
Mobile Robot Start-Up Positioning using Interval

Analysis*

Antonio B. Martínez, Josep Escoda and Antonio Benedico

Departament d’Enginyeria de Sistemes, Universitat Politècnica de Catalunya (ESAII-UPC)

Campus Sud UPC – Edifici U

C/ Pau Gargallo, 5 – 08028 Barcelona, Spain

E-mail: {Antonio.B.Martinez,Josep.Escoda,Toni.Benedico}@upc.edu

* This research is sponsored by the Catalan Research Directorate, in the framework of its Reference Center of Advanced Production Technologies

(CeRTAP).

Abstract – This paper shows how to adapt the Set

Inversion Via Interval Analysis algorithm (SIVIA) to the

problem of mobile robot start-up positioning with a

goniometric sensor. This approach is an alternative way to

Markov, MonteCarlo and Neural Networks techniques,

among others, that deal with that problem. SIVIA brings a

global solution and confines the desired result into a union of

intervals.

Index Terms – start-up positioning, mobile robot, interval

analysis.

I. INTRODUCTION

 The goal of this paper is to present an approach to the

problem of start-up positioning of a mobile robot using

interval analysis techniques. In order to use this

methodology, working environment must contain a

sufficient number of landmarks, and a map of the total

workspace must be provided. With bearing information

obtained from goniometric sensor and knowledge of

landmarks position, it can be obtained the absolute pose of

the robot. By absolute pose, it must be understood the

[x,y,Ψ] triplet: [x,y] position plus the orientation Ψ with

respect to workspace framework.

 Triangulation is the method used traditionally to

position a mobile robot with bearing information with

respect to three known landmarks [1]. However, these

three landmarks must have been identified a priori. In the

case that no identification information is known, as in the

case of start-up positioning, triangulation can not be used

directly.

 Moreover, eventually some added problems may arise:

1) Occlusions: A landmark may eventually be

occluded by a column or other vehicle.

2) Outliers: Depending on the chosen sensor, some

outlier measurements may appear in the obtained

information.

 3) Heterogeneous landmark maps: In some sector of

the workspace the robot will see one map, and in another

sector the map will be completely different. It must be

taken into account to be able to position the robot among

all these heterogeneous zones.

 Several approaches are already used in start-up

positioning. Markov methodology [2] uses a topological

discretization of environment (grid), which covers a

discrete set of robot feasible positions. It can easily be seen

that an inadequate discretization of the workspace will

result in an intractable grid. In MonteCarlo techniques [3],

also called particle filters, the state is not discretized (i.e.

they do not work with a grid); hence they require less

memory resources. Another approach is the use of neural

networks. In a paper from Hu and Gu [4], it is shown the

result of using a Kohonen Neural Network in robot start-up

positioning. However, neural networks suffer from lack of

determinism, since the result obtained has always a

percentage of confidence.

 An interesting work made by Kieffer, Jaulin et al. [5],

from CNRS, presents a methodology based in interval

analysis techniques. In this approach they use a wide set of

ultrasonic sensors placed on top of the robot, each one

facing a different direction. This positioning is mainly

static and slow, but very robust at the same time, allowing

start-up without coded landmarks.

 This paper shows how to apply interval analysis

techniques for the start-up positioning of mobile robots

equipped with a sensor that give bearing angles to known

landmarks.

II. FOCUSING THE PROBLEM

 In order to apply the proposed methodology, the robot

must be equipped with any kind of sensor from which can

be extracted bearing information. For instance, camera

sensors can provide us with this information by means of

applying computer vision algorithms. In this case, vertical

edges as door frames or windows can act as landmarks.

Another example of obtaining bearing angles is to use a

laser scanner to detect landmarks.

 In Fig. 1 we can see an example of the angles at which

we would see some landmarks in our workspace.

 Our problem is to find the [x,y,Ψ] triplet that has

resulted in concrete sensor measurements: [θ1, θ2, … θn].

To simplify the problem, we suppose that the robot has not

been moving until the first complete landmark map is

obtained from the sensor (static start-up positioning).

Fig. 1 Example of sensor measurements from a robot pose

III. THEORIC FRAMEWORK OF INTERVAL ANALYSIS

 Before we begin, we are going to give a view of the

problem by using set theory mathematics. Our problem

deals with the two sets shown in Fig. 2:

Fig. 2 The two sets implied in our problem

 The set P contains every position-orientation triplet of

the vehicle. The set L contains every possible n-tuple of

goniometric measured angles. At last, we have a function

called f that takes in an element of P, and using the

knowledge of the workspace returns the corresponding

element of L. Function f should be injective, otherwise

there could exist ambiguities: it depends on the correct

choose of landmarks and perhaps on other factors, but it

falls outside the scope of this work.

 However, it has not been found yet the inverse

function f -1 that takes in a n-tuple of L and with the aid of

workspace knowledge, may return the element of P, i.e. a

[x,y,Ψ] triplet. This paper presents an alternative way of

finding f -1 by means of a technique based in interval

analysis. The SIVIA algorithm (Set Inversion Via Interval

Analysis) lets us solve set inversion problems: our case is a

clear example, since we want to travel from a subset

(interval) of L to the corresponding origin subset (interval)

of P. This interval methodology allows us to take into

account sensor imperfections and precision, so we finally

get an interval of values for each angle in the n-tuple: in

other words, a subset of elements of L.

 Interval analysis techniques require the use of interval

domains for all variables in the algorithm, even the

Boolean ones. In addition to this, every function must be

adapted to deal with intervals, as can be seen in [6].

 We must also take into account the following aspects,

specifics to our problem:

1) The elements of the two sets P and L will now be

interval (Pi and Li): [[xinf xsup], [yinf ysup], [Ψinf Ψsup]] and

[[θ1inf θ1sup], [θ2inf θ2sup], … [θninf θnsup]].

2) Function f, which went from P to L, now must go

from Pi to Li. So we must define a new function fi which

allows working with interval arithmetic.

IV. THE SIVIA ALGORITHM

 The SIVIA algorithm is as follows:

push([iini],S); // where S is a stack

while S ∅

 [i]=pop(S);

 if [ftest]([i])=[1 1] then push([i],SS); // SS: the “sure” result stack

 elseif [ftest]([i])=[0 0] then do nothing;

 elseif width([i])<ε then push([i],SM); // SM: the “maybe” result stack

 else {[i1],[i2]}=bisect([i]); push([i1],[i2],S)

end while;

return value = {SS, SM}

 The functions that return intervals have been

represented between square brackets []. The aim is to

compute the set [R] of elements of the origin that obey a

property (represented by the function ftest, which evaluates

true when that property is obeyed).

 It begins dealing with an initial interval [iini]. While

the algorithm loop is running, whenever the test function

evaluates [0,1] the interval evaluated is divided into two

halves (bisection). This way, all the search space will be

classified by the test function. If doing a bisection,

intervals are obtained that still evaluate [0,1], and their

width is smaller than a predefined parameter ε, they are

taken out of the search stack and passed to the “maybe”

result stack. This shows that it has not been possible to

define if the interval obeys or not the applied test function.

This is the way of making the algorithm end in a finite

time. The smaller the value of ε, the better the precision of

the obtained result, but also the higher the CPU time

required to finish.

 If we call ∆R the union of intervals in the “maybe”

result stack, and R− the union of the “sure” result stack

ones, then the desired set R can be enclosed the following

way: R− ⊆ R ⊆ R−∪∆R .

 It has been said that SIVIA algorithm works with

interval variables, but they are n-dimensional intervals,

which can be called “boxes.” In our case, we will work

with three-dimensional boxes (since the origin set called P

was three-dimensional). When a bisection is made, the

division is made across the wider dimension of the box.

 In our positioning problem, the initialization is made

by pushing 3 boxes in S stack. Each of them corresponds

to each zone where the robot can physically be, as can be

seen in Fig. 3:

Fig. 3 The three boxes pushed in SIVIA stack initialization

 In Fig. 3 above, the boxes are drawn in 2D, to help

representing them in the workspace. But actually they are

three-dimensional, with the third dimension varying

among the interval [0, 2π] (i.e. orientation Ψ must also be

obtained by the algorithm). It is shown in Fig. 4.

V. THE TEST FUNCTION

 The way to adapt SIVIA to the start-up positioning

problem is designing the ftest function specific to this

problem, since the rest of the algorithm remains the same.

Fig. 4 SIVIA search boxes shown in 3D

 The algorithm of our ftest is as follows:

{ }

{ }

list of landmarks with their coordinates

list of sensor measurements intervals, i.e. ['s]

_ _ (,)

[] (,)

[1,1]

=

m mea

test

land

mea

int land create list_interval_land box land

count any_int_land_in_int_m int_land m

f

θ

∈

=

=

=

=

_

 , [] [,]

[0,0] , upper_bound([]) ()

[0,1] , else

mea mea

mea outliers allowed

count

count

= # #

< # − #

 As can be seen, the algorithm calls a function named

create_list_interval_land, that computes a list whose

elements are the intervals of angles from the present box to

each landmark. The following figure shows the algorithm

analyzing a box after having done several bisections. In

Fig. 5 we can see how the function

create_list_interval_land computes one of the intervals of

angles mentioned before:

Fig. 5 Graphical view of obtaining a landmark's interval

 The resulting interval for this landmark would be

[αmin,αmax]. Remember that, in general case, the Ψ

dimension of the box must be taken into account in the

following way:
min max min max_ [,] [,]land interval = + Ψ Ψ

 Afterwards, the interval Boolean function

any_int_land_in_int_m is computed for each measurement

interval m, and the results are summed up into the interval

variable [count]. The purpose of this function is to try to

explain a real interval measurement from the hypothesis of

the present box. For instance, we can see a measurement

interval partially explained by a computed landmark

interval in Fig. 6 below. In order to graphically represent

the obtained landmark interval, the box is wrapped into a

single point, from which all angle intervals come out.

Fig. 6 Graphical view of a landmark's interval partially explaining a

goniometric measurement

 The function result for that measurement interval in

this situation would be [0,1], because there are some

elements in the represented landmark interval that do not

explain the measurement (i.e. that are not contained in the

measurement interval).

 At last, the return value of the test function is actually

computed. If every measurement was explained by this

box, the output is [1,1]. If it is not the case, the upper

bound of [count] indicates indirectly how many

measurements were not explained at all (i.e. how many

returned [0,0] from any_int_land_in_int_m). If the number

of unexplained is greater than the amount of allowed

outliers, the test function returns [0,0]. Otherwise, it

returns [0,1].

 It must be noted that the correct way for dealing with

outliers would be putting SIVIA inside a loop to be

executed several times. The first run of the loop would

begin with no outliers allowed, and as long as no result

boxes are obtained at the end, it would be executed again

with one more outlier allowed.

 The test function presented works with no problem in

rooms where all landmarks can be seen from any robot

location in the room. Fig. 7 shows two robot locations with

identical sensor measurement but pose 2 is unfeasible

because landmark R5 can not be seen from that position.

We need an extended test function that discards these

unfeasible configurations taking into account the visibility

of landmarks.

Fig. 7 Obstacle before reaching R5 makes unfeasible the pose 2

A. Extended Test Function

 A little change in SIVIA algorithm structure will be

introduced. A visibility vector will be associated to each

box. This vector will be compound of interval Boolean

values which will define visibility from the box to each

reflector.

 The SIVIA algorithm must be modified in order to

always push both a box and its corresponding visibility

vector. The first three boxes with which the algorithm is

initialized will be associated with three visibility vectors

with [0,1] values. The modified SIVIA algorithm is as

follows:

push([iini],S); // where S is a stack

push(iVisini,V); // where V is a stack

while S ∅

 [i]=pop(S);

 iVis=pop(V);

 [[out],iVis]=[fVistest]([i],iVis);

 if [out]=[1 1] then push([i],SS); // SS: the “sure” result stack

 elseif [out]=[0 0] then do nothing;

 elseif width([i])<ε then push([i],SM); // SM: the “maybe” result stack

else {[i1],[i2]}=bisect([i]); push([i1],[i2],S); push(iVis,iVis,V);

end while;

return value = {SS, SM}

 It can be seen that the test function is now called

fVistest. With this new situation, the test function is called

with two arguments: the box and its visibility vector. And

now it returns two output values: the interval Boolean

result and the updated visibility vector. The new algorithm

is as shown here:

{ }

{ }

{ }

list of landmarks with their coordinates

list of laser measurements intervals

list of obstacles (mainly walls)

_ vector to be returned with updated visibility values

_ _

r la

land

mea

obst

vis out

vis out vis in

∈

=

=

=

=

=

_ [] [0,1]

_ [] [0,0]

_ [] _ (, ,)

_ [] _ (,)

[] _ (, , _)

[1,1] , [

=

nd vis out r

r land vis out r

m mea

test

vis out r recompute visibility r box obst

int land r create interval_land box r

cnt any_vis int_land_in_int_m int_land m vis out

cn

f

∧ =

∈ ∧ ≠

∈

=

=

=

∀

∀

_

] [,]

[0,0] , upper_bound([]) ()

[0,1] , else

_

mea mea

mea outliers allowed

t

cnt

vis out

= # #

< # − #

 The first that the algorithm does is making a copy of

the visibility vector argument into a temporal variable,

called vis_out, which will be used for internal

computations and returned at the end of the function as the

updated visibility values. Afterwards, it re-computes the

visibility from the present box to all those landmarks

whose visibility value was [0,1]. This is due to the fact that

when bisections are done and smaller boxes are generated,

the [0,0] and [1,1] landmark visibilities will be inherited

by the sub-boxes, so there is no need for reviewing them.

However, if a landmark visibility was [0,1] in the parent

box, it can now have derived to [0,0], [1,1] or remained

the same [0,1]. An example of this situation is shown in

the following Fig. 8. The parent box has [0,1] visibility for

R9 landmark, so when its two child boxes are generated,

visibility for this landmark must be recomputed for both.

After obtaining new values, one of these two child boxes

has [0,0] visibility for R9, so all of its future sub-boxes

will inherit [0,0] value directly.

Fig. 8 Updating a visibility value after a bisection

 Then, the list int_land is obtained as explained in the

primitive test function. However, to avoid unnecessary

processing time, it will now be computed only for

landmarks with non-[0,0] visibility.

 The function any_vis_int_land_in_int_m is used in a

very similar manner as its counterpart in the primitive ftest.

Now it’s slightly modified to deal with visibility

information.

()()

()()

()()

[1,1] , _ [] [1,1] [] [1,1]

[0,1] , _ [] [1,1] [] [1,1]

_ [] [] [0,1]

[0,0] , else

r land

r land

r land

vis out r int_land r int_m

vis out r int_land r int_m
return

vis out r int_land r int_mvalue

∈

∈

∈

= ∧ ∈ =

¬ = ∧ ∈ =

=
∧ ∧ ∈ =

∃

∃

∃

 At last, the fVistest function assembles the tuple to be

returned.

VI. RESULTS

 Our robot is an automated fork-lift truck. On the top

of the robot there is a laser based goniometric sensor. It

allows us to scan the working area by means of counter

clockwise laser rotations. In the walls we have put several

reflecting elements in known positions, acting as

landmarks. Each time the laser detects any of them, we are

warned of the detection and the angle at which it has

occurred. We can see the vehicle and two reflectors in Fig.

9. Each time it passes by the 0 degrees angle (aligned with

the robot), it sends us a signal, so we can know the exact

angle at which we see every beacon with respect to the

robot’s own orientation. For the sake of simplicity, we will

think of landmarks being points, i.e. without width.

Actually, laser will give us a rising and a falling edge for

each reflector, but only the rising edge will be taken into

account.

Fig. 9 Mobile robot in testing workspace

 In order to see the response of the algorithm proposed

in this paper at a realistic industrial environment, it has

been tested at 14 different positions. Fig. 10 shows the

robot at point P1, while the other 13 locations have been

marked as circles. The coordinates of all tested positions

are shown in Table I. It must be noted that for simplicity

all the test poses have the same orientation: 0 rad. We have

empirically determined that if the algorithm has been able

to obtain the correct position of the robot, the found

orientation will also be the correct one.

Fig. 10 Pose used for evaluating SIVIA algorithm

 For each test point, the algorithm is executed many

times, reducing the value of at each step, until it finds

some [1 1] box. The obtained results are presented at

Table I. Fig. 11 and Fig. 12 show an intermediate step and

the final result, respectively, of the algorithm evaluation at

P4 test point. It can be noticed that when the value of is

20 cm. the algorithm yields many scattered undetermined

boxes (represented as yellow boxes). Afterwards, when the

algorithm has progressed, and the value of has reached

0.3171 mm, not only there are less undetermined boxes but

a number of [1 1] boxes (red) have appeared.

Fig. 11 Point P4, intermediate results at =0.20 m.

Fig. 12 Point P4, final step using =0.3171 mm.

 Table I summarizes some relevant results of the

execution of the algorithm over the 14 tested points. min is

the value of that has been needed for obtaining [1 1]

boxes. µ[1,1] is the mean of the centre points of all the [1 1]

boxes found. The error distance between the actual test

point location and the µ[1,1] point obtained, is represented as

derror. At last, the execution time of the algorithm for each

test point is represented as texec. It must be noted that the

timing results have been obtained in a Pentium IV 3.2

GHz, using Matlab to implement the algorithm. The result

boxes are shown in 2D.

TABLE I

TEST RESULTS

Point Coord. min (mm.) µ[1,1] (m.) derror (mm.) texec (s.)

P1 [6, 5] 0.75169 [6.0019,4.9984] 2.494 36.422

P2 [8, 5] 0.31712 [7.9997,5.0014] 1.426 16.824

P3 [6, 8] 0.31712 [5.9998,7.9999] 0.134 15.516

P4 [8, 8] 0.31712 [8.0000,8.0000] 0.074 15.891

P5 [6, 11] 0.31712 [5.9999,11.0000] 0.107 17.375

P6 [8, 11] 0.31712 [8.0001,11.0000] 0.128 16.641

P7 [8.5, 3.8] 0.31712 [8.4999,3.8000] 0.091 20.813

P8 [8.5, 3.2] 0.31712 [8.5001,3.2000] 0.107 15.156

P9 [1.5, 1.3] 0.31712 [1.4997,1.3000] 0.220 16.641

P10 [1.5, 2.5] 0.31712 [1.4999,2.4999] 0.076 20.516

P11 [5, 1.3] 0.31712 [5.0000,1.3000] 0.054 16.781

P12 [5, 2.5] 0.31712 [4.9998,2.5002] 0.248 16.406

P13 [8.5, 1.3] 0.31712 [8.5000,1.2999] 0.076 11.844

P14 [8.5, 2.5] 0.31712 [8.4999,2.5000] 0.050 14.422

 As we can see in Table I, all the results give an error

distance lower than 2.5 mm, which is more than good for

start-up positioning in the industrial application of our

fork-lift truck.

ACKNOWLEDGMENT

 We wish to thank Luc Jaulin for his Interval Analysis

Seminar that motivated us to use these techniques in our

mobile robot start-up positioning.

REFERENCES

[1] C. Cohen, F.V. Koss, ”A Comprehensive Study of Three Object

Triangulation”, SPIE Vol. 183 Mobile Robots VII (1992) / 95.

[2] J. Gutmann, W. Burgard, D. Fox, K. Konolige, “An experimental

comparison of localization methods”, IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS'98), 1998.

[3] S. Thrun, D. Fox, W. Brugard, F. Dellaert, “Robust MonteCarlo

localization for mobile robots”, AAAI – 99.

[4] H. Hu, D. Gu, “Landmark-based navigation of autonomous robots in

industry”, IEEE International journal of industrial robot, vol. 27, no.

6, pp. 458 – 467, November 2002.

[5] M. Kieffer, L. Jaulin, E. Walter and D. Meizel, “Robust autonomous

robot localization using interval analysis”, Reliable Computing. 3(6),

pp. 337 – 361, 2000

[6] Moore, R.E., “Practical aspects of interval computation”, Appl.

Math., 13, 52-92

