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Abstract – This paper shows how to adapt the Set 

Inversion Via Interval Analysis algorithm (SIVIA) to the 

problem of mobile robot start-up positioning with a 

goniometric sensor. This approach is an alternative way to 

Markov, MonteCarlo and Neural Networks techniques, 

among others, that deal with that problem. SIVIA brings a 

global solution and confines the desired result into a union of 

intervals.

Index Terms – start-up positioning, mobile robot, interval 

analysis.

I. INTRODUCTION

 The goal of this paper is to present an approach to the 

problem of start-up positioning of a mobile robot using 

interval analysis techniques. In order to use this 

methodology, working environment must contain a 

sufficient number of landmarks, and a map of the total 

workspace must be provided. With bearing information 

obtained from goniometric sensor and knowledge of 

landmarks position, it can be obtained the absolute pose of 

the robot. By absolute pose, it must be understood the 

[x,y,Ψ] triplet: [x,y] position plus the orientation Ψ with 

respect to workspace framework. 

 Triangulation is the method used traditionally to 

position a mobile robot with bearing information with 

respect to three known landmarks [1]. However, these 

three landmarks must have been identified a priori. In the 

case that no identification information is known, as in the 

case of start-up positioning, triangulation can not be used 

directly. 

 Moreover, eventually some added problems may arise: 

1) Occlusions: A landmark may eventually be 

occluded by a column or other vehicle. 

2) Outliers: Depending on the chosen sensor, some 

outlier measurements may appear in the obtained 

information. 

 3) Heterogeneous landmark maps: In some sector of 

the workspace the robot will see one map, and in another 

sector the map will be completely different. It must be 

taken into account to be able to position the robot among 

all these heterogeneous zones. 

 Several approaches are already used in start-up 

positioning. Markov methodology [2] uses a topological 

discretization of environment (grid), which covers a 

discrete set of robot feasible positions. It can easily be seen 

that an inadequate discretization of the workspace will 

result in an intractable grid. In MonteCarlo techniques [3], 

also called particle filters, the state is not discretized (i.e. 

they do not work with a grid); hence they require less 

memory resources. Another approach is the use of neural 

networks. In a paper from Hu and Gu [4], it is shown the 

result of using a Kohonen Neural Network in robot start-up 

positioning. However, neural networks suffer from lack of 

determinism, since the result obtained has always a 

percentage of confidence. 

 An interesting work made by Kieffer, Jaulin et al. [5], 

from CNRS, presents a methodology based in interval 

analysis techniques. In this approach they use a wide set of 

ultrasonic sensors placed on top of the robot, each one 

facing a different direction. This positioning is mainly 

static and slow, but very robust at the same time, allowing 

start-up without coded landmarks. 

 This paper shows how to apply interval analysis 

techniques for the start-up positioning of mobile robots 

equipped with a sensor that give bearing angles to known 

landmarks. 

II. FOCUSING THE PROBLEM

 In order to apply the proposed methodology, the robot 

must be equipped with any kind of sensor from which can 

be extracted bearing information. For instance, camera 

sensors can provide us with this information by means of 

applying computer vision algorithms. In this case, vertical 

edges as door frames or windows can act as landmarks. 

Another example of obtaining bearing angles is to use a 

laser scanner to detect landmarks. 

 In Fig. 1 we can see an example of the angles at which 

we would see some landmarks in our workspace. 

 Our problem is to find the [x,y,Ψ] triplet that has 

resulted in concrete sensor measurements: [θ1, θ2, … θn]. 

To simplify the problem, we suppose that the robot has not 

been moving until the first complete landmark map is 

obtained from the sensor (static start-up positioning). 



Fig. 1 Example of sensor measurements from a robot pose 

III. THEORIC FRAMEWORK OF INTERVAL ANALYSIS

 Before we begin, we are going to give a view of the 

problem by using set theory mathematics. Our problem 

deals with the two sets shown in Fig. 2: 

Fig. 2 The two sets implied in our problem 

 The set P contains every position-orientation triplet of 

the vehicle. The set L contains every possible n-tuple of 

goniometric measured angles. At last, we have a function 

called f that takes in an element of P, and using the 

knowledge of the workspace returns the corresponding 

element of L. Function f should be injective, otherwise 

there could exist ambiguities: it depends on the correct 

choose of landmarks and perhaps on other factors, but it 

falls outside the scope of this work. 

 However, it has not been found yet the inverse 

function f -1 that takes in a n-tuple of L and with the aid of 

workspace knowledge, may return the element of P, i.e. a 

[x,y,Ψ] triplet. This paper presents an alternative way of 

finding f -1 by means of a technique based in interval 

analysis. The SIVIA algorithm (Set Inversion Via Interval 

Analysis) lets us solve set inversion problems: our case is a 

clear example, since we want to travel from a subset 

(interval) of L to the corresponding origin subset (interval) 

of P. This interval methodology allows us to take into 

account sensor imperfections and precision, so we finally 

get an interval of values for each angle in the n-tuple: in 

other words, a subset of elements of L. 

 Interval analysis techniques require the use of interval 

domains for all variables in the algorithm, even the 

Boolean ones. In addition to this, every function must be 

adapted to deal with intervals, as can be seen in [6]. 

 We must also take into account the following aspects, 

specifics to our problem: 

1) The elements of the two sets P and L will now be 

interval (Pi and Li): [ [xinf xsup], [yinf ysup], [Ψinf Ψsup] ] and 

[ [θ1inf θ1sup], [θ2inf θ2sup], … [θninf θnsup] ]. 

2) Function f, which went from P to L, now must go 

from Pi to Li. So we must define a new function fi which 

allows working with interval arithmetic. 

IV. THE SIVIA ALGORITHM

 The SIVIA algorithm is as follows: 

push([iini],S); // where S is a stack 

while S ∅

   [i]=pop(S); 

   if [ftest]([i])=[1 1] then push([i],SS); // SS: the “sure” result stack 

   elseif [ftest]([i])=[0 0] then do nothing; 

   elseif width([i])<ε then push([i],SM); // SM: the “maybe” result stack 

   else {[i1],[i2]}=bisect([i]); push([i1],[i2],S) 

end while; 

return value = {SS, SM}

 The functions that return intervals have been 

represented between square brackets [ ]. The aim is to 

compute the set [R] of elements of the origin that obey a 

property (represented by the function ftest, which evaluates 

true when that property is obeyed). 

 It begins dealing with an initial interval [iini]. While 

the algorithm loop is running, whenever the test function 

evaluates [0,1] the interval evaluated is divided into two 

halves (bisection). This way, all the search space will be 

classified by the test function. If doing a bisection, 

intervals are obtained that still evaluate [0,1], and their 

width is smaller than a predefined parameter ε, they are 

taken out of the search stack and passed to the “maybe” 

result stack. This shows that it has not been possible to 

define if the interval obeys or not the applied test function. 

This is the way of making the algorithm end in a finite 

time. The smaller the value of ε, the better the precision of 

the obtained result, but also the higher the CPU time 

required to finish. 

 If we call ∆R the union of intervals in the “maybe” 

result stack, and R− the union of the “sure” result stack 

ones, then the desired set R can be enclosed the following 

way: R− ⊆  R ⊆  R−∪∆R . 

 It has been said that SIVIA algorithm works with 

interval variables, but they are n-dimensional intervals, 

which can be called “boxes.” In our case, we will work 

with three-dimensional boxes (since the origin set called P 

was three-dimensional). When a bisection is made, the 

division is made across the wider dimension of the box. 

 In our positioning problem, the initialization is made 

by pushing 3 boxes in S stack. Each of them corresponds 

to each zone where the robot can physically be, as can be 

seen in Fig. 3: 



Fig. 3 The three boxes pushed in SIVIA stack initialization 

 In Fig. 3 above, the boxes are drawn in 2D, to help 

representing them in the workspace. But actually they are 

three-dimensional, with the third dimension varying 

among the interval [0, 2π] (i.e. orientation Ψ must also be 

obtained by the algorithm). It is shown in Fig. 4. 

V. THE TEST FUNCTION

 The way to adapt SIVIA to the start-up positioning 

problem is designing the ftest function specific to this 

problem, since the rest of the algorithm remains the same. 

Fig. 4 SIVIA search boxes shown in 3D 

 The algorithm of our ftest is as follows: 
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 As can be seen, the algorithm calls a function named 

create_list_interval_land, that computes a list whose 

elements are the intervals of angles from the present box to 

each landmark. The following figure shows the algorithm 

analyzing a box after having done several bisections. In 

Fig. 5 we can see how the function 

create_list_interval_land computes one of the intervals of 

angles mentioned before: 

Fig. 5 Graphical view of obtaining a landmark's interval 

 The resulting interval for this landmark would be 

[αmin,αmax]. Remember that, in general case, the Ψ

dimension of the box must be taken into account in the 

following way: 
min max min max_ [ , ] [ , ]land interval = + Ψ Ψ

 Afterwards, the interval Boolean function 

any_int_land_in_int_m is computed for each measurement 

interval m, and the results are summed up into the interval 

variable [count]. The purpose of this function is to try to 

explain a real interval measurement from the hypothesis of 

the present box. For instance, we can see a measurement 

interval partially explained by a computed landmark 

interval in Fig. 6 below. In order to graphically represent 

the obtained landmark interval, the box is wrapped into a 

single point, from which all angle intervals come out. 

Fig. 6 Graphical view of a landmark's interval partially explaining a 

goniometric measurement 



 The function result for that measurement interval in 

this situation would be [0,1], because there are some 

elements in the represented landmark interval that do not 

explain the measurement (i.e. that are not contained in the 

measurement interval). 

 At last, the return value of the test function is actually 

computed. If every measurement was explained by this 

box, the output is [1,1]. If it is not the case, the upper 

bound of [count] indicates indirectly how many 

measurements were not explained at all (i.e. how many 

returned [0,0] from any_int_land_in_int_m). If the number 

of unexplained is greater than the amount of allowed 

outliers, the test function returns [0,0]. Otherwise, it 

returns [0,1]. 

 It must be noted that the correct way for dealing with 

outliers would be putting SIVIA inside a loop to be 

executed several times. The first run of the loop would 

begin with no outliers allowed, and as long as no result 

boxes are obtained at the end, it would be executed again 

with one more outlier allowed. 

 The test function presented works with no problem in 

rooms where all landmarks can be seen from any robot 

location in the room. Fig. 7 shows two robot locations with 

identical sensor measurement but pose 2 is unfeasible 

because landmark R5 can not be seen from that position. 

We need an extended test function that discards these 

unfeasible configurations taking into account the visibility 

of landmarks. 

Fig. 7 Obstacle before reaching R5 makes unfeasible the pose 2 

A. Extended Test Function 

 A little change in SIVIA algorithm structure will be 

introduced. A visibility vector will be associated to each 

box. This vector will be compound of interval Boolean 

values which will define visibility from the box to each 

reflector.

 The SIVIA algorithm must be modified in order to 

always push both a box and its corresponding visibility 

vector. The first three boxes with which the algorithm is 

initialized will be associated with three visibility vectors 

with [0,1] values. The modified SIVIA algorithm is as 

follows: 

push([iini],S); // where S is a stack 

push(iVisini,V); // where V is a stack 

while S ∅

   [i]=pop(S); 

   iVis=pop(V); 

   [[out],iVis]=[fVistest]([i],iVis);

   if [out]=[1 1] then push([i],SS); // SS: the “sure” result stack 

   elseif [out]=[0 0] then do nothing; 

   elseif width([i])<ε then push([i],SM); // SM: the “maybe” result stack 

else {[i1],[i2]}=bisect([i]); push([i1],[i2],S); push(iVis,iVis,V); 

end while; 

return value = {SS, SM}

 It can be seen that the test function is now called 

fVistest. With this new situation, the test function is called 

with two arguments: the box and its visibility vector. And 

now it returns two output values: the interval Boolean 

result and the updated visibility vector. The new algorithm 

is as shown here: 
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 The first that the algorithm does is making a copy of 

the visibility vector argument into a temporal variable, 

called vis_out, which will be used for internal 

computations and returned at the end of the function as the 

updated visibility values. Afterwards, it re-computes the 

visibility from the present box to all those landmarks 

whose visibility value was [0,1]. This is due to the fact that 

when bisections are done and smaller boxes are generated, 

the [0,0] and [1,1] landmark visibilities will be inherited 

by the sub-boxes, so there is no need for reviewing them. 

However, if a landmark visibility was [0,1] in the parent 

box, it can now have derived to [0,0], [1,1] or remained 

the same [0,1]. An example of this situation is shown in 



the following Fig. 8. The parent box has [0,1] visibility for 

R9 landmark, so when its two child boxes are generated, 

visibility for this landmark must be recomputed for both. 

After obtaining new values, one of these two child boxes 

has [0,0] visibility for R9, so all of its future sub-boxes 

will inherit [0,0] value directly. 

Fig. 8 Updating a visibility value after a bisection 

 Then, the list int_land is obtained as explained in the 

primitive test function. However, to avoid unnecessary 

processing time, it will now be computed only for 

landmarks with non-[0,0] visibility. 

 The function any_vis_int_land_in_int_m is used in a 

very similar manner as its counterpart in the primitive ftest.

Now it’s slightly modified to deal with visibility 

information. 
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 At last, the fVistest function assembles the tuple to be 

returned.

VI. RESULTS

 Our robot is an automated fork-lift truck. On the top 

of the robot there is a laser based goniometric sensor. It 

allows us to scan the working area by means of counter 

clockwise laser rotations. In the walls we have put several 

reflecting elements in known positions, acting as 

landmarks. Each time the laser detects any of them, we are 

warned of the detection and the angle at which it has 

occurred. We can see the vehicle and two reflectors in Fig. 

9. Each time it passes by the 0 degrees angle (aligned with 

the robot), it sends us a signal, so we can know the exact 

angle at which we see every beacon with respect to the 

robot’s own orientation. For the sake of simplicity, we will 

think of landmarks being points, i.e. without width. 

Actually, laser will give us a rising and a falling edge for 

each reflector, but only the rising edge will be taken into 

account. 

Fig. 9 Mobile robot in testing workspace 

 In order to see the response of the algorithm proposed 

in this paper at a realistic industrial environment, it has 

been tested at 14 different positions. Fig. 10 shows the 

robot at point P1, while the other 13 locations have been 

marked as circles. The coordinates of all tested positions 

are shown in Table I. It must be noted that for simplicity 

all the test poses have the same orientation: 0 rad. We have 

empirically determined that if the algorithm has been able 

to obtain the correct position of the robot, the found 

orientation will also be the correct one. 

Fig. 10 Pose used for evaluating SIVIA algorithm 



 For each test point, the algorithm is executed many 

times, reducing the value of  at each step, until it finds 

some [1 1] box. The obtained results are presented at 

Table I. Fig. 11 and Fig. 12 show an intermediate step and 

the final result, respectively, of the algorithm evaluation at 

P4 test point. It can be noticed that when the value of  is 

20 cm. the algorithm yields many scattered undetermined 

boxes (represented as yellow boxes). Afterwards, when the 

algorithm has progressed, and the value of  has reached 

0.3171 mm, not only there are less undetermined boxes but 

a number of [1 1] boxes (red) have appeared. 

Fig. 11 Point P4, intermediate results at =0.20 m. 

Fig. 12 Point P4, final step using =0.3171 mm. 

 Table I summarizes some relevant results of the 

execution of the algorithm over the 14 tested points. min is 

the value of  that has been needed for obtaining [1 1] 

boxes. µ[1,1] is the mean of the centre points of all the [1 1] 

boxes found. The error distance between the actual test 

point location and the µ[1,1] point obtained, is represented as 

derror. At last, the execution time of the algorithm for each 

test point is represented as texec. It must be noted that the 

timing results have been obtained in a Pentium IV 3.2 

GHz, using Matlab to implement the algorithm. The result 

boxes are shown in 2D. 

TABLE I 

TEST RESULTS

Point Coord. min (mm.) µ[1,1] (m.) derror (mm.) texec (s.) 

P1 [6, 5] 0.75169 [6.0019,4.9984] 2.494 36.422 

P2 [8, 5] 0.31712 [7.9997,5.0014] 1.426 16.824 

P3 [6, 8] 0.31712 [5.9998,7.9999] 0.134 15.516 

P4 [8, 8] 0.31712 [8.0000,8.0000] 0.074 15.891 

P5 [6, 11] 0.31712 [5.9999,11.0000] 0.107 17.375 

P6 [8, 11] 0.31712 [8.0001,11.0000] 0.128 16.641 

P7 [8.5, 3.8] 0.31712 [8.4999,3.8000] 0.091 20.813 

P8 [8.5, 3.2] 0.31712 [8.5001,3.2000] 0.107 15.156 

P9 [1.5, 1.3] 0.31712 [1.4997,1.3000] 0.220 16.641 

P10 [1.5, 2.5] 0.31712 [1.4999,2.4999] 0.076 20.516 

P11 [5, 1.3] 0.31712 [5.0000,1.3000] 0.054 16.781 

P12 [5, 2.5] 0.31712 [4.9998,2.5002] 0.248 16.406 

P13 [8.5, 1.3] 0.31712 [8.5000,1.2999] 0.076 11.844 

P14 [8.5, 2.5] 0.31712 [8.4999,2.5000] 0.050 14.422 

 As we can see in Table I, all the results give an error 

distance lower than 2.5 mm, which is more than good for 

start-up positioning in the industrial application of our 

fork-lift truck. 
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