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Absrmet-In this paper, we demonstrate how methods based 
on internal arithmetic and intenal analysis can he used to 
achieve numerical certification of the kinematic calibration of 
a parallel rohots. We intmduce our work by describing the 
usual calibration methods and the motivations for a numerical 
certification. Then, we briefly present the intern1 methods we 
used and the kinematic calibration prohlem. In the main part, 
we develop our certified approach of this pmhlem in the case of a 
Gough platform, and we show with numerical examples how this 
approach avoids wrong solutions produced by classical approach. 
Details on implementation and performance are also given. 

I. INTRODUCTION 

High accuracy of position and orientation is a characteristic 
feature of parallel manipulators that makes them appealing in 
a lot of applications. However, such an accuracy relies on a 
robust and accurate calibration of the physical configuration 
of the robot. This is a difficult task from both theoretical and 
practical point of view, even if efficiency is not critical as the 
calibration may be performed off-line. 

A robot's configuration is related to kinematic parameters 
of a robot through the equations of the kinematic model. Cal- 
ibration is achieved by measuring several robot configurations 
and identifying the corresponding kinematic parameters. For 
mathematical reasons, the number of equations given by the 
measurements has to be at least as large as the number of 
unknown parameters. Since the measurement data are usually 
given by a captor, it is necessary to take into account the 
noise associated with this device. So in practice, the number 
of equations is larger in order to reduce the sensitivity of the 
calibration to the uncertainty attached to the data. In this case, 
the system of equations to solve is over-constrained. 

The classical method to solve such an over-constrained 
problem is a least-squares method. But the mere convergence 
of this iterative method cannot guarantee that, after calibration, 
the accuracy of the robot is improved in the whole workspace. 
In practice, post-processing is therefore necessary to validate 
the results of such a calibration. Unfortunately, in the case of 
Gough platforms, this step is very costly [I]. 

Some improvements of the least-squares method, providing 
a quality index for each solution, have been proposed when a 
noise model can be associated with the data uncertainties [2]. 
That may be done if the distribution of the measurement ermr 
is known (e.g., from the documentation of the captor). But this 
noise model may be difficult to obtain - for example when 

using mechanical constraints for calibration, or for certain 
measurement devices. 

Even in the best cases, only probabilistic results are pro- 
duced. In this paper we propose a method that gives a certified 
approximation in the sense that, for a set of measurements 
given with attached uncertainties, we return a List of inter- 
vals for the kinematics parameters such that any solution 
corresponding to an instance of configuration satisfying the 
measurements has to belong to those intervals. This method 
is an new version based on interval arithmetic, using interval 
analysis of the so-called implicit or inverse calibration method, 
the most studied method for the identification of the kinematic 
parameters of a parallel robot [31-[51). 

Extended lo a representation of the parameters in terms 
of inrervals - and to the associated arithmetic (Section 11). 
the hasic system of equations for the kinematic calibration 
of Gough platform is developed (Section m). Our algorithm 
for obtaining the certified solution of this system is described 
in detail in Section 1V. A simulation (Section V) producing 
certified results reveals that a least-squares method may pro- 
vide a result which is not compatible with the corresponding 
measurement data. 

11. INTERVAL ARITHMETIC 
Interval arithmetic, introduced by Moore [6] ,  is based on 

the representation of an uncertain variable x as an interval 
x = [a,%] representing a (possibly conservative) worst case 
estimate of the range of x. 

The in tend evaluarion of a real-valued function 
f(z, xn) is an interval f(x) = f(xl  ,..., xn) such 
that I .  

f(21, . .  . ;zn) E f(x) for all 2 1  E X I ; .  . . ,z, EX,. (1) 

The tightest interval evaluation is the range, but any interval 
containing the range of a function is an interval evaluation 
of this function. There are numerous ways to calculate an 
interval evaluation function [7] which produce more or less 
overestimation of the range; controlling the latter is the key to 
a successful use of intervals. 

The simplest interval evaluation is the natural evaluation, 
in which all mathematical operators in an expression for f are 
simply substituted by their interval equivalents; the result is 
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Fig. I .  Gough platform. 

highly dependent on the symbolic expression used. Another 
interesting interval evaluation is the cenrered f o m  (or linear 
Taylor form) defined as follow : 

fT(x) = f(1:) + A(x - Z) (2) 

where A = f[z,x] is a suitable n x n interval matrix, called 
a slope matrix. 

In the following, we use the following notation related to 
an interval x = [z:E]: We write inf(x) for g, sup(x) for Z, 

~- . 
, mid(x) for f(x + E) and rad(x) for 5 - x. 

111. KINEMATICS AND CALIBRATION 

We are studying a Gough platform as depicted in Figure 1. 
This manipulator consists in two rigid bodies, the base and 
the mobile plaffonn, connected by 6 legs. 

The robot configuration (P. R )  is given by a position P and 
a rotation matrix R .  It is associated to the length variation L; 
of each leg measured by an “internal” sensor. The matrix R 
is given is terms of Rcdrigues parameters ( q l ;  q2. q3) ,  where 
(1 + 4: + 42’ + qg)R is 

) 
1 + S? - 9% - 9% 24192 - 2q3 ( 2qi93 - 292 ’ 29293 + 291 1 - q: - 9; + 9; 

2914% + 242 
2qlqz + 293 : 1 - 4: t 9% - 9% 29293 - 291 

Physically, each leg is attached to the base by a U-joint and 
to the platform by a ball joint, and 23 parameters are required 
io fully model each leg [8]. But, as shown in [9], the principal 
source of errors in’positioning is due to the limited knowledge 
of the centers of the joints and of the parl of the legs’ length 
which is not given by the sensors. 

We thns use a simpler model with attachment points ai in 
the base frame, b; in the mobile frame, and offset lengths 1, 
for the ith leg. This gives 42 parameters, 7 for each leg. 

The inverse kinematics model expresses the length of the 
ith leg as follows: 

IIP + Rb; - aJ2 = (Li + (3) 

In the case of the Gough platform, the exact fonvanf 
kinematics model is much harder to compute and unpracticable 
for calibration. 

For p selected configurations, a measurement device (coor- 
dinate measurement machinery, theodolites, . . .) provides the 
position Pk and the orientation Rk. Additionally, the internal 
sensor provides the leg lengths Li,k for each configuration. 
As the legs are independent with respect to the calibration 
problem, we will divide it in 6 subproblems, one for each leg. 
We may therefore simplify the notation in the following and 
omit the i index. 

For each subproblem, we define a vector of parameters 1: = 
( a , b , / ) ,  a list of measurements ( M I , .  . . , A4,,) with Mk = 
(Pkr Rk, Lk), and a function f such that: 

f (1: .Mk)  = 114 + Rkb - all2 - (Lk + 1 ) 2  

From a theoretical point of view the calibration equations 
should he: 

f ( Z , . w k )  = 0, for k = 1,. . . , p .  (4) 

The solution of this system in the 7 kinematic parameters 
a; b, 1 is possible if N = 7. Due to the noise in the mea- 
surements associated with the captors, those equations are 
approximately valid only for the actual kinematic parameters, 
and the computed solution of (4) may be significantly different. 
To reduce this problem we use more equations than the 
minimum required, N > 7. 

To solve the over-constrained system, one typically uses 
optimization (the analytic Jacobian is given in [4]), or lin- 
earization [31, which allows to find a least-squares solution. 
As we shall see, interval analysis and constraint programming 
techniques offer a useful alternative to those methods. 

1v. PROPOSED METHOD 
We propose to solve the over-constrained system (4) by 

using interval programming methods. 
We assume that the uncertain coefficients hfk of the equa- 

tion (4) may take all possible values inside an interval of 
variation denoted by Mk,  and combine these intervals into 
the interval vector M .  Our goal is to determine the continuum 
S ( M )  of kinematic parameters z satisfying (4), 

S ( M )  = {.If(., Mk) = 0 with Mk E Mk,  k = 1,. . . , p } .  
( 5 )  

To determine the set S(M), which generally has a com- 
plicated shape, is a difficult problem. But it is possible to 
simplify the problem by computing an enclosure of this set by 
a box x. If the overestimation is small, x contains all relevant 
information about S ( M ) .  A visualization of those sets in the 
two-dimensional case is given in Figure 2. 

In this paper we use a Taylor expension to obtain a linear 
appoximation of S ( M ) .  (Alternatively, it may be obtained 
through the semantics of the equations - see [lO].)’Then 
we use linear programming to compute the extreme values 
of this linear approximation. This gives a box x containing 
S ( M ) .  Using the quadratic approximation results from [ l l ]  it 
is not difficult to see that if the uncertainties in the Mk is of 
the order O(e) then the size of the resulting box is at most 
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Fig. 2. 2D example of the solution set S(M) 

O(cz)larger than the tightest possible box enclosing S(M). 
Thus, in practice, the overestimation has little effect on the 
quality of the results. 

As the linear approximation depends on the initial estimate 
used for x, it is necessary to use a fixed point algorithm to 
iteratively sharpen the solution set. The iteration terminates 
naturally when the bounds of x no longer improved much, i.e.. 
when the maximal box width does not decrease significantly 
in some iteration step. If desired, we can get a closer approx- 
imation of the solution set S(M) by bisecting the computed 
box x and restart the iterative process with the two resulting 
boxes as initial estimates. 

While we tested several interval methods, we present here 
only the interval evaluation which provided the sharpest 
approximation of S(M). It is particularly adapted to over- 
constrained systems of equation. However, since there are 
many more possibilities to explore we think that an improved 
analysis of the system is possible. 

A. lnrerval Newton Formulation of Iinplicir Equations 
We shall write F ( z ,  M) for the vector valued function with 

components Fk(x, M) = f(x, Mh), A centered form interval 
extension of F(x, M) performed in two step gives: 

f(x,M) = f ( x , M ) ) + A ( ~ , M ) ( x - x )  
= f ( ~ ,  M)) + B(z, M)(M - M )  + A(x, M)(x - X )  

where A and B are the natural interval extension of the iden- 
tification Jacobian matrix 6'f(z, M ) / a x  resp. af(x,  M ) / B M ,  
computed from explicit expressions, and where x and M are 
selected in x and in M as x = mid(x) and M = mid(M). 

We want to determine an enclosure x for the vectors x 
such that F ( z , M )  = 0 for some M E M. Given a trial 
enclosure xj (which is guessed for j = 0, we want to use the 
information in the centered form to reduce the radius of xj, 
thus producing a better enclosure Newton's method may 
be extended to the interval case [7], [I  I], giving a recipe called 
the Newton operator to construct a box Nj(xi,x,). defined 
as an enclosure of all vectors x E xj satisfying the linear 
inclusion 

(6) 

A(x-xj) E - f (zj ,M)-B(xj ,M)(M-M) with A EA. 
(7) 

Then the interval Newton method is defined by 

x ~ + ~  := xj nN j (x j , z j ) .  (8)  

The interval Newton method is terminated if the size of 
the box is no longer substantially decreased by the interval 
Newton method, which is tested by a criterion of the form 
l l ~ 4 ~ j ) l l 1  - l ldxj+i)l l i  < A. 

There are several ways to solve the linear inclusion (7), 
one of which will he presented in next subsection. For details 
on properties (convergence, unicity ...) of the interval Newton 
method, the reader may consult [I I]. There it is shown that, 
in particular, no solution of F(x, M) = 0 contained in the 
initial trial box xQ can be lost (i.e., lie outside some x j ) .  As 
a consequence, if the intersection of xj and Nj(xj,xj) is 
empty for some j then, since xj+l = 0 by (8), there was no 
solution in the initial trial box XQ. Moreover, if some xj+l is 
in the interior of xj then it is certain that xo (and hence all 
xj) contains for every A 1  E M a solution of F(x. At) = 0. 
This makes the interval Newton method an excellent tool for 
certified computations. 

B. Reforinulation as a linear programming problem 
We have seen in the previous subsection that the heart of 

the proposed method is to solve Eq. 7. A correct presentation 
of that problem is to find the set of solutions 

(9) 

where A is an interval matrix and b is an interval vector. To 
determine Z(A, b) or only the tightest enclosing box is an 
NP-hard problem and hence expensive in higher dimensions - 
the shape of the set can be quite complicated. But it is possible 
to find an enclosure of C(A, b) by an interval vector x with 
limited overestimation, provided that the intervals are nmow 
enough. 

Basic interval analysis method suitable for this are precon- 
ditioned Gauss elimination and Krawczyk's method (see [71, 
[I  1]-[13]). We tested .an improved algorithm proposed by 
Rump [I41 based on these methods and implemented in the 
package INTLAB given under Matlab. The provided tool, 
while highly useful for square systems of equations, is not 
adapted to overdetermined problems: though it can solve them, 
the enclosure is usually inferior to the method proposed in the 
following, which is based on a reformulation of the problem 
to a linear programming problem. 

The new method consists on two steps: In the first step, 
we overestimate C(A, b) by a convex polyhedron defined by 
scalar linear inequalities. In the second step, we determine by 
linear programming (for example the simplex algorithm) the 
minimal and the maximal value of each component of points 
in the polyhedron. This provides an enclosure x of Z(A; b). 
Again, results from [ I l l  imply that the overestimation is of 
higher order, and hence small, if the intervals in the entries of 

C(A, b) = {zlAx = b: A E A, b E b}, 

1915 



Attachment points lcml 
Base platform I Mobile platform 

-9.7 I 9.1 1 0.0 I -3.0 1 7.3 I 0.0 
z l g l r l u  I U I W  

The xa serve to construct a set of 21 configurations by 
solving the equation (3) for L using 21 randomly generated 
configurations. In addition to~the  calculated value of the leg 

Jength, the chosen. positions and orientations simulate the 
values obtained by a measurement device without errors. 
.The vector describing the exact measurement is denoted by 
M a =  [Mf, ..., A4&]. 

The above values zo are perturbed and denoted by z' 
.to simulate an initial estimation of the kinematic parameters 
given, for instance, by the robot constructor. The amplitude 
of the uniformly distributed perturbation is equal to +/ - 0.1 
cm. For the proposed certification method an initial interval 
vector xo is done as xo = [zr - O.l,z'~+ 0.11. 

When all measured quantities are exact: 

Leg length 
offset [cm] 

1 
52.2496 

the least-square algorithm converges accurately to x', 
the certification algorithm converges to an interval vector 
x" = [za - 10-'.xn + lo-']. Note that lo-' is the 
A given in Section IV-A used to terminate the Newton 
scheme. 

We conclude that both methods provide the exact kinematic 
parameters when no errors are associated with measurement. 

Now we simulate uniformly distributed noises associated 
with measurement devices. The amplitude of the errors are 
tp = +/ - 5 pm for position measurement, t~ = +/ - 5 
pm for leg length measurement. The orientation is modeled 
by a normalized vector and an angle. The error on the vector 
direction is equal to e, = +/ - 5 pm and, on the angle, it is 
equal lo ea = +/ - degree. These simulations permit to 
obtain a realistic measurement vector Mr. Now the interval 
vector M' = [M' - e ,  M' + e] contain the true measurement 
Ma. Note that e is done as a function of ~ p ,  E L ,  cy, e,,. The 
error eq may be easily deduced from E. and e, to model the 
error associated with the 3 Rodrignes parameters. 

We apply our proposed algorithm to reduce the width of the 
initial estimation x o .  We obtain x 1  -see Table II, III and IV. 

I II Base attachment points lcml I 

TABLE I1 
COMPARISON OF THE RESULT OBTAINED B Y  INTERVAL METHOD vs 

LEAST-SOUARE METHOD 

I xs 11 -2.9943 I 0.0562 1 1  7.3002 I 0.0071 11 -0.0080 I 0.0726 I 
TABLE 111 

COMPARISON OF THE RESULT OBTAINED BY INTERVAL METHOD vs. 
LEAST-SQUARE METHOD 

We compare this result to the classical least-square method 
(a Levenberg-Marquardt algorithm provided by Matlab). To do 
this, we choose randomly 1000 measurement vectors (P, R, L] 
inside M' n [Ma - e ,  Ma + €1 i.e. that guarantees that the 
measurement data are inside the range certificated by the 
interval method and not at a distance greater than e to the exact 
measurement Ma. We obtain loo0 solutions to the implicit 
calibration problem. The Figure 3 presents these observations 
and compares them to the element of the interval vector x 1  
which corresponds to  the offset of the leg length. 
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I xs 11 52.2366 I 0.1597 1 
TABLE 1V 

COMPARISON OF THE RESULT OBTAIN THOUOii r  INTERVAI. MFTIIOD VS 

LliAST-SQU4KI: METIIOI> 

I 71 boxes 

52.05 't 

Ranqewhere -I 

Value of the onset parameters I [cm] 

Fig. 3. Observation of 1000 solutions of the offset of the leg length obtain 
for 1000 set of measurement data chosen inside h porrihle mnge of variation 

The maximum and the minimal values of each components 
of the 1000 observations permit to construct an interval vector, 
denoted by x., where all least-square solutions are localized. 
The Tables 11, III and IV compare xg, x1 .and xs. Visually, 
the Figure 4 presents this comparison for the base attachment 
point (Note that the frame is center in the middle of xo). 

For at least 2 kinematic parameters (: and /), the radius 
of their components in x. is greater than their equivalent in 
xl. Then, some solutions provided by the least square method 
(their well convergence have been checked) are outside the 
certified enclosure of the exact set of solution provided the 
interval method. We may conclude that those special points 
are not correct with respect to the noise associated with 
measurement. Their certification is not possible. 

To improve our result, a possibility is to bisect each compo- 
nent of x1 and process the proposed algorithm on each of the 
hoxes obtained. Many tules for bisection have been tested. We 
choose to present the case where the initial box x1 is split into 
two pals ,  5% away from its inferior. At each bisection step 
we test 128 boxes; many of these are eliminated by simple 
evaluation using Equation 6 or the proposed algorithm. The 
initial box for the next step of bisection is the largest box 
obtained in the previous step. This process is repeated for 5%. 
away from the superior limits the largest box. This ensures 
that the boundmy of x1 is filtered with priority. 

After 4 steps (on superior and inferior hound), the set of 
calibration solutions is described by the union of 104 boxes. 

Fig. 4. 
parameters z, y. * 

Visual comparison between x g  XI and xs for mobile kinematic 

Fig. 5. Volume of the hoxes at each step of the bisection pracess 

Figure 5 shows that the total volume of these boxes decreases 
to a limit. The area of the solution is greatly improved. But if 
we compute the smallest box (denoted by x2) which contains 
all the 104 boxes, Tables 11, I11 and IV show that the range of 
the variables of the improved enclosure x2 is comparable to 
xl. This shows that our enclosure method is indeed close lo 
optimal, and little can he gained by bisection when only the 
rangesof the solution set, and not its shape, is of interest. 

Regarding the results, we may conclude that some possible 
solutions provided by a.least-square method do not satisfy the 
system of equations 4 for the given range of variation of the 
measurement data. The properties of interval arithmetic show 
that "least-square solution" are not included in the exact set 
of solutions of the'system 4 parameterized by measurements. 

VI. CONCLUSION 

In this anicle we presented a method based on interval anal- 
ysis that provides a numerically certified result to kinematic 
calibration problem of Gough platform. 

Even if some further work may have to be done to improve 
the interval methods we used, the main contribution of this 
work is to provide the first certified method for this problem 
and to show that usual methods may produce unrealistic 
results. 
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