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Abstract-Multiple sensor fusion for mbot localisation and 
naxigation has attracted a lot of interest in recent years. 
This paper describes a sensor based navigation appmach 
using an interval analysis (IA) based adaptive mahanism tor 
an Unscented Kalman filter (UKF). The robot is equipped 
with inertial sensors (INS), encoders and ultrasonic senson. 
An U K F  is used to estimate the robots position using the 
inertial sensors and enraders. Since lhe UKF estimates may be 
afleeted by bias, drift etc. we propose an adaptive mechanism 
using IA lo correct these defects in estimates. In the presenw 
of land marks L e  complemenlary robot posiUon information 
from the LA algorithm using ultrasonic senson is used to 
estimate and bound the errom in the UKF m h t  position 
estimate. 

I. INTRODUCTION 

Robot navigation is primarily about guiding a mobile 
robot to a desired destination or along a pre-specified path 
in which the robots environment consists of landmarks 
and obstacles. In order to achieve this objective the robot 
needs to be equipped with sensors suitable to localize 
the robot throughout the path it has to follow. Most of 
these sensors may give overlapping or complementary 
information and sometimes be redundant as well. There 
are many different architectures to fuse these information. 
Mobile robots generally carry dead reckoning sensors 
such as wheel encoders, inertial sensors (INS), such as 
accelerometers, gyroscopes, to measure acceleration and 
angle rate respectively, and landmark and obstacle detect- 
ing and map making sensors such as time of flight (TOR 
ultrasonic sensors. All these sensor measurements can be 
fused to estimate the robots position by using a sensor 
fusion algorithm. Sensor fusion in this case is the method of 
integrating data from distinctly different sensors to estimate 
the robots position. 

Classical data fusion algorithms use stochastic filters 
such as Kalman filters for robot position estimation [l]. 
But one of the main disadvantages of using Kalman filters 
with ultrasonic sensors for robot localisation problems is 
that the data association step in Kalman filters is complex 
and also the fact that they are often affected by bias and 
drift from inertial sensors. Moreover an accurate model of 
the robot system and accurate statistics of the sensor noises 
are needed, which is not available accurately in many cases. 

The paper is organised as follows. This introductory sec- 
tion continues by presenting a background for the problem 
of autonomous robot localisation in section I-A. followed 

by a summary of previous work in robot localisation using 
interval analysis @A) in section I-B. Section IIl explains 
the implementation of the UKF with INS and encoders for 
this problem. Section IV gives a brief explanation of the IA 
algorithm for robot localisation and also describes how the 
sensor range limitation is incorporated. In section V the 
implementation of the adaptive mechanism for the UKF 
robot position estimation using IA with ultrasonic sensors 
is described and the results are shown and finally in section 
VI the conclusions are given. 

A. Backgmund 
The problem considered here is that of robot navigation 

and localisation using multiple low cost sensors such 
as WS, encoders and ultrasonic sensors. Conventionally 
stochastic filters such as Extended Kalman filter (Em 
or Unscented Kalman filters (UKF) are used for robot 
localisation [21. One of the main prerequisites for using 
Kalman filters when using WS and encoders, is to have an 
accurate model of the robot and also accurate sensor noise 
statistics (Le) bias, drift etc. But in practice it is difficult 
to have these parameters accurately, especially the drifts in 
accelerometers and gyroscopes. This affects the outcome of 
the UKF, there by contributing to errors in the estimated 
position of the robot over a period of time. 

Moreover TOF sensors such as ultrasonic sensors are 
used to measure the distance of land marks from the robot 
and to recognize the presence of any obstacles in the robots 
path. When the 2-D map of the environment in which the 
robot travels is known a priori, the distance measurements 
from the ulvasonic sensors can he used independently 
to estimate the position of the robot in the map. EKF 
can be used for this purpose as well 131. But one of the 
main limitations encountered when using this approach is 
the problem of data association, as the data association 
problem in EKF is extremely complex and is of the third 
order 03. There are ways in which this problem can he 
simplified to 02, but the solution may he suboptimal. 

In order to get the best estimate of the robots position, 
we can use different types of sensors with different aigo- 
rithms which have different sources of error. In this case 
we use an Unscented Kalman filter (UKF) for fusing the 
data from the accelerometers, gyroscopes and encoders, 
instead of the EKF. This is because the UKF can linearize 
the nonlinear models at every instant up to the 3rd order 
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of Taylor series expansion, there by reducing the errors 
during linearisation, where as in the EKF the nonlinear 
models can he linearised only up to the 1st order. In the 
case of ultrasonic sensors we use an Interval Analysis 
(U) algorithm for estimating the robots position. It should 
also be noted that the IA algorithm for ultrasonic sensors 
bypasses the complex data association step and handles 
the problem in a nonlinear way even while been robust 
to outliners. Thus we have two independent sets of the 
measurements for the robot position. The estimated robot 
position using UKF from I", which might he affected by 
bias and drift, are then fused with the estimated interval 
robot position using IA from ultrasonic sensors. The fused 
robot position estimate is much better than either one of 
them hy itself, since the errors in UKF estimated position 
are identified and corrected using the IA algorithm. 

B. Prior work: Robot 1ucalisariun with IA using range 
measureineiirs. 

Interval analysis is basically about guaranteed numerical 
methods for approximating sets. Guaranteed in this context 
means that outer (and sometimes inner) approximations of 
the sets of interest are obtained, which can (at least in 
principle), be made as precise as desired. Thus interval 
computation is a special case of computation on sets, and 
set theory provides the foundations for interval analysis. 

The localisation of an autonomous robot while navi- 
gating in a known or partially known environment is an 
important problem in mobile robotics. In this section an 
approach for the localisation of the robot using IA 141 with 
sensor readings from ultrasonic sensors is described briefly. 
The main advantage of this method is that i t  bypasses 
the data-association step, which is very complex in other 
stochastic methods such as Extended Kalman Filters, and 
it handles the problem in a nonlinear way without any 
linearisation and it is very much robust to outliners. 

The robot model is assumed to move in an known 2D 
environment and its motion is planned with respect to a set 
of landmarks. These landmarks are defined in the world 
reference frame "IY''. The robots position is described by 
the parameters x,, yc and 6,which form the configuration 
vector p = (xc; ~ ~ ~ 0 ) ~  and it is shown in Figure 4. 

So the task now is to estimate the value of the configu- 
ration vector p. from a map representing the environment 
of the robot and from distance measurements provided by 
a belt of ns TOF ultrasonic sensors with limited range 
present in the mobile robot. Moreover since it is assumed 
that the bounds on the distance measurement error is 
known, the resulting distance measurement i s  in terms of 
intervals which is stored in an interval vector 

Id1 = Ild,l ...... Id-I) I l l  

Pig. 1. R o b 1  M d c l  

where bo] is an initial search box, assumed to he large 
enough to contain all the possible robot configurations. 
" P  then contains all the configurations vectors that are 
consistent with the given map and measurements. 

But the task is to find the configuration vector p and sn 
the equation given above can be rearranged as 

= kl n (&-'(14) (3) 

(i.e.) for a given configuration vector p the robot evaluates 
the measurements that its sensors would return and com- 
pares then with the actual measurements to check whether 
they are consistent. 

The problem described by the Equation 3 could then be 
solved using any of the two approaches namely SNIA (Set 
Inversion Via Interval Analysis) [5] and ImageSP [ 6 ] .  Both 
the above approaches have been described in detail in the 
hook by Jaulin et al 171 and a brief introduction to both 
SIVIA and IMAGESP is given in Sections IV-A, IV-B. 

11. ROBOT MODEI 
A kinematic representation of a 4-wheel robot that 

moves slowly in a 2D plane is shown in the Figure 1. 
The model for the vehicle is simplified with the "bicycle 
model" [SI. 

111. ROBOT I.OCALISATION USING UKF WITH INERTIAL 
SENSORS AND ENCODERS 

By fusing the measurement data from the sensors - wheel 
encoders, gyroscopes and accelerometers - in the mobile 
robot, a reliable estimation of the position and heading of 
the robot can be obtained. There are basically two well 
established approaches available in literature: one is the 
Kalman filter and the other is the extended Kalman filter 

L > \, ., / ,  ,.,, ~~I 

(EKF) [91. The Kalman filters are well known methods 
used in the theory of stochastic dynamic systems, which 
can he used to improve the quality of estimates of unknown 
quantities. The difference between the two methods is that 
for the first one a linear kinematic model is used, while 
for the second one, the EKF a nonlinear dynamic model is 

If a model is available to model the ultrasonic sensor 
interval distance measuremen6 represented by the interval 
vector d,@), when the robot configuration is p. the local- 
ization problem now becomes a bounded error parameter 
estimation problem, namely that of characterizing the set 

p = IP E bo1 I d"I(P) E 14 (2) used. We know that, if we use the nonlinear model, it is 



much more difficult to tune the performance of the filter. 
But in order t o  use all the available information, a nonlinear 
model is preferred. Most often in real world engineering 
applications, the most widespread and reliable state esti- 
mator for nonlinear systems is the extended Kalman filter 

The EKF is the Kalman filter of an approximate model 
of the nonlinear system, which is linearised to the first 
order around the most recent estimate. Assuming all the 
stochastic processes are Gaussian, the first order linearisa- 
tion must be carried out at every iteration before applying 
the KF algorithms. 

For the extended Kalman filter, the robot model equa- 
tions can be rewritten as the state equation of the form 
shown below, 

[lOl. 

xk+1 = f(Zk, U k : " J k )  (4) 

which, when linearized will be of the form 

Z ~ + I  ?,+I + A ( z ~  - &) + B u ~  + IYwk-1, (5 )  

where, A and B are the jacobian matrix of partial deriva- 
tives. 

This first order linearisation using the Taylor series 
expansion in the EKF may introduce errors in the estimated 
parameters which may lead to suboptimal performance and 
sometimes divergence of the filter. 

The above described problem can be overcome to a 
certain extent by using a method first described by Julier 
and Uhlman as the unscented transform in the Kalman filter 
for the linearisation process [ I l l .  This formulation of the 
Kalman filter for a nonlinear system is called the Unscented 
Kalman filter (UKF). The unscented transform is basically 
a deterministic sampling approach, where the state distr- 
bution is approximated by a gaussian random variable, but 
is now described using a minimal set of carefully chosen 
sample points. These sample points are chosen using the 
unscented transform method which completely describes 
the true mean and covariance of the gaussian random 
variable. When these chosen points are propagated through 
the true non-hear system, it can capture the posterior 
mean and covariance accurately up to the 3rd order for 
Taylor series expansion, where as in a EKF we can achieve 
only up to first-order accuracy. Also the need to compute 
the Jacobian matrices in the EKF is avoided when using 
the UKF. It should also be noted that the computational 
complexity of the UKF is the same order as that of EKF. 
The basic equations for the UKF has been given in detail 
in the book [12]. 

All the process noises are assumed to be zero mean, 
uncorrelated white random noises only. 

In the measurement model for (his robot there are four 
sources of observations that are considered: 

1) velocity measurements from the wheel encoders, 
2) acceleration from the accelerometers, which when 

integrated gives the velocity of the robot, 
3) robot heading'angle measurement from the encoders 

and 
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Fig. 2.  Inclusion funelion lor lhc mrarurcmenl model 

4) the angular velocity measurements from the rate 
gyroscope which when integrated once gives the 
heading angle of the robot. 

Thus, for both the velocity and heading angle of the 
robot there are two sets of measurements from two inde- 
pendent sensors as observations to the UKF and the UKF 
then estimates the hest velocity and heading angle from 
which the robots position is calculated. 

1V. ROBOT I.OCAt.15ATION WITH INTEKVAL ANALYSIS 
USING RhNGE MEASUREMtNTS.  

In this section the robot localisation using IA as first 
described briefly in section I-B is further elaborated here. 

A brief overview of the algorithm for a single measure- 
ment process has been given in the Figures 2 and 3. The 
F i p r e  2 is basically an interval inclusion function (i.e.) a 
mathematical model which models all the possible distance 
measurements expected from all the ultrasonic sensors 
when the configuration is [PI, where aj,bj are the two 
extreme points of a segment of the land marks as shown in 
Ffgure 4. The Figure 3 is the interval mathematical model 
of a single ultrasonic sensor distance measurement. Its a 
simple sensor model with interval values which models the 
distance measurement as the smallest distance between the 
sensor vertex "si:' (as shown in Figure 4) and the segment 
of a land mark [a,b], in four simple scenarios which is 
described in detail in 171. 

The main improvement in this version of the algorithm 
in the descriptions in the tables is that the range of the 
ultrasonic sensor has been limited to 3 meters, where as 
in [4] the range was unlimited. This is implemented by 
identifying the sensors nI that only give readings less 
than 3 meters (which is done by setting all the interval 
ranges greater than 3 meters to infinity in Figure 3) and 
substituting them for instead of n, (where the inclusion 
function was calculated for all the ng number of sensors) 
in the Figure 2. 

Additionally the land marks which are visible to the 
robot in the 3 meter radius are only given to the inclusion 
function in Figure 2 instead of all the n, segments, there 
by saving computational time. 

This problem as given in equalion 3 is then solved 
using any of the two approaches namely SNIA (Set 
Inversion Via Interval Analysis) IS] and ImageSP. A brief 
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Fig. 4. Robot and Sensor model 

introduction to both SIVIA and IMAGESP is given in the 
next two subsections. 

A.  Ser hiversion via Interval Analysis (SIVIA) 
Set inversion is the computation of the reciprocal image 

(6) X = {z E R" 1 f(z) E Y }  = f-'(Y) 

of a regular subpaving I' of R" by a possibly nonlinear 
function f : R" - R"' and SNIA is a method to compute 
two subpavings X and T of R" such that 

- x c x c z  (7) 

A subpaving is a finite set of non-overlapping boxes that 
are all included in the same root box. It is called regular 
if each of the boxes can be obtained by a finite succession 
of bisections and selections 171. 

In this problem for robot localisation, P = {p E 
[Po] I t @ )  = l}, SIVIA can be applied 141. Therefore 
in this case, if t~j([P,]) = 1, p .  is in the solution set 
P and is stored in p. If tll([Po]) = 0 then [pol has an 

lm.gi$ Ai&ihm SIWA A I p d h  

Fig. 5. A schematic reprcscnlalian of ImqeSp and SlVIA algorithm 

empty intersection with P and is dropped from furtber 
consideration. If t[j(bo]) = [0,1] and if the width of bo] 
is larger than the pre-specified precision parameter e . then 
p ,  is bisected, leading to two child sub boxes L ( p )  and 
R@), and the test t o ( . )  is recursively applied to both of 
them. Any box with width smaller-than is considered to 
be small enough and it is added to P. A diagram explaining 
SIVLA is given in Figure 5 .  

B. IMAGE Subpaving (IMAGESP) 
When f is not invertible, a specific and computationally 

more demanding procedure is used. The basic idea of 
IMAGESP algorithm is to describe the initial search box p ,  
using a subpaving consisting of p boxes whose width a e  
less than or equal to E .  Then IMAGESP evaluates the image 
of each of these p boxes using an inclusion function fn of 
f and stores them on a list. Therefore we will he getting 
p image boxes, each of which contains the m e  image set 
of the associated initial box. At last, IMAGESP merges 
all these image boxes into a subpaving to allow further 
processing [?I. Thus when using the IMAGESP algorithm 
for the problem of robot localisation, it basically checks all 
the possible robot poses to obtain the m e  robot position. 
A diagrammatic representation of IMAGESP is given in 
Figure 5 .  

Thus the actual position of the robot represented here 
by the configuration vector p at any given instant of One 
can be found using STVIA or IMAGESP algorithms, where 
basically the subpa7,ings in SIVIA and IMAGESP repre- 
sent the configuration vectors p in the robot localisation 
problem. 

The Figure 4 gives a brief description of the sensor 
model and also the measurement process. 

A detailed description of the above inclusion functions 
has been provided by [41. Also a better version of the above 
algorithm in terms of computational time, incorporating 
the interval elementary tests to eliminate some of the 
infeasible configurations in the configuration vector has 
been described in 141, in which the problem is reformulated 
as P = {p E bo\ 1 t ( p )  holdstrue} (i.e.) P = {p E [Po] I 
t ( p )  = 1) , where t (p)  is a global test. The global test 
t ( p )  consists of various elementary tests (three tests [41) 
and they are robust to outliners as well as described in [4]. 
Also the purpose of the first two tests is to eliminate some 
infeasible configurations there by saving computational 
lime. But if all the three tests are used when the range of 
the sensor is limited, it leads to scenarios in which some 



feasible configurations are ignored prematurely. Therefore 
only two tests were used (first test (inroom test) and the 
thud test (data test (i.e.) (dm) E [d]) in (41). The main 
consequence of not using the second test (i.e. leg in test) 
when the sensor range is limited is that it may increase the 
computation time. 

In the case when the robot is moving the robots position 
needs to he tracked, in which case the robots position 
needs to predicted at the next instant to estimate the 
robots position at that instant. This is done by using the 
physical limitations of the robot based on the maximum 
possible speed and heading angle rate of the robot, instead 
of using a dynamic robot model with interval values [7] 
or position information from other sensors namely INS 
and encoders in this case. Thus we obtain an independent 
interval position of the robot from the ultrasonic sensors. 

V. INTERVAL ANALYSIS BASED ADAPTIVE MECHANISM 
FOR U K E  

Sensor fusion is a "ery important and keenly researched 
topic in the domain of mobile robotics. This is due to the 
fact that, instead of using bespoke expensive sensors for 
estimating the robots position, multiple low cost sensors 
can he used, there by reducing the cost of developing the 
robot. Moreover these same sensors can be used to do 
other tasks other than estimating the robots position such as 
building the map of the robots environment using ultrasonic 
sensors etc. Also the source of errors in one sensor may be 
different from another one and this fact can be exploited 
to eliminate the errors in the measurements. 

For the problem of sensor fusion stochastic filters, such 
as Kalman filters, are commonly used. But they suffer 
from the same disadvantages described before (i.e.) an 
accurate model of the system and statistics are needed. In 
order to overcome these difficulties and obtain a guaranteed 
position of the robot while using the UKF, a new approach 
has been introduced in this paper. As described above 
the robots position are estimated using two independent 
sources namely, the robot position from inertial sensors 
and the interval robot position from ultrasonic sensors. 

The position obtained using IA is updated only once 
every second (due to computation time), where as the 
position from inertial sensors and encoders are updated 100 
times per second. Moreover we know that the robots inter- 
val position to be guaranteed. The interval robot position 
thus obtained using ultrasonic sensors is like a plane or 
rectangle (i.e) basically an uniform distribution. Then the 
estimated position using the INS is checked whether they 
are inside this rectangle. In case they are present inside 
the rectangle then they are trusted to he accurate and used. 
Altematively if they are not then both the measurements 
are fused by selecting the point on the rectangle (box) (i.e.) 
the intend robot position, which is geometrically closest 
to the robot position estimated using UKF with inertial 
sensors, thereby hounding the error in the UKF estimates, 
A block diagram of the sensor fusion method is given in 
Figure 6. 

...... 

Fig. 7. UKP only crtimaled rohoi position 

The algorithm described above has been successfully 
implemented in simulation using C++ and MATLAB soft- 
ware. Figure 7 shows the robot position estimate using 
UKF only, which is affected by sensor bias, drift etc. The 
Figure 8 shows the robot position after using the adaptive 
UKF robot position estimate using the SIVIA interval 
robot position for adaptation. Similarly the Figure 9 shows 
the UKF robot position estimation using the IMAGESP 
intend algorithm for the adaptive mechanism. In both 
cases it can he observed that the UKF estimate with the 
interval adaptive mechanism is much better than the UKF 
position estimate alone. It should be noted however that the 
SIVIA interval position uncertainty is greater than that of 
the IMAGESP algorithm. The reduction in uncertainty of 
the estimated interval robot position using the IMAGESP 
algorithm is attained at the cost of more computation time 
when compared with the SIVIA algorithm. This is because, 
in the IMAGESP algorithm, the whole initial suhpaving is 
divided into many boxes of identical width less than or 
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Fig. 8. Furcd robot position urine SIVIA algorithm as adaptive 
mcchanism in UKF 

equal to t (0.01 in our case) and the global test l ( p )  is 
performed on all of these boxes. 

In the SIVIA algorithm the global test t @ )  is performed 
on the initial subpaving and if the test result indicates that 
the actual position of the robot may be present inside the 
initial subpaving, the subpaving is bisected into two child 
subpavings and the global test is performed on each one 
of them. This process is repeated until the width of the 
subdivided boxes isless than or equal to e and the resulting 
interval robot position is obtained. 

It can be seen in Figure 9 that when the position estimate 
of UKF is fused with the IA it results to very small 
position error. That is because of the small interval of 
the position estimate obtained using IMAGESP. Hence 
even if IMAGESP interval estimate comes at the cost of 
more computation time when compared with the SlVIA 
algorithm it results in a much more accurate fused robot 
position estimate. 

Moreover, in Figure 8, it can be seen that the interval 
position uncerlainty increases as expected when there are 
no land marks visible to the robots ultrasonic sensors. This 
can be seen in the Figure 8 when the robot begins to 
move and also at instances in between landmarks, when 
the number of ultrasonic sensors for which the landmarks 
are visible is less. 

VI. CONCLUSION 

An Unscented Kalman filter (UKF) using an Interval 
Analysis (IA) based adaptive .mechanism has been de- 
scribed. The UKF uses accelerometers, gyroscopes and 
encoders to measure the robots speed and heading angle, 
so that the robots position can be estimated. But the UKF 
robot position estimate is affected by errors in robot model, 
sensor bias, drift etc. The IA is a deterministic approach 
to estimating the robots position without using a model 
of the robot system, thereby minimizing errors due to 
inaccurate robot model. Additionally the previous work 
on robot localisation and navigation using IA has been 
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Fig. 9. 
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hsed robot parition using MAGESP algorithm as adaptive 

extended, so as to incorporate sensor range limitation as 
well. Moreover instead of using dynamic interval model of 
the robot to predict the next step of the robot, the physical 
l i t a t i o n s  of the robot are used to predict the next step of 
the robot in the IA algorithm. 

The guaranteed IA robot position estimate is then used 
as an adaptive mechanism to correct the errors in the UKF 
robot position estimate. 
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