
Computing 34, 117- 129 (1985) Computing
�9 by Springer-Verlag 1985

An Interval Algorithm for Solving Systems of Linear Equations to
Prespecified Accuracy

J. W. Demmel, New York, and F. Kriickeberg, St. Augustin

Received July 27, 1983, revised June 29, 1984

Abstract - - Zusammenfassung

An Interval Algorithm for Solving Systems of Linear Equations to Prespecified Accuracy. We describe an
interval arithmetic algorithm for solving a special class of simultaneous linear equations. This class
includes but is not limited to systems A x = b where A and b have integer entries. The algorithm uses fixed
point arithmetic, and has two properties which distinguish it from earlier algorithms: given the absolute
accuracy a desired, the algorithm uses only as much precision as needed to achieve it, and the algorithm
can adjust its own parameters to minimize computation time.

A M S Subject Classifications: 65G 10 (primary), 65 F05 (secondary).

Key words. Systems of linear equations, interval arithmetic, fixed point arithmetic.

Ein Intervallalgorithmus fiir die L~sung yon linearen Gleichungssystemen mit vorausgewiihlter Genauig-
keit. Wir beschreiben einen Intervallalgorithmus, der eine gewisse Klasse yon linearen Gleichungssyste-
men 16st. Diese Klasse enthNt u. a. Systeme A x = b, bei denen A und b ganzzahlige Komponenten haben.
Dieser Algorithmus verwendet Festpunktarithmetik und unterscheidet sich von friiheren Algorithmen
wie folgt. Erstens: Bei Vorgabe der gewiinschten absoluten Genauigkeit a des Ergebnisses ben6tigt der
Algorithmus nur so viel Zwischengenauigkeit wie notwendig, um die Fehlerschranke a zu erreichen.
Zweitens kann der Algorithmus selbststeuernd seine eigenen Parameter dynamisch/indern, um die
Rechenzeit zu minimieren.

1. Introduction

In this paper we describe an interval arithmetic algorithm for solving a special class of
systems of simultaneous linear equations. This class includes but is not limited to
systems A x = b where A and b have integer entries. (Capital italic letters denote
matrices and lower case bold letters denote vectors.) The algorithm uses fixed point
arithmetic where the precision may be chosen by the program. Our algorithm has
two properties which distinguish it from previous interval linear system solvers:

(1) Given the absolute accuracy ~ desired in the solution, the algorithm uses only
as much precision as needed to achieve it.

(2) The algorithm can adjust its own parameters to minimize computation time.

Our research was motivated by ongoing work in Petri nets [1] at the Gesellschaft fiir
Mathematik und Datenverarbeitung. Several decision problems in Petri nets can be
reduced to deciding if a particular linear system A x = b with integer A and b has a

118 J .W . Demmel and F. Krfickeberg

nonnegative integer solution vector [2]. By solving A x = b with absolute accuracy
< l, we produce an interval vector x such that A-1 b- -~ ~ x and the width of each

component interval xl is less than 1. Thus at most one vector xt of integer entries can
lie within x, and by testing to see if x~ is nonnegative and satisfies A x = b , we may
answer our decision problem.

Our assumptions and limitations in this paper are as follows:

(1) Our underlying arithmetic delivers results of the operations add/subtract and
multiply to within an absolute precision chosen by the program (the program
will choose the precision once at the beginning of the computation and not
change it). Thus addition/subtraction may be performed without rounding
error if the precision of the result is no smaller than the precision of the
operands. Fixed point arithmetic has these properties, and for our numerical
tests we used a variable precision fixed point format (see section 5). This
requirement implies that we can compute inner products to a given absolute
accuracy.

(2) We consider only problems A x = b where we can find an approximate
(nonsingular) inverse matrix B of A with the following properties:

(2 a) The matrix R = - I - B A and the vector e-= Bb are exactly representable (i.e.
without roundoft) in our number system.

(2b)]l R H ~ - m a x ~ [Rij]=max-row-sum norm <1.
i

J

Condition 2 a holds ifA and b have integer entries because if we round B to fit in our
fixed point number system (and if integers are exactly representable) then we may
then compute BA, I - B A , and Bb without error by assumption (1). Condition 2 b is
needed to guarantee that [R] is a contraction, that is]R]"~0 as n-* ~ . A condition
similar to 2 b is required for convergence by virtually all interval arithmetic
algorithms, as we will discuss below.

We do not care how B is computed. It may, for example, be computed using
standard floating point library routines and then rounded to fit in our fixed point
format.

The benefits of these assumptions are the following:

(1) The condition number of the problem ([I AII ~ It A- 1 I] ~) does not determine
the limiting accuracy of the algorithm. The condition number will determine if
we can find an approximate inverse B so that R = I - BA has norm less than 1,
but as long as we can find such a B, we can compute A- 1 b to as much absolute
accuracy e as desired (limited, of course, by the accuracy available in the
underlying arithmetic). This is in contrast to other interval arithmetic
algorithms using a fixed, problem independent amount of precision in which
the accuracy achievable degrades as the condition number grows]-5, 6].

(2) We may decide ahead of time (that is after computing B, R, and e but before
starting the algorithm proper) exactly how much precision we need to use to
achieve the desired accuracy e. In fact, there are some parameters in the

An Interval Algorithm for Solving Systems of Linear Equations 119

algorithm which may be chosen to minimize the precision needed as a
function of II R]1 ~ and e. By tuning the algorithm to the problem this way we
can save time and possibly memory if a variable width fixed point format is
used.

Let us put this algorithm into historical perspective. Almost all interval linear
system solvers, including ours, convert the original problem A x = b into an iteration
of the form

x,+l - - R x , + c (1)

for some matrix R and vector c, where I R I is a contraction. In our case R = I - B A

and c = B b for some nonsingular B ~ A - 1 , where A x = b is the equation we are
trying to solve. The algorithm automatically verifies the nonsingularity of A and B.

A general linear system solver does not assume that R and c can be computed
exactly, as we do. Thus, in general, they are intervals. The width ofc is a lower bound
on the width of all x,+ 1. Typically, the width of the intervals in R will depend on the
condition number of A [6]. Thus, the width of x, + 1 will depend on the condition
number of the problem, and, it turns out, of the size of the solution x itself.
Wongwises [5] shows that naive use of (1) does indeed produce solution intervals
whose width is proportional to the condition number of A, a performance limitation
shared by Gaussian elimination without any iterative improvement at all. Cleverer
use of (1) can deliver the answer to an accuracy equivalent to roundoff error in the
largest components of the solution in most cases, but there is still a decline in
accuracy as the condition number of A gets too large [6, 8]. This inescapable
dependence of accuracy on condition number is reflected in our algorithm by
requiring higher precision to be able to deliver a desired accuracy e if L] R II ~ is close
to 1, but by assuming R and c to be exact, we eliminate the complicated dependence
of the achievable accuracy on the size the answer (which we do not, after all, know
ahead of time) and on the width of the intervals in R ande. In fact, the proof of our
algorithm exploits the ease of determining the width of x, + 1 from x,.

We also note that almost every iterative interval algorithm has assumed that the
initial interval vector Xo contains the solution, and then iterates as follows:

x.+l =(R x .+e) c~ x.. (2)

Xo is often determined by using a very coarse approximate interval inverse matrix
guaranteed to contain the actual inverse of A, and then multiplying this matrix by b
[5, 6].

Our algorithm, in contrast, makes no assumption about the accuracy of Xo, but only
about its width. Our algorithm works by taking an x, of width less than e, artificially
expanding it by adding a carefully chosen constant to the right endpoints and
subtracting it from the left endpoints of each component interval, and then
contracting this expanded interval using (1) several times to generate an x, + ~ also of
width less than e. This artificial expansion combined with the contraction (1)
guaranteed that the solution s eventually lies in some x,. The algorithm terminates
when x,+ ~ lies within the expanded version of x,. Choosing the parameters such as
precision, how much to artificially expand x., and how many times to repeat (1) to

120 J.W. Demmel and F. Kr~ckeberg

guarantee both span (x,+ 1)< e and that the algorithm terminates precisely when it
has found the solution constitutes the proof of the algorithm, given in Section 3.

Finally, we compare this work to that of Rump I-9]. Our goal is to provide an answer
to user specified accuracy while minimizing the work as a function of the required
accuracy. We assume the input satisfies the constraints in (1), (2 a) and (2 b) above,
and that our underlying arithmetic is variable precision. Rump's goal, on the other
hand, is to deliver the answer to the same accuracy as the input (single precision
floating point) while making no special assumptions about the input. His underlying
arithmetic, in contrast to ours, has two precisions, single and "dot precision", the
latter of which guarantees correctly rounded dot products of any two single
precision vectors. (In the course of Rump's algorithm, he may compute some or all of
the ,components of the solution vector to much higher than single precision, and his
algorithm could be modified to make this information available on request. The
format of this information would be rather different than ours: each component
either as the sum of successively smaller single precision floating point numbers, or
in a "dot precision" variable which can only participate in certain add, subtract, and
rounding operations.) We both assume that the problem is not so ill-conditioned
that our R matrices are too large for convergence. The different organizations of our
algorithms reflect the different underlying arithmetics we work with, and so in
practice the choice of algorithm would not surprisingly depend on what the machine
supports most efficiently, as well as whether constraints (1), (2 a) and (2b) were
satisfied. We also note that the expansion technique of the last paragraph was
discovered independently by Rump [9]. He expands his intervals by a certain
fraction of their size, where he determined the fraction empirically as the one which
gave best convergence [4]. We must choose the amount by which we expand subject
to mathematical constraints given below; this careful choice of expansion leads to
the guaranteed performance described, in the theorem below.

In Section 2 we define our notation, in Section 3 we state our algorithm and prove it
has the stated properties, in Section 4 we show how to choose certain parameters of
the algorithm to minimize the computation time, and in Section 5 we present
numerical results.

2. Notation

Fd denotes the set of fixed point numbers {nd: n is an integer and d < 1 is the distance
between adjacent numbers} over which we perform our computations. Typically d
will be 1 over a power of the radix (e. g. 1/2 j or 1/10J). We assume that 1/d is an integer
so that the integers are exactly representable in F a. I d denotes the set of intervals over
Fe. Scalars in F e and I d will be represented by lower case italic letters, w e Id can be
represented w = I-_w, #] where _w, # E Fd and w < ft. The span of an interval w is
span (w) = # - _w. F~' m, F~", l~, and I~'" denote n-vectors and n by m matrices over F a
and Ie. Vectors will be written as lower case bold letters, and matrices as capital italic
letters. Ifw e I~, then span (w) = max span (w~), and similarly for span (R), R ~ I~ 'm. All

quantities will be assumed to consists of intervals, unless we wish to emphasize that a
certain variable is a point interval, i. e. an interval of span zero. Such variables will be
written with a point over them, like R and e. ~ will denote the solution of x = R x + ~.

An Interval Algorithm for Solving Systems of Linear Equations 121

II x IL ~ will denote the infinity norm of the vector x:

It x II o0 = max [xi [
i

and [I R]1 o~ will denote the matrix norm induced by this vector norm, the max-row-
sum norm:

H R x H o~
l] R I] ~ - sup = max ~]Rij[.

x~0 II x II~ ' J

The definitions of addition, subtraction, and multiplication of intervals can be found
in the literature [12]. Since we are interested in controlling the amount of precision

�9 used in our calculations, we use a notation for interval arithmetic which explicitly
displays the precision: int ('expression', d) denotes the result of evaluating the
'expression' in interval arithmetic over I a. In our application 'expression' will only
contain additions, subtractions, and multiplications, so since we are assuming
unbounded range in F a, the value of 'expression' is always well defined. 'Expression'
may contain scalars, vectors, and matrices. If 'expression' is a single variable, the
operation int ('expression', d) only involves rounding outward.

We will need one more piece of notation to denote the artificial expansion of an
interval mentioned above. If w = [w, #1 6 Ia, then

roundout (w, d, r) - [w_ - rd, ~ + rd] ~ I d.

r is the integer number of interpoint distances d to round out.

The

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

3. The Algorithm

algorithm is as follows:

Input e, i~, R, Xo (span (Xo) -< e and n is the dimension of R)

Compute parameters m, t, d, and e according to the theorem

i: =0

repeat

i : = i + 1

w: = roundout (x,_ 1, d, t)

Xi: = W

for j: --- 1 to m do

xi: = int (int (R xi + e, d e), d)

until xl _ w

Output x~

The subscript i is only needed for stating the theorem below; xl may be written over
xi - 1. The expression in (3.9) indicates that R x i + 6 is to be computed in Iae (e < 1) and
the result rounded out to fit in Ia.

The parameters m, t, d, and e have the following meanings:

d determines the precision (Fa) in which we will represent our data (R,/:, and x),

122 J.W. Demmel and F. Krfickeberg

e is the extra precision used to compute the inner products in (3.9) (e _< 1 means Fee is
at least as precise as Fd; if d is a power of the radix (e.g. (1/2) j or (1/10) i for some
integer j) then we may also take e to be a power of the radix,

t (integer) determines by how many units of d we round x~_ 1 out in (3.6), and

re(integer) is the iteration count in (3.8).

The following theorem describes how the algori thm works.

Theorem: Given an arbitrary e > 0 , an arbitrary starting vector Xo (such that
span (x0)<e), R (such that r -[[/~ I[~ < 1), and ~, it is possible to choose the parameters
d, e, t, and m so that the algorithm generates a sequence of interval vectors{xi} with the
following properties:

(4.1) span(xi)<e for all i. Thus, as soon as we know ~ x i , xi is our answer.

(4.2) ~ E xi must occur for some finite i. Thus, the algorithm must eventually find i~.

(4.3) /~ ~ x i implies the algorithm terminates on the next iteration. Combined with
property (2) above, this property means the algorithm is finite.

(4.4) I f the algorithm terminates, the final xi must contain ~.

Further, if R = I - B A , and r = I] R I[~ < 1, then both A and B are nonsingular,
guaranteeing that i~ is the unique solution of A x = b.

In short, it is possible to choose the parameters to compute an arbitrarily narrow
interval vector x i containing the solution/~. In addition, we will see how to choose
the parameters to minimize the cost of computat ion in a problem dependent way.

Proof: More succinctly, the four properties above are:

(4.1') span (xi) < e ~ s p a n (xi+ 1) < e,

(4.2') ~:s xi occurs for some finite i,

(4.3') ~exi---,xi+l___w, and

(4.4') xi___ w-*:~ ~xl.

We will prove the four properties in the order (4.4'), (4.2'), (4.1'), and (4.3'). (4.4') is an
application of Brouwer's fixed point theorem [13] s tandard in interval analysis. To
prove (4.2'), we use the contract ion mapping theorem [14]. Let Xo be any point in Xo,
and let xi be the point image of x i - a under F, where F was defined by (3.6 - 3.9).
Then since

Xi = Rm Xi- 1 AV ~t (5)

for some constant vector ~' we have

I1 ~:~--~: I100 - <r'~ II ~:,-a - x II ~ <--rmi II xo - x II ~. (6)

Since we use interval arithmetic, the point vector ~i is a member of the interval
vector x i.

Thus, since we assumed r < 1, some point in x~ is eventually closer to the solution
that td (here we use the fact that t is an integer _> 1). Then, the next time through the
main loop (3.4) -(3.10) , x~ will be rounded out far enough so that w contains ~:. Since
/~ s F (w) _~ x~ (/~ being a fixed point ofF), (4.2') is satisfied. It is easy to see that the i for

An Interval Algorithm for Solving Systems of Linear Equations 123

which (4.2') is true is bounded by

log (td/]] Xo - 5; 1] o~)
i< +2 . (7)

m log r

We will now derive two inequalities in the parameters d, e, t, and m that are sufficient
conditions for the validity of (4.1') and (4.3'). By solving these inequalities
simultaneously for the parameters, we will prove the theorem. Since the two
inequalities do not determine the four parameters uniquely, we can choose the
parameters to minimize the cost of computation. The first inequality is in e, d, e, t and
m, and is a sufficient condition for (4.1') to be true. Since the coordinates of x~ are all
multiples of d, we introduce an integer variable 1 which satisfies

td<_~ (8)
and replace (4.1') by

span (xi) < I d ~ span (xi + 1) < l d.

Our inequality will be in terms of l rather than d. We take I to be an integer variable
since span (xi) must be an integer multiple of d.

Now span (xi) < ld means

span (w) < (I + 2 t) d (9)

by the definition of roundout used in (3.6).

Using the standard [12] formulas for spans of sums and products of intervals, we see
in (3.9) that

span (int (Rw +r de)) < r span (w) + 2 nde . (10)

Therefore, after m iterations of (3.9) we get

span (xi+ 1) < r m span (w) + (1 + r + ... +rm-1) �9 2 d (n e + 1). (11)

Substituting (l + 2 t) d for span (w) in the R. H. S. of (11) and requiring this quantity to
be less than ld (which is a sufficient condition for (4.1')) yields (after some
manipulation) our first inequality for l, e, t and m.

2 r m 2 (n e + l)
l> t + - - (12)

1 - r m 1 - r

We will derive our second inequality from (4.3'). ~ e x~ means that the distance from/~
to the edge of w is at least td and no more than (l + t) d (see (3.6)). We seek a
relationship among l, d, e, t, and m that guarantees that every point of x~+ 1 is no
farther from/~ than td, because this will imply that x~ § 1 - w as desired. We expect to
be able to find such a relationship because the contractive property of F implies all
points in w will approach :~ under the action of F.

Thus, if/~ ~ xi and w = roundout (x/, d, t) we have

sup 1t $ ' - x Itoo < (l + t) d . (13)
~'Ew

After every iteration of (3.9) we have from an analysis similar to the one leading
to (12)

9 Computing 34/2

124 J.W. Demmel and F. Krfickeberg

sup 1[~-~zl[~ ~ r . sup j[~-~ll~+nde+d,
~ex~+~ after (3.9) ~ex~. I before (3.9)

(14)

so after m iterations of (3.9) we get

/ 1 - r m \
sup]1 ~ - ~ 1[o0 <_rm(l+t)d+ ~-- l~-r) d(ne+ 1). (15)

We require that the R.H.S. of (15) be no larger than td:

1 - r m 1 - r m
l<_ t - - (ne+ l). (16)

r" r"(1 - r)

(16) is our second inequality relating l, e, t, and m.

Now we have to solve the inequalities (12) and (16) simultaneously in l, e, t, and m
(note that d does not appear; we will deal with it later). We will only show here that a
solution does exist, deferring to the next section a discussion of finding the best
solution. We may choose any e such that 0 < e < 1. Considering (12) and (16) only as
inequalities in 1 and t, we see they are both linear, and so both determine half planes
in the t, 1 plane. It is easy to see that (12) and (16) can only have a common, positive
solution in t and 1 if (1 - rm)/(r ~) > (2 rm)/(1 - r~), or

log (] / 2 - 1)
m > (17)

log r

Having chosen m subject to this last constraint, the region of common solution of
(12) and (16) is a sector in the t, I plane, and so must contain points with integer (t, l)
coordinates, any of which are candidate solutions for (12) and (16). The smallest
possible values of t and I are the (not necessarily integer) coordinates of the apex of
the sector, yielding the lower bounds:

1 - r ~ 1 + r m
t>(ne+ l)

1 - r 1 - 2 r m - r 2m'

and (18)

l>(ne+l) - -
1 - r m 2

1 - r 1 - 2 r " - r 2""

So far we have shown how to choose e, t, I and m in order to simultaneously satisfy
(12) and (16). It remains to choose d. d may be any number satisfying ld < e, or d < e/l.
The lower bound on l in (18) translates into an upper bound on d:

e (1 - 2 r m - r 2m) 1 - r
d < 2 (h e + l) 1 - r m' (19)

This completes the proof of the theorem. Q .E .D .

An Interval Algorithm for Solving Systems of Linear Equations 125

4. Choosing the Parameters to Minimize Cost

In the proof of the theorem we showed that subject to certain inequality constraints,
we could choose the parameters m, t, d, and e to make the algorithm behave as
claimed. It became clear in the discussion that the constraints left some freedom in
the choice of these parameters. In this section we will exploit that freedom and show
how the parameters may be chosen to minimize the cost of the algorithm. In
particular, we will see that the naive choice of parameters suggested by the proof of
the theorem results in a cost function with poles at a countable number of values of r,
so that some care really must be exercised in choosing parameters.

The cost is proportional to the product of the following four factors:

(20.1) iM = the number of iterations of the main loop (3.4-3.10) of the algorithm.
A bound for iu is i+ 1, where i is bounded in (7).

(20.2) m = the number of iterations of the inner loop (3.8 - 3.9). A lower bound for
m is given in (17).

(20.3) The cost of a multiplication in the inner loop (3.9). This cost is a function,
mult, of the number of places, p, used in the computation, p is proportional to
log (lid e), and mult can grow as slowly as p log p loglog p [15] or as quickly
as p2 depending on the implementation of multiplication.

The number of multiplies in the inner loop, 2 n 2. (20.4)

Thus, we model the cost as follows:

Cost ---2 n 2 • (.log(I[Xo --X It ~/td)
\ log 1/r

+ 3 m) • mult (l~ (d ~)) �9 (21)

We do not include the cost of computing R andc, which is n 3 (fixed point) multiplies
no more expensive than those in the inner loop above, as well as 0 (n 3) (floating
point) multiplies to compute the approximate inverse B. The cost in (21) above may
be less or more than the cost of obtaining R andc , depending on the initial error
II/~o-/~ II~ and the desired precision e. Here we address only the problem of
minimizing the cost in (21).

To minimize (21) exactly, we would need to know the initial error II/~o-/~ I[~, the
function mult, and the set of discrete values to which d is restricted. Since we do not
know all these things in general, we just show that the following algorithm makes a
reasonable choice of m, t, d, and e:

(22.1)

(22.2)

(22.3)

(22.4)
(22.5)

(22.6)

e: = 1 (i.e. no extra precision),

choose the smallest m such that rm< 1/3,

d: = largest value less than the upper bound in (24) (recall d must be a
negative power of the radix),

l: = largest integer such that 1 < e/d,
given l, find the largest integer t satisfying both (12) and (16),

1 1--r m
if no such t exists, or if t/l < , decrease d to the next smaller value
and goto (22.4). 2 2 r ~

9*

126 J.W. Demmel and F. Krtickeberg

With this choice of parameters, we will see that the cost is

1 Cost,~2n2 x (1-~ ~c~ l]~/e)+ K1-) x mult [log(1)+log(-~-~r_r)+ K21

(23)

for modest constants K 1 and K 2. The cost goes to oe as either the desired precision e
goes to zero or the residual norm r goes to 1, as expected.

The rationale behind this algorithm is as follows. From (21) we see that the cost
decreases as the precision decreases (de increases) and the amount of round out in
(3.6) increases (td increases). Approximating d by ell (see (8)) we see that the precision
de is

e e 1 - r
d e = ~ . ne+~---1 1 - r ~ " (1 - 2 r ~ - r Z ~) . (24)

The term depending on the extra precision e is maximized at e = 1 (no extra
precision). This justifies (22.1).

The 1 - r factor reflects the inescapable effect of condition number on precision,
since the larger the condition number of A, the closer to one r is likely to be, and so
the more precision needed.

The interesting factor is 1 - 2 r m - r 2m. If we chose m to be the smallest integer greater

than or equal to its lower bound log (V2-1) / log r (see (17)), then as a function of t ,

1 - 2 r m- r 2"~ would have a countable number of zeroes ({(]/2-1)x/J}j= 1, ~)where
the required precision goes to infinity! We avoid this strange behavior by simply

increasing m (by at most a factor of 1.25) if r m is too close to] / ~ - 1, guaranteeing that
r" < 1/3 and so 1 - 2 r m - r 2" > .22. This justifies (22.2).

The next four steps of the algorithm maximize the roundout td ~ e t/1. The maximum
value of t/1 is approached as both t and I approach + oe : (1 - rm)/2 r m (the reciprocal
of the slope of the lower boundary; see (12)). Therefore, in line (22.4) we pick the
largest possible 1 subject to d < e/l, and in (22.5) we pick the largest t for that I. Such a
t may not exist if the solution sector for (12) and (16) is unfortunately located; even if
it does exist t/1 may be far from its maximum value (1 - r ") / 2 r ~. In either case we
decrease d in (22.6) (by at least a factor of 2 in binary arithmetic, in general by a factor
of the radix) and recompute I and t. The constraint r" < 1/3 and the looseness of the
test t/l < (1 - r ") / (4 r ~) guarantees that t and I will be recomputed by (22.4- 22.5) at
most once. This justifies the rest of the algorithm. We may now substitute the values
of m, t, d, and e computed by this algorithm into our cost function (21) to get the
result (23).

We mention the case when r<< 1 (for which m = 1) which is likely when A is not too
ill-conditioned. In this case we may pick t very large while keeping I small since the
lower boundary of the solution sector is almost horizontal (slope = 2 r/(1 -r)). If we
can pick t large enough so that dt is larger than the initial error I] ~o - ~ [I ~ then the
first w will contain the solution ~, and our algorithm will terminate after at most two

An Interval Algori thm for Solving Systems of Linear Equations 127

iterations of the outer loop. If our initial guess ~ is good enough (and many good
interval algorithms start with a reasonably accurate solution obtained cheaply using
noninterval arithmetic), then this quick termination is likely.

5. Numerical Results

To test our algorithm we tried to invert the Hilbert matrix scaled to have integer
entries. Specifically, we multiplied Hij = 1/(i + j - 1) by the least common multiple of
1, ..., 2 n - 1 (n is the dimension of the matrix). The Hilbert matrix is known to be
very ill-conditioned and so is a good test of our algorithm.

The algorithm was written in F O R T R A N and executed on an IBM 370/158. The
arithmetic used was also written in FORTRAN (and accessed via subroutine calls).
It used a fixed point format, with 80 decimal places before and 80 places after the
decimal point. Decimal digits were available in blocks of 4, making the radix
e f f e c t i v e l y 104 .

The approximate inverse B was computed using the NAG [16] scientific subroutine
library. The double precision versions of F01ADF and F01ACF were used.
F01ADF computes the approximate inverse of a symmetric, positive-definite
matrix, such as the Hilbert matrix, and F01ACF computes an accttrate inverse using
iterative refinement.

In all cases, e was 10 - 15 hi H - 111 ~ (which means that the largest element in H - 1 was
computed to a relative accuracy of at least 10- is), e was taken to be 10-4, m turn out
to be 1 (since r was < 1/3 in all cases), and i o was taken from the approximate inverse
supplied by the NAGLIB routines. Our results are shown in Table 1. Column 1
(labeled n) gives the dimension of the Hilbert matrix, column 2 (labeled Routine)
indicates which NAGLIB routine was used to obtain B (C for F01ACF and D for
F01ADF), column 3 (albeled Cond) gives the condition number l[H II ~ II H - 1 II o~ of
the Hilbert matrix, columns 4, 6, 7, and 8 give the values of the parameters r, d, t, and
l, column 5 gives e = 10 ~ i s II H - a 11 ~o, and column 9 (labeled iN) gives the maximum
number of iterations of the algorithms main loop used by any of the columns of the
inverse.

Table 1. Numerical results

n Routine Cond r e d t l i u

10 D 3.5.1013 .0084 5.2.10 -11 10 -12 3 2 5
11 C 1.2.1015 .023 1.8.10 -9 10 -12 3 2 2
12 C 4.1.1016 .23 2 .5 .10 -9 10 -12 5 3 3
13 C 1.3.10 is 20.1 2 .5 .10 -8

All the inequalities and inclusions predicted in the theorem were automatically
tested and verified. The values of t and I were not chosen according to algorithm 27
but as the smallest solutions of (14) and (18); our concern was not to minimize time
but to verify the conclusions of the theorem. F01ADF (approximate inverse) could

128 J.W. Demmel and F. Kriickeberg

not be used for n > 10 because the B it produced was so inaccurate that r was greater
than 1. For n = 13 r was greater than 1 even with the more accurate library routine,
so we could not use the algorithm. The number of iterations iM did not grow with n
because the initial approximation Xo came from the NAGLIB inverse B and so was
rather accurate to start with. Indeed, most good interval algorithms wisely at tempt
to attain as accurate a solution as possible using noninterval arithmetic, requiring
only a few iterations of the relatively expensive interval arithmetic at the end to
refine the resulL and ours is no exception.

Acknowledgement

The authors acknowledge the kind assistance of several of Prof. Kriickeberg's students who
implemented the fixed point arithmetic and assisted in programming the algorithm. The authors also
acknowledge the financial support of the Gesellschaft fiir Mathematik und Datenverarbeitung and
the U.S. Department of Energy, Contract DE-AM03-76SF00034, Project Agreement DE-AS03-
79ER10358. This work was performed while the first author was visiting the GMD in St. Augustin and
while the Computer Science Division, University of California, Berkeley, CA 94720.

References

[1] Genrich, H. J., Lautenbach, K., Thiagarajan, P. S. : Elements of general net theory. In: Net Theory
and Applications (Lecture Notes in Computer Science, Vol. 84), pp. 121 - 164. Berlin-Heidelberg-
New York: Springer 1980.

[2] Memmi, G., Roucairol, G. : Linear algebra in net theory. In: Net Theory and Applications (Lecture
Notes in Computer Science, Vol. 84), pp. 213- 224. Berlin-Heidelberg-New York: Springer 1980.

[3] Wilkinson, J. H., Reinsch, C. : Linear algebra (Handbook for Automatic Computation, Vol. 2),
pp. 41-44. Berlin-Heidelberg-New York:Springer 1971.

[4] Rump, S. M. : Private communication, 1982.
[5] Wongwises, P. : Experimentelle Untersuchungen zur Numerischen Aufl6sung von linearen

Gleichungssystemen mit Fehlererfassung. In: Interval Mathematics (Lecture Notes in Computer
Science, Vol. 29) (Nickel, K., ed.), pp. 316- 325. Berlin-Heidelberg-New York: Springer 1975.

[6] Krier, N., Spelluci, P. : Untersuchungen der Grenzgenauigkeit yon Algorithmen zur Aufl6sung
linearer Gleichungssysteme mit Fehlererfassung. In: Interval Mathematics (Lecture Notes in
Computer Science, Vol. 29) (Nickel, K., ed.), pp. 288 - 297. Berlin-Heidelberg-New York: Springer
1975.

[7] Krawczyk, R.: Newton-Algorithmen zur Bestimmung yon Nullstellen mit Fehlerschranken.
Computing 4, 187-201 (1969).

[8] Wilkinson, J. H. : Rounding Errors in Algebraic Processes. Englewood Cliffs, N. J.: Prentice-Hall
1963.

[9] Rump, S. M. : Kleine Fehlerschranken bei Matrixproblemen. Dissertation, Universitiit Karlsruhe,
1980.

[10] Bareiss, E. H.: Sylvester's identity and muttistep integer-preserving Gaussian elimination. Math.
Comp. 22, 565-578 (1968).

[11] Howell, J. A., Gregory, R. T. : An algorithm for solving linear algebraic equations using residue
arithmetic. BIT 9, 200-234, 324-337 (1969).

[12] Moore, R. E. : Methods and applications of interval analysis. Philadelphia: SIAM 1979.
[13] Dunford, N., Schwartz, J. T.: Linear Operators, Part I, p. 453. New York: Interscience 1957.
[14] Apostol, T. : Mathematical Analysis, 2nd ed., p. 92. Reading, Mass. : Addison-Wesley 1974.

An Interval Algorithm for Solving Systems of Linear Equations 129

[15] Aho, A. V., Hopcroft, J. E., Ullman, J. D. : The Design and Analysis of Computer Algorithms,
pp. 270-274. Reading, Mass. : Addison-Wesley 1974.

[16] NAG Reference Manual, Oxford, Numerical Algorithms Group, Ltd., 1976.

J. Demmel
Department of Computer Science
Courant Institute
New York University
251 Mercer Street
New York, NY 10012
U.S.A.

Prof. F. Krtickeberg
Gesellschaft ftir Mathematik
und Datenverarbeitung
Schloss Birlinghoven
D-2500 St. Augustin
Federal Republic of Germany

