(h)) — Gp(h)) + (H - S(h) = (CG)S(h))u — (CG)S(h)v,

which is (5) with the asserted enclosures. (23) is straightforward. 7

4.4. Remarks. (i) A sharper enclosure of the form (25) can be obtained by
using slopes (KRAWCZYK & NEUMAIER [8]); this saves some computational
effort and reduces the radius of [H| by roughly a factor of 2.

(ii) Care must be taken to get a realistic enclosure of the preconditioned
residual (20) since this generally involves substantial cancellation. Tt is
important to use a centered form or a boundary value form (cf. NEUMAIER
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[12]) for the full expression in (20), perhaps together with some splitting of
the interval over which h ranges.

(iii) In the enclosure of [a], [4], and [B], the products CG and CF{([t], [x])
(cf.(19)) should be explicitly computed (enclosed to cover round-off) to
reduce overestimation. (It is difficult to exploit any sparsity structure present
since C is generally dense.)

We finally show that the quality of the attained bounds must be quite good
for dissipative systems since we can deduce from Theorem 4.1 the following.

4.5. Corollary. Let F :[0,f] x R" — R", let S € R™*" be invertible, and
let p:[0,t] = R™ be an approzimate solution of the initial value problem

i) = F(ta(®),  2(0) = 0, (26)
in the sense that
1S~ (o — p(0))]| < 6 (27)
IS E(t,p(t) —pt)] <e  for te[0,f]. (28)
If
y (s—l%a,ms) <u for tel0,f], zeR" (29)

then (26) has a solution x : [0,t] — R" satisfying
1S~ (z(t) — p(t))]] < b€ + etexp,(ut) for te€][0,f]. (30)
Proof. In Proposition 4.3 we put t, = 0, S(h) = S, C = S7', G = 1,
[a] == {r e R" | ||r]| < ¢}, [H] = {S7'%L(t,2) [t € [0,],2 € R"}, [A] := 1,
[B] = {HS | H € [H]}; from (7), (8) we obtain a = ¢ and 8 = ¢+ au . We
choose s and w so large that (12) holds for any specified h. Then, by (23),
©(t) = a+ Btexp,(ut) = ae' + et exp, (ut)

and the result follows from Theorem 4.1. g
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In particular, if we can globally bound S '%E(¢,z) then we may obtain a

global bound on the error of an approximate solution for all times, and this
bound (30) is proportional to the residual error multiplied by an exponential
term. Moreover, this term decays when the differential equation (26) satisfies
the uniform dissipation condition

oF
sup W (S‘l—(t,x)5’> < 0. (31)
te)o,f],zeR" Oz

Together with the freedom of choosing the approximate solution to high
accuracy, this allows the construction of rigorous and realistic error bounds
for uniformly dissipative systems.

Selection of parameters

Now that we have computable expressions for all quantities required in
Theorem 4.1 we discuss the selection of the various quantities which we can
choose freely.

4.6. Choice of. w and s:

w must be chosen such that (12) can be satisfied for large h. In view of the
form (23) of ¢, we certainly need w > «, and this is already sufficient to
guarantee a positive step. For negative p, (23) implies ¢(h) < a + 8/ |pl;
since [ from (8) will typically be small (note that [a] and « are residuals),
w = a + min(a, ap) with a small ag > 0 seems to be a good choice.

s should be chosen such that h ~ s. The special form (23) of ¢ allows the
explicit determination of the smallest zero hgy of ¢(h) — w:

+00 for 3 <0
hy =4 (w—a)/B for 4> 0,u=0 (32)
%10g(1+u(w—a)/ﬁ) for 8> 0,u # 0.
(On the computer, +0o0 must be replaced by a large machine number.) If
ho < s or hy > s then s should be replaced by \/hgs and the calculation

repeated. If hg is close to s (say within a factor 2), we accept s and put
h = min(hg, s). In this way, a good step is obtained.
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4.7. Choice of. ("

The preconditioning matrix C' mainly serves to reduce [A] to a diagonally
dominant matrix; thus the choice C' ~ (GS(0))~" is natural. Tt is sufficient
to compute an approximate inverse. With a diagonally dominant [A], the
enclosure of the expressions [A]’[- - | presents no problems, e.g. with interval
Gauss elimination.

4.8. Choice of. S(h):

With our crude enclosure [H] of the partial derivative of Fy, there is no
point in keeping S variable. (A linear S might be useful if [H] is split into
[Ho| + [Hy]h.) Thus we take S(h) = S constant. Then (22) amounts to
[B] 2 HS, and since [A] D (CG)S we find [A]'[B] 2 S™'(CG)"'HS. This
matrix determines 4 in (6) and hence the magnitude of the exponential part
n (23).

Since p occurs in the exponent of the bound (23), it is essential to get a good
and preferable negative bound for pu([A]’[B]); the best choice of S would
diagonalize the matrix (CG)~'H. Thus we approximately solve the linear
eigenvalue problem (cf. (19))

0Fy

Hyx = A\Gx for H,:= D

(t0, p(0)) (33)
and choose for the columns of S the real and imaginary parts of a full set of
eigenvectors. If G~ Hj is nearly defective, one should instead choose linearly
independent basis vectors from low dimensional subspaces. It is essential that
S is well-conditioned (i.e. that the invariant subspaces used are “sufficiently
disjoint”) since otherwise the initial error v in (7) gets magnified too much.
Then, with C' ~ (GS)™!, [4] 2 (CG)S, [B] 2 HS (cf. (ii) above and (21),
(22)) one forms [A]'[B] =: [M] by Krawczyk’s method or interval Gauss
elimination. With a “thin” [H] (with zero radii) and exact calculation,
one would have a thin block-diagonal matrix [M] with diagonal blocks

ReA ImA
(A) or Ie \ ;A ; so, in practice, [M]ym will be nearly diagonal
—Im e

po([M]) = p2([M]sym) can be found by (2.35) from an approximate Cholesky
decomposition of I — M where M := mid[M] or, simpler, from (2.35) with
L =0 and pp = min (UL, [M]i).
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4.9. Choice of. p(h):

A piecewise polynomial approximation of the solution is available from a
Nordsieck method, or constructible from Runge-Kutta information. Alter-
natively, one may interpolate the discrete approximate solution obtained by
any good numerical method. Rational interpolation is advisable.

4.10. Choice of. norm:

The 2-norm is useful since it allows an elegant computation of the logarithmic
norm and takes account of imaginary parts automatically. However, it leads
to an overestimation factor of & /n in the enclosure of an ellipsoid by a box
needed to compute the bounds (18) and (19). A way out would be the use
of ellipsoid arithmetic (GUDERLEY & KELLER [5|, NEUMAIER [13]).

A better alternative may be the use of a mixed (2,00)-norm: If z =
(w1,...,2%)T is the partition 7 into blocks defined by the separable real
invariant subspaces of (33), we can define

= . 4
oo i= max ol (341

and find
fix(M) < max (/@(Mii) +> ||Mz'j||2) (35)

i=1(1)k i

where M is analogously partitioned into submatrices M;;. Now, the ellipsoid
— box transformation is needed on small blocks only, typically of size < 2.

If the resulting bound (3) is not good enough, one may try to reduce s, h, or to
improve the approximation p(h) (if (20) is large) by defect correction. Since
one has an approximate eigensystem, one can do the defect correction with an
explicit method on the transformed variables y(h) := S~ (z(tg + h) — p(h)).

4.11. Example. Consider the simple second order initial value problem
mi + cq + kq = f(t),
Q(O) = qo, q(O) - q.[la

with m,c,k > 0. For m << k and ¢® << mk there are rapid, slowly
decaying oscillations typical for a singularly perturbed problem, which forces
the established enclosure methods to take tiny steps only.
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Suppose that we have an approximate solution Q(¢) with residual
r(t) = f(t) = mQ(t) — cQ(t) — kQ(1)
bounded by

If we introduce

() 0=(g0) ()

we can write the system as

mi — (_Ok TC) z+ (jf(]t)) . Fy(t, )

which is of the form (16) with G = mI. The matrix (33) becomes

0
Hf]:(_k Z)a

and has eigenvectors (1, A\)T corresponding to the eigenvalues A\ = u + iw,
solutions of mA? + ¢\ + k = 0. Here

c 1
p=—g w:E\/mk—CQ/él,

c=—=2mp, k=m(w*+p?.
The choice recommended in 4.8 and 4.7 gives
1
S:(l 0) S o=(@s) = —( 0).
nw mw \ —Uu 1

After some calculation, the parameters in Proposition 4.3 (for the Euclidean
norm) are seen to be



B:I{S:</L w); Bsym:<lu 0):
—w W 0 u

(A’ B) = u(B) = Anax(Bsym) = pt
R - Cp= - o - () - ().

[a] = (0, 5 [=1,1])".

’ mw

The box for zx is irrelevant since the problem is here linear, and therefore
(unlike in nonlinear problems), the bound w in (4) and (12) — not to be
confused with the frequency w in the present example — can be chosen
arbitrary large. Thus the closure condition (12) becomes trivial, and the
constraints in (7) and (8) can be satisfied with

SE NSO

2
45%(5127%) .

€
B =l +ap=—+ap,
mw

1S~ (@0 — p(0))]] =

and we find for all ¢ € [0, 7] the bound

187 (@ (t) = ()] < @(t) = a + Btexp, (ut) = ae + %(1 —eM).
Since pu < 0, this gives a realistic long time error of asymptotically %,
independent of the time interval used for the error estimation. (Of course,
this illustrative linear example does not tell the full story: For sufficiently
large problems, “mixing” due to strongly changing eigensystems may cause
much overestimation, which is hard to avoid.)

5 Adaptive enclosure

For dissipative systems Corollary 4.5 shows that everything goes well. For
non-dissipative systems one may have to apply the enclosure repeatedly over
shorter time steps. In the course of several steps, one may try to keep
parameters constant (e.g. C, S, M) and to adapt others in a simpler way
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(e.g., s = 1.5hgq) to save work. It is important to realize that the composition
of several enclosures must be done with care in order to avoid an excessive
wrapping effect (see e.g. NEUMAIER [13] and references there). However, the
theorem may be considered as a first step towards the construction of large
step methods for the rigorous enclosure of solutions to arbitrary systems of
ordinary differential equations. This would remove difficulties of the methods
of EIJGENRAAM [3] and LOHNER [9], which, especially for stiff systems, are
often forced to take very small step sizes.

An adaptive algorithm would roughly consist of the following steps (initially,
i=0,& = xo):

(i) Use a spectral factorization of F,(¢;,&;) to find a transformation matrix
S, and wrap the ellipsoid enclosing z(¢;) by one of the form (7) with z(¢;) in
place of zg.

(ii) Approximate the solution in [t;,#; + h] by a piecewise rational function,
x(t; + h) =~ p(h) for h < h.

(To get higher accuracy, the step size of the approximation may well be
smaller than h.)

(iii) enclose {p(h) | 0 < h < h} by an interval vector [p] using a piecewise
boundary value form (NEUMAIER [12], if necessary with extra subdivisions,
and calculate

[z;] = [pi] + [~w, W]y,
where v; is the 2-norm of the jth row of S. This implements (18).

(iv) Calculate the remaining quantities of Proposition 4.3, and find the
smallest positive solution h of the equation

o(h) = w.

This verifies existence of a solution with (3) and ¢; in place of t,.

(v) Set tiy1 =t +h, &41 = p(h). Replace i by i + 1, find a suitable value for
the new h and continue with step (i).

Of course, this still leaves many details open, which will be discussed in a
subsequent paper.
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