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Abstract— In this paper the problem of interference avoid-
ance for robots subject to dynamic constraints is investigated.
First computed-torque method is used to obtain a linearized
closed-loop system. For this linearized system the desired
state that the robot is going to take at the next sampling
period is checked by phase plane analysis to ensure the robot
can be stopped without interferences, dynamic constraints
are taken into account by calculating the bounds of the
drive torques with interval evaluation. When the desired next
state is not valid for interference avoidance, a new state is
scheduled by optimizing the next velocity, interval analysis is
used again which allows to partition the complex constrained
optimization problem into a simple two-stage problem. The
resulting optimal state not only secures the robot against
interference but also leads the robot to trace the desired
path closely. Simulation results of a 2-dof robot arm show
the effectiveness of the proposed approach.

I. INTRODUCTION

Interference checking and avoidance are classical prob-
lems in robotics research. They are key issues for an-
alyzing robot maneuver, mobile robot safety and multi-
robot collaborative tasks. Classical approaches dealing with
interference avoidance are divided into two categories [1].
The first one is kinematic algorithm, which only con-
siders the robot kinematics. In this approach interference
avoidance is realized based on geometric relationships and
velocity constraints, from kinematics point of view, the
robot can avoid the interference with a interference-free path
[2]-[6]. But the kinematic algorithms ignore the dynamic
constraints, for example inertia and drive capability, the
kinematic interference-free path perhaps cannot be realized
in practice. Another category is kinodynamic or dynamic
algorithm in which dynamic constraints are considered [7]-
[10]. Dynamic algorithms are more realistic but the diffi-
culty in this category is how to deal with dynamic models
of robots which are non-linear, coupled and second order
differential equations. To avoid solving dynamic equations,
some approaches assume that the robots move along a
straight line and can be stopped with a fixed acceleration,
in this way a simplified dynamic model is obtained [11].
But in practical implementations, it is not the only case.
Another assumption is that the robot dynamics is integrable
so that an analytical function between the robot movement
states and the drive forces can be obtained, then using
this function the canonical or near-canonical solution is
determined which can reject the interference and satisfy

the dynamic constraints [1]. But generally most of dynamic
models are too complex to be integrated. In addition some
artificial intelligence methods are also used. In [12] the
randomized approach to kinodynamic planning is presented
using Rapidly-exploring Random Trees (RRTs). In [13] the
techniques of time-square of joint torques are devised to
smooth the controls and improve the tracking accuracy. In
[14] a smooth trajectory is constructed in the s − ṡ phase
plane using parametrized cubic splines, the dynamics of the
manipulator together with limits on the actuator torques and
torque rates are considered, but those two algorithms cost
too much computation.

The main idea of this paper is regarding the interference
position as the target state of a set-point control, then
critical damped control is used to guarantee the closed-
loop system converge to zero without any overshoots which
means that the robot can stop before interference occurs, the
dynamic constraints are fulfilled in this process by checking
the bounds of the control torques using interval analysis.
This paper is organized as follow, in section 2 a linearized
closed-loop system is obtained by using computed-torque
method. In section 3 the state of the closed-loop system is
checked with phase-plane analysis to avoid the interference,
interval analysis is used to ensure the dynamic constraints
are always satisfied. In section 4 interval analysis is applied
to schedule a valid state for the next sampling period
by solving a constrained optimization problem. In section
5 some simulation results are presented to validate the
algorithms.

II. INTERFERENCE AVOIDANCE WITH EXACT ROBOT

DYNAMICS

A. Closed-loop system of set-point control

The dynamic model of a 2-DOF rigid robot arm is given
by

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where q ∈ R2 is the vector of the joint angles, M(q) ∈
R2×2 is the inertia matrix, C(q, q̇)q̇ represents the Coriolis
and centrifugal forces, G(q) is the torque vector due to the
gravitational force, τ is the vector of the drive torque.

The dynamic constraints considered in this paper are
drive capability

|τi| ≤ |τmax| (2)



and the velocity limitation

|vi| ≤ |vmax| (3)

where τmax and vmax are determined by commercially
available actuators.

To avoid solving the complex dynamic model, the
computed-torque method is used to achieve a linearized
closed-loop system, the control input is

τ = M̂(Kpe + Kv ė + q̈d) + Ĉ(q, q̇)q̇ + Ĝ(q) (4)

where ˆ indicates the estimated values of the dynamic pa-
rameters, then the following closed-loop system is obtained:

M̂(Kpe + Kv ė + ë) + Ĉ(q, q̇)q̇
−C(q, q̇)q̇ + Ĝ(q) − G(q) − (M − M̂)q̈ = 0

(5)

where Kv and Kp are the derivative and proportional
gains of the controller. If the dynamic model is constructed
exactly, that is M̂ = M , Ĉ(q, q̇)q̇ = C(q, q̇)q̇, Ĝ(q) =
G(q), then the linearized closed loop system is

ë + Kv ė + Kpe = 0 (6)

B. Next states of the robot arms

In practical implementations the sampling period can be
set small enough that a linear relationship between the
current state and next state exists:

q(t + δt) = q(t) +
q̇(t) + q̇(t + δt)

2
δt (7)

q̇(t + δt) = q̇(t) + q̈(t)δt (8)

The joint acceleration can be evaluated from inverse dy-
namics:

q̈ = M−1(τ − G(q) − C(q, q̇)q̇) (9)

The dynamic constraint is the limited drive capability of the
actuator

τ ∈ [−τmax, τmax] (10)

so the joint acceleration is constrained by

M−1(−τmax − f) ≤ q̈ ≤ M−1(τmax − f) (11)

f is the corresponding function. From (8) the range of the
next velocity is determined by

q̇(t + δt) ∈ [q̇(i + 1), q̇(i + 1)] (12)

where

q̇(i + 1) = q̇(t) + M−1(−τmax − f)δt (13)

q̇(i + 1) = q̇(t) + M−1(τmax − f)δt (14)

III. INTERFERENCE AVOIDANCE USING PHASE PLANE

ANALYSIS

For a 2-dof robot arm whose links are connected with
revolute joints, the collisions between the link and the rev-
olute joint are only possible interferences considered in this
paper. To protect the mechanism against the interferences,
the movement ranges of the revolute joints are constrained
(which is a reasonable assumption in most cases). The
maximum allowed angles of the revolute joints are defined
as qo, if all the joints can stop before q = qo, then it is
thought that no interference occurs. The joint position and
velocity can be measured with multi-sensors.

A. Critical damped system

From classical control theory point of view, if the extreme
position qo is regarded as the target position of a set-point
control (in which q̇d = 0, q̈d = 0), then the position error
e = qo − q equals to the surplus joint angle which allows
the robot arm to move without interference. Consequently
e ≥ 0 means the robot arm runs safely, while e < 0 means
that the links of the robot arm have collided with other
components, so the key problem of interference avoidance
has been transformed into how to guarantee the position
error of the set-point control non-negative.

In (6) if we choose the controller gains Kp = diag{kp}
and Kv = diag{kv} such that their elements satisfy the
critical damping condition

kv = 2
√

kp (15)

then the closed-loop system (6) becomes

ë + kv ė +
k2

v

4
e = 0 (16)

which is critical damping. Figure (1) shows phase portraits
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Fig. 1. Phase portrait of the critical damped system

of a critical damped system. From figure(1), it is clear that
for a critical damped system all the states (e, ė) lying in
zone I will finally converge to the origin asymptotically
along the line a1a2 without overshoots, keeping the position
error e non-negative. a1a2 is determined by

ė +
kv

2
e = 0 (17)



So for a given kv every point in zone I yields an
interference-free path without considering the dynamic con-
straints. But for the states out of zone I , no interference-
free path can be guaranteed. The border between zone I
and zone II is determined by (17).

Although each point in zone I may yield an interference-
free path, but not all of them are valid for interference
avoidance because all the states on the phase portrait must
satisfy the dynamic constraints when they converge to the
origin

−τmax ≤ M(
k2

v

4
e+ kv ė+ q̈d)+C(q, q̇)q̇ +G(q) ≤ τmax (18)

Noting that for a set-point control, q̇d = 0, q̈d = 0, (18) can be
simplified as

−τmax ≤ M(
k2

v

4
e − kv q̇) + C(q, q̇)q̇ + G(q) ≤ τmax (19)

In practical implementations it is always expected that the robot
arm can be stopped with the shortest time, so for a specified state
p = (e(tp), ė(tp)), we choose kvp = − 2ė(tp)

e(tp)
, the control torque

becomes

τp(q, q̇) = M(q)(
k2

vp

4
e + kvpė + q̈d) + C(q, q̇)q̇ + G(q) (20)

then the states of the closed-loop system will converge to the origin
exponentially along the line po defined by ė +

kvp

2
e = 0 without

overshoots (see figure 2). If every point on po satisfies the dynamic
constraints such that

−τmax ≤ τp(q, q̇) ≤ τmax ∀(q, q̇) ∈ po (21)

then we think (e(tp), ė(tp)) is valid for interference avoidance
guaranteeing a realistic interference-free path.

B. Interference avoidance by checking desired next states
(20) shows the analytical expression of the control torque is

complex and nonlinear, how to verify the dynamic constraints for
each point on po is a big problem. In classical methods usually
some points have to be sampled to ensure the whole phase portrait
satisfy the dynamic constraints which may be not reasonable in
practice, but using interval analysis, we can solve this problem
effectively.

When the robot arm moves along the desired path, the state
that the robot arm is going to take at the next sampling period is
checked to avoid all the interferences. Here (ed(t+δt), ėd(t+δt))
is defined as the desired next state of the closed-loop system. It is
clear that if we choose kv1 = − 2ėd(t+δt)

ed(t+δt)
, then the phase portrait

of the closed-loop system will converge to the origin along the line
ė + kv1

2
e = 0 without overshoots. For each point on this line the

control torque is expressed by letting kv = kv1 and substituting
ė = − kv1

2
e in (18), so we get

τ(e) = M(qo, e)(−k2
v1

4
e + q̈d) + C(qo, e) + G(qo, e) (22)

When the phase portrait converges from the desired next state to
the origin, the position error varies in the interval [e] (see figure
2).

To verify the dynamic constraints for all the points on the phase
portrait, the interval evaluation is used. Given the desired next state
(qd(t+δt), q̇d(t+δt)), the interval evaluation of the control torque
(22) is

[τ ] = M(qo, [e])(−k2
v1

4
[e] + q̈d) + C(qo, [e]) + G(qo, [e]) (23)
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Fig. 2. Phase portrait converging to the origin exponentially

where

[e] = [0, e(t + δt)] (24)

kv1 =
−2ėd(t + δt)
ed(t + δt)

(25)

e(t + δt) = qo − qd(t + δt) (26)

As explained in [15][16], [τ ] derived from (23) may be
overestimated, but we may reduce the overestimation by
using other powerful methods of interval analysis, for ex-
ample recognizing monotonicity of the function by interval
evaluation of the derivative.

[τ ] determines the lower bound τ and upper bound τ of
the control torques for all the points on the phase portrait
when it converges to the origin without overshoots, so if

−τmax ≤ τ and τ ≤ τmax (27)

then we think that the whole phase portrait satisfies the
dynamic constraints, the desired next state is valid for
interference avoidance yielding a realistic interference-free
path. Otherwise we cannot decide whether the desired next
state is valid or not. To ensure the robot arm run safely
the next state should be re-scheduled. In this paper the area
in which every point can guarantee a realistic interference-
free path is defined as VZ, while the area not guaranteeing a
realistic interference-free path is defined as OZ. The border
between VZ and OZ is defined by ė = −kv

2 e, where kv is
determined by the dynamic constraints.

This method is conservative in some degrees since we do
not investigate the condition of

−τmax > τ or τ > τmax (28)

maybe the overestimation of the interval evaluation instead
of breakthrough of the dynamic constraints is the right
reason. But as the compromise between the accuracy and
the computing time, the desired next state who causes the
condition (28) or the condition of

τmax < τ or τ < −τmax (29)

is thought infeasible for avoiding interference, both condi-
tions will trigger another process to re-schedule a new state
for the next sampling period.



IV. OPTIMIZATION OF INTERFERENCE-FREE

TRAJECTORY BY USING INTERVAL ANALYSIS

A. Determination of interference-free trajectory by using
interval analysis

When the desired next state is not feasible, it is necessary
to schedule a new state for the next sampling period which
not only yields a realistic collision-free path but also leads
the robot arm to trace the desired path as close as possible.
So it is a constrained optimization problem which can be
modeled as follow:

min
q̇(t+δt)

(‖q(t) +
q̇(t + δt) + q̇(t)

2
δt − qd(t + δt)‖2) (30)

S.T.

q̇(t + δt) ∈ [q̇(i + 1), q̇(i + 1)] (31)

q(t) +
q̇(t + δt) + q̇(t)

2
δt ≤ qo (32)

{e(t + δt), ė(t + δt)} ∈ V Z (33)

In this model the objective function is the distance between
the actual position and the desired position at the next
sampling period, the variable to be optimized is the next
velocity. The objective function is subject to some con-
straints, the first constraint requires that the next velocity
is optimized only within the possible range derived from
(12). The second constraint guarantees the robot arm not to
interfere with other components at the next sampling period.
The last constraint indicates that the next state must yield
a realistic interference-free path.

Sometimes classical real-valued methods for example
extended cost-function approaches with weighted sum of
constraints are used to find an optimal solution, but it has
some drawbacks:

• As explained in section (III-A), the expression of the
control torque (20) is a complex nonlinear function,
how to verify the dynamic constraints for all the states
from the next sampling period until the robot arm stops
is a big problem for classical real-valued approaches.

• In cost-function approaches, the cost function is com-
posed of the weighted sum of the constraints, but it is
difficult to determine the weights.

• Integrating all the constraints together with the ob-
jective function will result in a huge nonlinear cost
function which may lead to the numerical optimization
procedure converge towards a local minimum.

But using interval analysis we can partition this complex
constrained optimization problem into a two-stage problem
and solve it effectively.

To deal with the constraint (33), the control torque is
expressed in a similar way as (23)

[τ ] = M(qo, [e])(− [kv1]
2

4
[e]+ q̈d)+C(qo, [e])+G(qo, [e]) (34)

where

[e] = [0, e(t + δt)] (35)

Noticing that the difference between (23) and (34) is that

• In (23) the desired next state has been known and used
as the starting point of the phase portrait to verify the
dynamic constraints. But when the desired next state
is not feasible, only the allowed range of the next
state is available, so in (34) we use the range of the
next state to verify the dynamic constraints, in (35) [e]
describes the maximum possible varying range of the
phase portrait when it converges to the origin from the
next state, e(t + δt) is the upper bound of [e(t + δt)]
which is determined by

[e(t + δt)] = e(t) − q̇(t) + [q̇(t + δt)]
2

δt (36)

• Instead of a real value in (23), kv1 is substituted by
an interval variable [kv1] which is the varying range of
kv1 when every point on p1p2 (see figure 3) is assumed
to converge to the origin exponentially.

All the possible next states evolved from the current state
(e0, ė0) only lie on the segment p1p2 which follows the
equation

ė =
2
δt

(e − e0) − ė0 (37)

so [kv1] is determined by

[kv1] =
−2

δt
2 + 1

[ė(t+δt)] (
δt
2 ė(t) + e(t))

(38)

Substituting (36)(38) into (34), we get

[τ ] = M([q̇(t + δt)])(F [q̇(t + δt)] + q̈d)
+ C([q̇(t + δt)]) + G([q̇(t + δt)]) (39)

F (·), C(·), G(·) are corresponding functions. Similarly
when

−τmax ≤ τ and τ ≤ τmax (40)

we think that {q(t + δt), q̇(t + δt)} ∈ V Z
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Fig. 3. Range of the next state in phase plane



B. Contractors

To schedule a new state for the next sampling period, an
optimal velocity is going to be determined from the segment
p1p2. Based on the interval analysis an algorithm F (Q)
is designed. For a 2-dof robot arm Q is a 2-D interval
box Q = {[q̇1(t + 1), q̇1(t + 1)], [q̇2(t + 1), q̇2(t + 1)}, in
the algorithm F (Q) the bounds of the control torques are
evaluated from (39), F (Q) will return:

• 1 if −τmax ≤ τ and τ ≤ τmax for all the actuators
• -1 if −τmax > τ or τ > τmax for at least one

actuator
• 0 if −τmax > τ or τ > τmax for at least one actuator

If F (Q) returns 1, then any velocities included in Q
guarantee that the robot arm can stop at the extreme position
qo and throughout this process the dynamic constraints are
always satisfied. If F (Q) returns -1, then the points in Q
cannot yield a realistic interference-free path subject to the
dynamic constraints, the robot arm who takes the point in
Q as the next velocity will collide with other components.
If F (Q) returns 0 then we cannot decide whether the points
in Q (or in some parts of Q) are valid or not, as the
overestimation of interval arithmetics may be the reason
why −τmax > τ or τ > τmax .

The algorithm that determines all the valid velocities for
the next sampling period is designed based on F (Q). It
uses a list of boxes Qi, the constraints (31)(32) are used to
initialize Q0. To take the velocity measurement accuracy
and actuator performances into account, the box whose
width is smaller than a given threshold ε will be discarded
from the list. The algorithm proceeds as follows:

1) if i > n, then EXIT
2) if F (Qi)= -1, then i = i + 1, go to 1
3) if F (Qi)= 1, then store Qi as the valid next state,

i = i + 1, go to 1
4) if w(Qi) < ε, then store Qi as a neglected box, i =

i + 1, go to 1
5) bisect Qi and get two new boxes, add two new boxes

to the end of list, n = n + 2, i = i + 1 and go to 1

C. Determination of an optimal state by optimizing next
state

When the loop is finished we can obtain almost all the
ranges of the valid velocity, any points in these ranges
can define a valid state for the next sampling period
which guarantee the robot arm stop at the extreme position
without interference. Among them the best solution which
tracks the desired path most closely can be found. It is a
simple optimization problem only with the constraints on
the varying ranges of the variables. After obtaining all the
valid ranges of the velocity in the form of intervals, interval
analysis has the most advantage in finding the best solution
by minimizing the objective function which indicates the
distance between the actual path and desired path shown as
(30).

V. SIMULATION RESULTS

This section presents numerical examples of interference
avoidance based on our approach. A 2-DOF robot arm is
considered, the state variable q1 is the angle between the
axis x and the link I . q2 is the angle between the axis
of link I and link II . The maximum allowed angle qo for
q1, q2 is 2

3π, when q1, q2 > qo, we think that the interference
between the mechanical components occurs. The mass of
the links are 4.185 kg and 2.854 kg, the link lengths are
0.1605 m and 0.175 m. the nominal angular velocities are
2 r/m and 1.4 r/m, the bounds of the angular velocity are
[−3, 3]r/m which are determined by the motor nominal
parameters. The desired motions of the joint angles with
respect to t are defined as

{
q1

d = −0.5 + 2t
q2

d = 0.4 + 1.4t
t < 1.6 (41)

{
q1

d = 2.7 − 1
2 (t − 1.6)

q2
d = 2.64 − 1

3 (t − 1.6) t ≥ 1.6 (42)

In order to fully present the proposed approach, two differ-
ent sets of drive torques are tested. In the first case the joints
are driven with a high capability, the ranges of the drive
torques are [−2.5, 2.5]nm and [−1.0, 1.0]nm. In the second
case the joints are driven with a relatively low capability
which are [−1, 1]nm and [−0.3, 0.3]nm .

The approach has been implemented using the high
level interval analysis package ALIAS1 which relies on the
C++ interval arithmetics package BIAS/Profil. The function
Minimize Maximize which is used to achieve the global
minimum is available in ALIAS. Figure (4) demonstrates
the simulation results of the joint angles, the solid curve
describes the desired value of the joint angle, the dashed
curve presents the varying of the joint angle driven with a
high capability, the dotted curve presents the result of the
second case with a low drive capacity. It is obviously that
in both cases the joint angles can stop before they arrive
at the extreme angles, no interference occurs, when the
desired trajectory steps out of the dangerous zone, the joint
can track it again, but the robot arm with the higher drive
capability can track the desired trajectory more precisely.
Figure (5) shows the velocity curves. In this figure the
robot arm with the higher drive capacity begins to slow
the velocity later than another because its velocity can
be decreased with a larger acceleration, but as a result it
will cause worse vibrations. Figure (6) shows the desired
and actual path of the end effector in x − y plane. From
this figure it is proved that the actual path is not only
interference-free but also tracks the desired path as close
as possible.

VI. CONCLUSION

A new approach of interference avoidance is proposed
for a class of robots whose interference positions have been

1www.inria-sop.fr/coprin/logiciel/ALIAS/ALIAS.html
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known, all the interferences can be avoided by checking the
next state based on the principle of critical damping control.
The problem of how to verify the dynamic constraints for a
series of states is solved by using interval arithmetics with
phase plane analysis, the dynamic constraints are considered
by computing the bounds of the control torques. Interval
analysis is also used to optimize the next state when it is
not valid, the merit of interval-based optimization is that it
allows to partition the complicated constrained optimization
problem into a simple two-stage problem. Simulation results
show the effectiveness of the proposed approach.

The prospective works are:

1) The assumptions of the dynamic model being exactly
known and system without disturbances are too re-
stricted, robust sliding mode control is an interesting
candidate to ensure the phase portrait converge to the
origin without overshoots when the assumptions are
not fulfilled.

2) Extending the methodology to process other occa-
sions. For example, integrating with vision systems to
avoid interferences for multi-robot collaborative tasks
where the interference positions are unknown.
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