A Class of Interval-Newton-Operators

R. Krawczyk, Clausthal-Zellerfeld

Received March 26, 1984; revised July 17, 1985

Abstract — Zusammenfassung

A Class of Interval-Newton-Operators. A class of interval-Newton-operators N_a will be discussed. One of them, \hat{N} , is optimal in the manner that $\hat{N}(X) \subseteq N_a(X)$. With the help of such an interval operator we can give an existence theorem for the solution x^* of the equation g(x) = 0.

AMS Subject Classifications: 65H10, 65G10.

Key words: Systems of equations, interval operators.

Eine Klasse von Intervall-Newton-Operatoren. Eine Klasse von Intervalloperatoren N_a wird diskutiert. Einer von ihnen $-\hat{N}$ – ist optimal in dem Sinne, daß $\hat{N}(X) \subseteq N_a(X)$ gilt. Mit Hilfe eines solchen Intervalloperators kann die Existenz einer Lösung x^* einer Gleichung g(x) = 0 bewiesen werden.

1. Introduction

There are several interval-Newton-operators which are of the form

$$N(X) := x - S(X)g(x) \tag{1}$$

where $x \in X$, and S(X) is a sublinear mapping for fixed X; hence $N(X) = x^*$ if $x = x^*$ is a zero of the equation g(x) = 0. For example: S(X)g(x) := IGA(L(X), g(x)), where IGA denotes the interval Gauss algorithm and L(X) is a regular Lipschitz matrix of g or an interval extension of the derivative g'(x). In most cases, $x = \tilde{x}$ is the midpoint of X. Instead of the interval Gauss algorithm, we can determine r := |e - aL|, where a is a regular real matrix. If the spectral radius of r is less than 1, then $q := r(e-r)^{-1}$ exists and is a nonnegative matrix. Moreover,

$$N(X) := \tilde{x} - [e - q, e + q] (ag(\tilde{x}))$$
(2)

is an interval-Newton-operator which depends on the matrix a. For $a := (\text{mid } L)^{-1}$ the method was introduced in [4].

In this paper we will show that the choice of $a = (\text{mid } L)^{-1}$ is optimal in that the image interval is contained in all intervals being produced by interval operators (2) with an arbitrary regular matrix a.

In [2] Alefeld has given some existence theorems for the solution of the equation g(x) = 0. These theorems are based upon the condition $N(X) \subseteq X$ and they are stated for several interval-Newton-operators N. However in all these cases it is assumed that L(X) is a continuous function. We also give an existence theorem for the interval-Newton-operators (2) without the assumption of continuity of L(X).

Remark about notation: We use the same notation as in [7]; but for convenience of the reader, some notations are repeated. Small Latin letters denote real values and capital letters denote sets, intervals and maps. We denote the set of *n*-dimensional interval vectors and $n \times n$ -interval matrices by \mathbb{R}^n and $\mathbb{R}^{n \times n}$, respectively, use $\text{mid } X = (\underline{x} + \overline{x})/2$, $\text{mid } A = (\underline{a} + \overline{a})/2$ for the midpoints, $\text{rad } X = (\overline{x} - \underline{x})/2$, $\text{rad } A = (\overline{a} - \underline{a})/2$ for the radius of $X \in \mathbb{R}^n$ and $X \in \mathbb{R}^n \times n$, respectively.

Moreover, we set $\mathbb{I} D := \{X \in \mathbb{I} \mathbb{R}^n | X \subseteq D\}$. The unit matrix is written as e. $\sigma(a)$ denotes the spectral radius of $a \in \mathbb{R}^{n \times n}$.

For a discussion of interval arithmetic we refer to Alefeld/Herzberger [1].

2. A Class of Interval-Newton-Operators

Let $g: D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ be a real function which satisfies an interval Lipschitz condition

$$g(x_1) - g(x_2) \in L(x_1 - x_2)$$
 for all $x_1, x_2 \in X$, (3)

where $X \in \mathbb{I}D$ and L is a regular interval matrix.

Let $S: \mathbb{R}^n \to \mathbb{R}^n$ be a sublinear mapping (see Neumaier [8]) with the property

$$l^{-1}z \in Sz \text{ for } l \in L \text{ and } z \in \mathbb{R}^n.$$
 (4)

Then we call

$$N(X) := \tilde{x} - Sg(\tilde{x}) \text{ with } \tilde{x} = \text{mid}(X)$$
 (5)

an interval-Newton-operator of g.

Remark: Generally, L and S depend on X, but in the following we consider a fixed interval X; therefore the argument X will be deleted.

(3) and (4) immediately yield

$$q(x^*) = 0 \land x^* \in X \Rightarrow x^* \in N(X), \tag{6}$$

because $g(x^*) - g(\tilde{x}) = l(x^* - \tilde{x})$ implies

$$x^* = \tilde{x} - l^{-1} g(\tilde{x}) \in \tilde{x} - Sg(\tilde{x}).$$

Let $a \in \mathbb{R}^{n \times n}$ be a regular matrix. Then we define

$$r_a := |e - aL|, \tag{7}$$

and assume that

$$\sigma(r_a) < 1; \tag{8}$$

hence the matrix

$$q_a := r_a (e - r_a)^{-1} (9)$$

exists and is a nonnegative matrix.

The sublinear mapping

$$S_a z := \left[e - q_a, e + q_a \right] (az) \tag{10}$$

fulfills the condition (4) for each $a \in \mathbb{R}^{n \times n}$ for which the assumption (8) is true. Indeed b := e - al and $l \in L$ imply $b \in e - aL$ and $|b| \le |e - aL| = r_a$. On the other hand b = e - al implies that $l^{-1}z = (e - b)^{-1}(az)$, and since

$$(e-b)^{-1} \in [e-q_a, e+q_a]$$
 (see (4.17) in [6]),

we have $l^{-1}z \in [e-q_a, e+q_a](az)$.

Hence

$$N_a(X) := \tilde{x} - S_a g(\tilde{x}), \tag{11}$$

where S_a is defined by (10), defines a class of interval-Newton-operators.

3. The Optimal Interval-Newton-Operator of the Class (11)

The question is how to choose the matrix a. Before we give an answer we formulate a

Lemma: If $r_a := |e - aL|$, $\hat{r} := |e - \hat{a}L|$ with $\hat{a} := (\text{mid } L)^{-1}$, $\sigma(\hat{r}) < 1$ and $\sigma(r_a) < 1$ then the following statements are true:

1.
$$\sigma(\hat{r}) \leq \sigma(r_a)$$
, (12)

2.
$$|(a-\hat{a})z| \le (r_a-\hat{r})(e-\hat{r})^{-1} |\hat{a}z|,$$
 (13)

3.
$$|\hat{a}z| \leq (e-\hat{r})(e-r_a)^{-1} |az| \text{ with } z \in \mathbb{R}^n.$$
 (14)

Proof:

- 1. (12) was proved by Neumaier (see Theorem 6 in [8]). ($\hat{a}L$ is an *H*-matrix since $\sigma(\hat{r}) < 1$.)
- 2. We use the abbreviation $\tilde{l} = \text{mid } L$ and put

$$b := a\tilde{l} - e. \tag{15}$$

Then the relation

$$r_a = |e - aL| = |a| \operatorname{rad} L + |b|$$
 (16)

holds (see (31) in [3]), which implies

$$\hat{r} = |\hat{a}| \operatorname{rad} L. \tag{17}$$

From (15) follows

$$b\,\hat{a} = a - \hat{a}.\tag{18}$$

By inserting the inequality $|a| \ge |\hat{a}| - |b| |\hat{a}|$ into (16) we obtain from (17)

$$|b| \le r_a - \hat{r} + |b| \hat{r}$$

and (12)

$$|b| \le (r_a - \hat{r})(e - \hat{r})^{-1}.$$
 (19)

(18) and (19) yield (13).

3. Because of $\sigma(|b|) \leq \sigma(r_a) < 1$, (18) yields

$$|\hat{a}z| \leq |(e+b)^{-1}||az| \leq (e-|b|)^{-1}|az|.$$

By inserting (19) into this inequality we get

$$|\hat{a}z| \le (e - (r_a - \hat{r})(e - \hat{r})^{-1})^{-1} |az|$$

= $(e - \hat{r})(e - r_a)^{-1} |az|$.

We next give an answer to the question: "how to choose a?" by using the

Theorem 1: If $\hat{a} := (\text{mid } L)^{-1}$, $\hat{r} := |e - \hat{a}L|$, $\hat{q} := \hat{r}(e - \hat{r})^{-1}$ and

$$\widehat{N}(X) := \widetilde{x} - [e - \widehat{q}, e + \widehat{q}] (\widehat{a}g(\widetilde{x}))$$
(20)

then

$$\hat{N}(X) \subseteq N_{\sigma}(X) \tag{21}$$

for each a satisfying the condition (8).

Proof: It follows by the definition of radius and midpoint and the formulae (6.4), (6.5) in [7] as well as by the lemma

$$\begin{split} | \operatorname{mid} N_a(X) - \operatorname{mid} \hat{N}(X) | &= |(a - \hat{a}) g\left(\tilde{x}\right)| \\ &\leq (r_a - \hat{r}) (e - \hat{r})^{-1} | \left. \hat{a} g\left(\tilde{x}\right) \right| \\ &\leq r_a (e - \hat{r})^{-1} (e - \hat{r}) (e - r_a)^{-1} | \left. a g\left(\tilde{x}\right) \right| - \hat{r} (e - \hat{r})^{-1} | \left. \hat{a} g\left(\tilde{x}\right) \right| \\ &= q_a | \left. a g\left(\tilde{x}\right) \right| - \hat{q} | \left. \hat{a} g\left(\tilde{x}\right) \right| \\ &= \operatorname{rad} N_a(X) - \operatorname{rad} \hat{N}(X). \end{split}$$

This relation is equivalent to $\widehat{N}(X) \subseteq N_a(X)$ (see (2.12) in [7]).

4. Existence Theorem

Theorem 2: If $N_a(X) \subseteq X$ then there exists an $x^* \in X$ with $g(x^*) = 0$.

Proof: By Theorem 1 it is sufficient to prove the existence of x^* in the case that $\hat{N}(X) \subseteq X$ for $N_a(X) \subseteq X$ implies $\hat{N}(X) \subseteq X$.

If $\hat{N}(X) \subseteq X$ then by (2.12) and (6.4) in [7] we obtain

$$|\hat{a}g(\hat{x})| \leq \operatorname{rad} X - \operatorname{rad} \hat{N}(X) = \operatorname{rad} X - \hat{q} |\hat{a}g(\tilde{x})|,$$

and it follows from $e + \hat{q} = (e - \hat{r})^{-1}$ that

$$(e-\hat{r})^{-1} |\hat{a}g(\tilde{x})| \leq \operatorname{rad} X.$$

Now we define $Y \subseteq X$ by mid $Y := \tilde{x}$ and

$$\operatorname{rad} Y = (e - \hat{r})^{-1} |\hat{a}g(\tilde{x})| \leq \operatorname{rad} X.$$
 (22)

Then

$$|\left.\hat{a}g\left(\tilde{x}\right)\right| = \left(e - \hat{r}\right)^{-1} |\left.\hat{a}g\left(\tilde{x}\right)\right| - \hat{q}\left|\left.\hat{a}g\left(\tilde{x}\right)\right| = \operatorname{rad}Y - \operatorname{rad}\widehat{N}\left(X\right),$$

i.e. by (2.12) in [7], $\hat{N}(X) \subseteq Y$.

On the other hand it follows from (20) by (22), (17) and $e - \hat{a}L = [-\hat{r}, \hat{r}]$

$$\hat{N}(X) = \tilde{x} - \hat{a}g(\tilde{x}) + [-\hat{r}, \hat{r}] \text{ rad } Y$$
$$= \tilde{x} - \hat{a}g(\tilde{x}) + (e - \hat{a}L)(Y - \tilde{x}) \subseteq Y.$$

 $e - \hat{a}L$ is an interval Lipschitz matrix of the function $f(x) := x - \hat{a}g(x)$, i.e.

$$f(x) - f(\tilde{x}) \in (e - \hat{a}L)(x - \tilde{x}) \subseteq (e - \hat{a}L)(Y - \tilde{x})$$
 if $x \in Y$.

Therefore, $f(x) \in \hat{N}(X) \subseteq Y$ for all $x \in Y$, and by Brouwer's fixpoint theorem there exists a fixpoint $x^* \in Y \subseteq X$ which is a zero of g(x) because \hat{a} is regular.

Remark: Theorem 2 is a consequence of the fact that $\hat{N}(X)$ is an interval extension of f on the intersection $X \cap Y$. This is a result of Section 7 in [5].

Acknowledgement

I thank Mr. Neumaier for his advice and the improvements.

References

- [1] Alefeld, G., Herzberger, J.: Einführung in die Intervallrechnung. Bibl. Inst., Mannheim, 1974.
- [2] Alefeld, G.: Intervallanalytische Methoden bei nichtlinearen Gleichungen. Jahrbuch Überblicke Math., 63-78 (1979).
- [3] Krawczyk, R.: Interval extensions and interval iterations. Comp. 24, 119-129 (1980).
- [4] Krawczyk, R.: Zur Konvergenz iterierter Mengen. Freiburger Intervall-Berichte 80/3, 1-33 (1980).
- [5] Krawczyk, R.: Zentrische Formen und Intervalloperatoren. Freiburger Intervall-Berichte 82/1, 1-30 (1982).
- [6] Krawczyk, R., Neumaier, A.: An improved interval-Newton-operator. Freiburger Intervall-Berichte 84/4, 1-26 (1984).
- [7] Krawczyk, R.: Conditionally isotone interval operators. Freiburger Intervall-Berichte 84/5, 21 36 (1984).
- [8] Neumaier, A.: New Techniques for the analysis of linear interval equations. Linear Algebra Appl. 58, 273-325 (1984).

Prof. Dr. R. Krawczyk Bohlweg 2 D-3392 Clausthal-Zellerfeld Federal Republic of Germany