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Abstract— Multiple sensor fusion for robot Jocalisation and
navigation has attracted a lot of interest in recent years.
This paper describes a sensor based navigation approach
using an interval analysis (IA) based adaptive mechanism for
an Unscented Kalman fiter (UKF), The robol is equipped
with jnertial sensors {INS), encoders and ultrasomic sensars,
An UKF is used to estimate the robots pesition wsing the
inertial sensors and encoders. Since the UKF estimates may be
affected by bias, drift etc. we propose an adaptive mechanism
using IA to correct these defects in estimates. In the presence
of land marks the complementary robot pesition information
from the IA algorithm using ultrasonic semsors is used to
estimate and bound the errors in the UKF robet position
estimate,

I. INTRODUCTION

Robot navigation is primarily about guiding a mobile
robot to a desired destination or along a pre-specified path
in which the robots environment consists of landmarks
and obstacles. In order to achieve this objective the robot
needs to be equipped with sensofs suitable to localize
the robot throughout the path it has to follow, Most of
these sensors may give overlapping or complementary
information and sometimes be redundant as well. There
are many different architectures to fuse these information.
Mobile robots generally carry dead reckoning sensors
such as wheel encoders, inertial sensors (INS), such as
accelerometers, gyroscopes, to measure acceleration and
angle rate respectively, and landmark and obstacle detect-
ing and map making sensors such as time of flight (TOF)
ultrasonic sensors. All these sensor measurements can be
fused to estimate the robots position by using a sensor
fusion algorithm. Sensor fusion in this case is the method of
integrating data from distinctly different sensors to estimate
the robots position.

Classical data fusion algorithms use stochastic filters
such as Kalman filters for robot position estimation [1].
But one of the main disadvantages of using Kalman filters
with ultrasonic sensors for robot localisation problems is
that the data association step in Kalman filters is complex
and also the fact that they are often affected by bias and
drift from inertial sensors. Moreover an accurate model of
the robot system and accurate statistics of the sensor noises
are needed, which is not available accurately in many cases.

The paper is organised as follows. This introductory sec-
tion continues by presenting a background for the problem
of autonomous robot localisation in section I-A, followed
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by a summary of previous work in robot localisation using
interval analysis (IA) in section I-B. Section III explains
the implementation of the UKF with INS and encoders for
this problem. Section IV gives a brief explanation of the IA
algorithm for robot localisation and also describes how the
sensor range limitation is incorporated. In section V the
implementation of the adaptive mechanism for the UKF
robot position estimation using IA with vltrasonic sensors
is described and the results are shown and finally in section
VI the conclusions are given.

A. Background

The problem considered here is that of robot navigation
and localisation using multiple low cost sensors such
as INS, encoders and uitrasonic sensors. Conventionally
stochastic filters such as Extended Kalman filter (EKF)
or Unscented Kalman filters (UKF) are used for robot
localisation [2]. One of the main prerequisites for using
Kalman filters when using INS and encoders, is to have an
accurate model of the robot and alsc accurate sensor noise
statistics (i.e) bias, drift etc. But in practice it is difficult
to have these parameters accurately, especially the drifts in
accelerometers and gyroscopes. This affects the outcome of
the UKF, there by contribating to errors in the estimated
position of the robot over a period of time.

Moreover TOF sensors such as ultrasonic sensors are
used to measure the distance of land marks from the robot
and to recognize the presence of any obstacles in the robots
path. When the 2-D map of the environment in which the
robot travels is known a priori, the distance measurements
from the ultrasonic sensors can be used independently
to estimate the position of the robot in the map. EKF
can be used for this purpose as well [3). But one of the
main limitations encountered when using this approach is
the problem of data association, as the data association
problem in EKF is extremely complex and is of the third
order O%. There are ways in which this problem can be
simplified to (72, but the solution may be suboptimal.

In order to get the best estimate of the robots position,
we can use different types of sensors with different algo-
rithms which bave different sources of error. In this case
we use an Unscented Kalman filter (UKF) for fusing the
data from the accelerometers, gyroscopes and encoders,
instead of the EKF. This is because the UKF can linearize
the nonlinear models at every instant up to the 3rd order



of Taylor series expansion, there by reducing the errors
during lingarisation, where as in the EKF the nonlinear
models can be linearised only up to the Ist order. In the
case of ultrasonic sensors we use an Interval Analysis
(IA} algorithm for estimating the robots position. It should
aiso be noted that the IA algorithm for ultrasonic sensors
bypasses the complex data association step and handles
the problem in a nonlinear way even while been robust
to outliners. Thus we have two independent sets of the
measurements for the robot position. The estimated robot
position using UKF from INS, which might be affected by
bias and drift, are then fused with the estimated interval
robot position using IA from vltrasonic sensors. The fused
robot position estimate is much better than either one of
them by itself, since the errors in UKF estimated position
are identified and corrected using the IA algorithm.

B. Prior work: Robot localisation with TA using range
measurements.

Interval analysis is basically about guaranteed numerical
methods for approximating sets. Guaranteed in this context
means that outer (and sometimes inner) approximations of
the sets of interest are obtained, which can (at least in
principle), be made as precise as desired. Thus interval
computation is a special case of computation on sets, and
set theory provides the foundations for interval analysis.

The localisation of an autonomous robot while navi-
gating in a known or partially known environment is an
important problem in mobile robotics. In this section an
approach for the localisation of the robot using 1A [4] with
sensor readings from ultrasonic sensors is described briefly.
The main advantage of this method is that it bypasses
the data-association step, which is very complex in other
stochastic methods such as Extended Kalman Filters, and
it handles the problem in a nonlinear way without any
linearisation and it is very much robust to outliners.

The robot model is assumed to move in an known 2D
environment and its motion is planned with respect to a set
of landmarks, These landmarks are defined in the world
reference frame “1V”. The robots position is described by
the parameters z.,y. and @,which form the configuration
vectar p = (¥4, ¥, 0)7 and it is shown in Figure 4.

So the task now is to estimate the value of the confign-
ration vector p, from a map representing the environment
of the robot and from distance measurements provided by
a belt of n, TOF ultrasonic sensors with limited range
present in the mobile robot. Moreover since it is assumed
that the bounds on the distance measurement error is
known, the tesulting distance measurement is in terms of
intervals which is stored in an interval vector

[d] = ([ds], ..., [dn]) M

If a model is available to model the ultrasonic sensor
interval distance measurements represented by the interval
vector dy, (p), when the 1obot configuration is p, the local-
ization problem now becomes a bounded error parameter
estimation problem, namely that of characterizing the set

P ={pep | dm(p) € [d]} 2
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Fig. 1. Robot Model

where [p,] is an initial search box, assumed to be large
enough to contain all the possible robot configurations.
“P” then contains all the configurations vectors that are
consistent with the given map and measurements.

But the task is to find the configuration vector p and so
the equation given above can be rearranged as

= [po] n (dm)_l([d]) (3)

(i.e.) for a given configuration vector p the robot evaluates
the measurements that its sensors would return and com-
pares then with the actual measurements to check whether
they are consistent. ’
The problem described by the Equation 3 could then be
solved using any of the two approaches namely SIVIA (Set
Inversion Via Interval Analysis) [5] and ImageSP [6]). Both
the above approaches have been described in detail in the
book by Jaulin et al [7] and a brief introduction to both
SIVIA and IMAGESP is given in Sections IV-A, IV-B,

iI. RoBOT MODEL.

A kinematic representation of a 4-wheel robot that
moves slowly in a 2D plane is shown in the Figure 1.
The model for the vehicle is simplified with the “bicycle
model” {8],

III. ROBOT LOCALISATION USING UKF WITH INERTIAL
SENSORS AND ENCODERS

By fusing the measurement data from the sensors - wheel
encoders, gyroscopes and accelerometers - in the mobile
robot, a reliable estimation of the position and heading of
the robot can be obtained. There are basically two well
established approaches available in literature: one is the
Kalman filter and the other is the extended Kalman filter
(EKF) [9]. The Kalman filters are well known methods
used in the theory of stochastic dynamic systems, which
can be used to improve the quality of estimates of unknown
quantitics. The difference between the two methods is that
for the first one a linear kinematic model is used, while
for the second one, the EKF a nenlinear dynamic model is
used. We know that, if we use the nonlinear model, it is



much more difficult to tune the performance of the filier.
But in order to use all the available information, 2 nonlinear
model is preferred. Most often in real world engineering
applications, the most widespread and reliable state esti-
mator for nonlinear systems is the extended Kalman filter
[10].

The EKF is the Kalman filter of an approximate model
of the nonlinear system, which is linearised to the first
order around the most recent estitmate. Assuming all the
stochastic processes are Gaussian, the first order linearisa-
tion must be carried out at every iteration before applying
the KF algorithms.

Faor the extended Kalman filter, the robot model equa-
tions can be rewritten as the state equation of the form
shown below,

Tss = F(Tk, up, wr) 4)
which, when linearized will be of the form
Th4) = ik-}-l + A{.Tk — ih) + Buk -+ ]Vwk—lz (5)

where, A and B are the jacobian matrix of partial deriva-
tives.

This first order linearisation using the Taylor series
expansion in the EKF may introduce errors in the estimated
parameters which may lead to suboptimal performance and
sometimes divergence of the filter.

The above described problem can be overcome to a
certain extent by using a method first described by Jualier
and Uhlman as the unscented transform in the Kalman filter
for the linearisation process [11]. This formulation of the
Kalman filter for a nonlinear system is called the Unscented
Kalman filter (UKF}. The unscented transform is basically
a deterministic sampling approach, where the state distri-
bution is approximated by a gaussian random variable, but
is now described using a minimal set of carefully chosen
sample points. These sample points are chosen using the
unscented transform method which completely describes
the true mean and covariance of the gaussian random
variable. When these chosen points are propagated through
the true non-linear system, it can capture the posterior
mean and covariance accurately up to the 3rd order for
‘Taylor series expansion, where as in a EKF we can achieve
only up to first-order accuracy. Also the need to compute
the Jacobian matrices in the EKF is avoided when using
the UKF. It should also be noted that the computational
complexity of the UKF is the same order as that of EKE.
The basic equations for the UKF has been given in detail
in the book [12].

All the process noises are assumed to be zero mean,
uncoirelated white random noises only.

In the measurement model for this robot there are four
sources of observations that are considered:

1) velocity measurements from the wheel encoders,

2) acceleration from the accelerometers, which when
integrated gives the velocity of the robot,

3) robot heading angle measurement from the encoders
and

Algorithm [dy | {in: {ps] out: [dm])
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Fig. 2. Inclusion function for the measurement model

4) the angular velocity measurements from the rate
gyroscope which when integrated once gives the
heading angle of the robot.

Thus, for both the velocity and heading angle of the
robot there are two sets of measurements from two inde-
pendent sensors as observations to the UKF and the UKF
then estimates the best velocity and heading angle from
which the robots position is calculated.

1V. ROBOT LOCALISATION WITH INTERVAL ANALYSIS
USING RANGE MEASUREMENTS.

In this section the robot localisation using IA as firgt
described briefly in section 1-B is further elaborated here.

A brief overview of the algorithm for a single measure-
ment process has been given in the Figures 2 and 3. The
Figure 2 is basically an interval inclusion function (i.e.) a
mathematical model which models all the possible distance
measurements expected from all the ultrasonic sensors
when the configuration is [pl, where a;,b; are the two
extreme points of a segment of the land marks as shown in
Figure 4. The Figure 3 is the interval mathematical model
of a single ultrasonic sensor distance measurement. Its a
simple sensor model with interval values which models the
distance measurement as the smallest distance between the
sensor vertex “s;” (as shown in Figure 4) and the segment
of a land mark [a,b}, in four simple scenarios which is
described in detail in [7].

The main improvement in this version of the algorithm
in the descriptions in the tables is that the range of the
ultrasonic sensor has been limited to 3 meters, where as
in [4] the range was unlimited. This is implemented by
identifying the sensors m; that only give readings less
than 3 meters (which is done by setting all the interval
ranges greater than 3 meters to infinity in Figure 3) and
substituting them for instead of n, (where the inclusion
function was calculated for all the n, number of sensors)
in the Figure 2. .

Additionally the land marks which are visible to the
robot in the 3 meter radius are only given to the inclusion
function in Figure 2 instead of ail the n,, segments, there
by saving computational time.

This problem as given in equation 3 is then solved
using any of the two approaches namely SIVIA (Set
Inversion Via Interval Analysis) [5] and ImageSP. A brief
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Fig. 4. Robot and Sensor modz]

introduction to both SIVIA and IMAGESP is given in the
next two subsections.

A, Set Inversion Via Interval Analysis (SIVIA)

Set inversion is the computation of the reciprocal image
X={zxeR'|flz) eY}=FY) (6)

of a regular subpaving ¥ of R™ by a possibly nonlinear
function f : R" — R™ and SIVIA is a method to compute
two subpavings X and X of R"™ such that

XcXcX )]

A subpaving is a finite set of non-overlapping boxes that
are all included in the same root box, It is called regular
if each of the boxes can be obtained by a finite succession
of bisections and selections [7].

In this problem for robot localisation, P = {p ¢
[pal | t(p) = 1}, SIVIA can be applied |4]. Therefore
in this case, if t;([po]} = 1, po is in the solution set
P and is stored in P. If tj([wel) = 0 then [py] has an

jan
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Fig. 5. A schemalic representation of ImageSp and SIVIA algorithm

empty intersection with P and is dropped from further
consideration. If y(fpo]) = [0,1] and if the width of [p,]
is larger than the pre-specified precision parameter € , then
Po Is bisected, leading to two child sub boxes L(p) and
R(p), and the test £;(.) is recursively applied to both of
them. Any box with width smaller than ¢ is considered to
be small enough and it is added 1o P. A diagram explaining
SIVIA is given in Figure 5.

B. IMAGE SubPaving (IMAGESP)

When f is not invertible, a specific and computationally
more demanding procedure is used. The basic idea of
IMAGESP algorithm is to describe the initial search box p,
using a subpaving consisting of p boxes whose width are
less than or equal to €. Then IMAGESP evaluates the image
af each of these p boxes using an inclusion function fj; of
J and stores them on a lList. Therefore we will be getting
p image boxes, each of which contains the true image set
of the associated initial box. At last, IMAGESP merges
all these image boxes into a subpaving to allow further
processing [7]. Thus when using the IMAGESP algorithm
for the problem of robot localisation, it basically checks all
the possible robot poses to obtain the true robot position.
A diagrammatic representation of IMAGESP is given in
Figure 5.

Thus the actual position of the robot represented here
by the configuration vector p at any given instant of time
can be found using SIVIA or IMAGESP algorithms, where
basically the subpavings in SIVIA and IMAGESP repre-
sent the configuration vectors p in the robot localisation
problem.

The Figure 4 gives a brief description of the sensor
madel and also the measurement process.

A detailed description of the above inclusion functions
has been provided by [4]. Also a better version of the above
algorithm in terms of computational time, incorporating
the interval elementary tests to eliminate some of the
infeasible configurations in the configuration vector has
been described in [4], in which the problein is reformulated
as P = {p € [po] | ¢(p) holdstrue} (i.e.) P = {p € [p,] |
t(p) = 1}, where #(p) is a global test. The global test
t(p) consists of various elementary tests (three tests [4])
and they are robust to outliners as well as described in [4].
Also the purpose of the first two tests is 1o eliminate some
infeasible configurations there by saving computational
time. But if all the three tests are used when the range of
the sensor is limited, it leads to scenarios in which some



feasible configurations are ignored prematurely. Therefore
only two tests were used (first test (inroom test) and the
third test (data test {i.e.} {dn) & [d]) in [4]). The main
consequence of not using the second test (i.e. leg in test)
when the sensor range is Iimited is that it may increase the
computation time.

In the case when the robot is moving the robots position
needs to be tracked, in which case the robots position
needs to predicted at the next instant to estimate the
robots position at that instant. This is done by using the
physical limitations of the robot based on the maximum
possible speed and heading angle rate of the robot, instead
of using a dynamic robot mode! with interval values [7]
or position information from other sensors namely INS
and encoders in this case. Thus we obtain an independent
interval position of the robot from the uvltrasonic sensors.

V. INTERVAL ANALYSIS BASED ADAPTIVE MECHANISM
FOR UKF.

Sensor fusion is a very important and keenly researched
topic in the domain of mobile robotics. This is due to the
fact that, instead of using bespoke expensive sensors for
estimating the robots position, multiple low cost sensors
can be used, there by reducing the cost of developing the
robot. Moreover these same sensors can be used to do
other tasks other than estimating the robots position such as
building the map of the robots environment using vitrasonic
sensors etc. Also the source of errors in one sensor may be
different from another one and this fact can be exploited
to climinate the errors in the measurements.

For the problem of sensor fusion stochastic filters, such
as Kalman filters, are commonly used. But they suffer
from the same disadvantages described before (i.e.) an
accurate model of the system and statistics are needed. In
order to overcome these difficulties and obtain a guaranteed
position of the robot while using the UKF, a new approach
has been introduced in this paper. As described above
the robots position are estimated vsing two independent
sources namely, the robot position from inertial sensors
and the interval robot position from ultrasonic sensors,

The position obtained using IA is updated only once
every second (due to computation time), where as the
pesition from inertial sensors and encoders are updated 100
times per second. Moreover we know that the robots inter-
val position to be guaranteed. The interval robot position
thus obtained using ultrasonic sensors is like a plane or
rectangle {i.e) basically an uniform distribution. Then the
estimated position using the INS is checked whether they
are inside this rectangle. In case they are present inside
the rectangle then they are trusted to be accurate and used.
Alternatively if they are not then both the measurements
are fused by selecting the point on the rectangle (box) (i.e.)
the interval robot position, which is geometrically closest
to the robot position estimated using UKF with inertial
sensors, thereby bounding the ervor in the UKF estimates,
A block diagram of the sensor fusion method is given in
Figure 6.

UKF Sensnr fusian for estinating
1obor sped and orientation

UKF estimed X and ¥ robot
coordinaies

Check whether the L'KE robot position is inside the inerval mbet position bor }

Inwwrval Amalysis algorithm,  for

sobot posiion etimaion

otcrval X aned Lotzaval Y
robot coordinaies which formé
abox or a plae

If 50 3be Tobor position is the UIKF extimand ¥ and ¥ coondinmes.
OR.
1f nom Live robot POSIEON i the POINC which is closest 1o the URF emtimate 1n the interval bax
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Sensor fsion block diagrm

Fig. 6. Block diagram of IA based adaptive mcchanism for UKF

UKF only estimated robet position

¥ coordinale (m}

2
—

L

o
X coorinate (m)

Fig. 7. UKF only cstimated robot position

The algorithm described above has been successfully
implemented in simulation using C++ and MATLAB soft-
ware, Figure 7 shows the robot position estimate using
UKEF only, which is affected by sensor bias, drift etc, The
Figure 8 shows the robot position after using the adaptive
UKF robot position esfimate using the SIVIA interval
robot position for adaptation. Similarly the Figure 9 shows
the UKF robot position estimation using the IMAGESP
interval algorithm for the adaptive mechanism. In both
cases it can be observed that the UKF estimate with the
interval adaptive mechanism is much bewer than the UKF
position estimate alone. It should be noted however that the
SIVIA interval position uncertainty is greater than that of
the IMAGESP algorithm. The reduction in uncertainty of
the estimated interval robot position using the IMAGESP
algorithm is attained at the cost of more computation time
when compared with the SIVIA algorithm. This is because,
in the IMAGESP algorithm, the whole initial subpaving is
divided into many boxes of identical width less than or

1
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mechanism in UKF

equal to € (0.0] in our case) and the global test (p) is
performed on all of these boxes.

In the SIVIA algorithm the global test ¢(p) is performed
on the initial subpaving and if the test result indicates that
the actual position of the robot may be present inside the
initial subpaving, the subpaving is bisected into two child
subpavings and the global test is performed on each one
of them, This process is repeated until the width of the
subdivided boxes is less than or equal to ¢ and the resulting
interval robot position is obtained.

It can be seen in Figure 9 that when the position estimate
of UKF is fused with the IA it results to very small
position error, That is because of the small interval of
the positicn estimate obtained uvsing IMAGESP. Hence
even if IMAGESP interval estimate comes at the cost of
more compulation time when compared with the SIVIA
algorithm it results in a much more accurate fused robot
position estimate.

Moreover, in Figure 8, it can be seen that the interval
position uncertainty increases as expected when there are
no land marks visible to the robots ultrasonic sensors. This
can be seen in the Figure 8 when the robot begins to
move and also at instances in between landmarks, when
the number of ultrasonic sensors for which the landmarks
are visible is less.

VI. CONCLUSION

An Unscented Kalman filter (UKF) using an Interval
Analysis (IA) based adaptive -mechanism has been de-
scribed. The UKF uses accelerometers, gyroscopes and
encoders to measure the robots speed and heading angle,
so that the robots position can be estimated, But the UKF
robot position estimate is affected by errors in robot model,
sensor bias, drift etc. The IA is a deterministic approach
10 estimating the robots position without using a model
of the robot system, thereby minimizing errors due to
inaccurate robot model. Additionally the previous work
on robot localisation and navigation using IA has been

mechanism in UKF

extended, so as to incorporate sensor range limitation as
well. Moreover instead of using dynamic interval model of
the robot to predict the next step of the robot, the physical
limitations of the robot are used to predict the next step of
the robot in the IA algorithm.

The guaranteed IA robot position estimate is then used
as an adaptive mechanism to correct the errors in the UKF
robot position estimate.
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