Interval Arithmetic Specification

Dmitri Chiriaev and G. William Walster

Revised March 13, 2000

Abstract

Compiler support for interval arithmetic requires a specification of both the syntax
and semantics of the implementation. The Fortran 95 specification contained herein
defines a set of extended real intervals and their internal representation for IEEE 754
compliant processors. The defined set of extended real intervals is closed with respect
to arithmetic operations and interval enclosures of real expressions. For mathematical

details, see [20] and [23].

Contents
1 Introduction

2 Interval Implementation Quality

2.1 The “Simple”, “Sharp”, and “Full” Interval Systems.
3 Extended Real Intervals
4 Internal Representation using IEEE numbers

5 The empty and entire intervals
5.1 The empty interval, @
5.2 The entire interval, IR*

6 Language Extensions

9

6.1 Character Set
6.2 Interval related command line options
6.3 -xtypemap=interval e
6.4 Interval type L
6.5 Derived-type Definitiono o
6.6 Interval Intrinsic Expressions oL,

6.6.1 Type, kind type parameter and shape
6.7 Interval Relational Intrinsic Expression

6.7.1 Semantics of .EQ. and .NE. operators for interval data type
6.8 COMMON and EQUIVALENCE statements
6.9 Interval assignment: -xinterval=strict
6.10 Predefined interval operators Lo
6.11 Extended Interval Intrinsic Operators
6.12 Overloaded Interval Intrinsics Names

6.13 Specific names for interval intrinsicso
Interval arithmetic operations
Interval power exponentiation operators X**n and X**Y

Widest—need interval expression evaluation

9.1 Interval assignment statement
9.2 Array constructor Lo
9.3 Interval constant expressions Lo
9.4 Interval initialization expressions L.
9.5 Interval Relational Expressions
9.6 INTERVAL versus REAL PARAMETERs
9.7 Examples: Extended operators with widest—need evaluation

9.8 Examples: Widest—need interval expression evaluation

16
16
16
17
18
20
20
21
22
23
23
23
24
24
26
28

28

29

10 Interval set intrinsics.
10.1 INFQX) . o o e e e e e
10.2 ISEMPTY(X) e e e e e e e e
10.3 SUP(X) . . . o o e e e e

11 Set operations
11.1 Imnterval Hull (X .IH. Y) e e s s
11.2 Imtersection (X .IX. Y) o o i e

12 Set relations
12.1 Disjoint (X .DJ. Y) e e e
122 In (R CIN. Y) .o oo o e e
12.3 Interior (X .INT. Y). o o i et e
12.4 Proper subset (X .PSB. Y) e
12.5 Proper superset (X .PSP. Y).
12.6 Subset (X .SB. Y).
12.7 Set—equal (X .SEQ. Y)
12.8 Set-greater-or-equal (X .SGE. Y) L.
12.9 Set—greater (X .SGT. Y)
12.10Set-less-or-equal (X .SLE. Y) Lo o
12.11Setless (X .SLT. Y) o e
12.125et-not—equal (X .SNE. Y)
12.13Superset (X .SP. Y). o .

13 Certainly relations
13.1 Certainly—equal (X .CEQ. Y)
13.2 Certainly—greater-or—equal (X .CGE. Y)
13.3 Certainly greater (X .CGT. Y)
13.4 Certainly—-less—or—equal (X .CLE. Y)
13.5 Certainly—less (X .CLT. Y)
13.6 Certainly-not—equal (X .CNE. Y)

38
38
38
39

39
39
40

40
41
42
42
42
43
43
43
44
44
45
45
45
46

14 Possibly relations
14.1 Possibly—equal (X .PEQ. Y)
14.2 Possibly—greater—or—equal (X .PGE. Y)

14.3 Possibly—greater (X .PGT. Y)
14.4 Possibly-less—or-equal (X .PLE. Y)

14.5 Possibly—less (X .PLT. Y)

14.6 Possibly—not—equal (X .PNE. Y)

15 Precedence of Operators

16 Special interval intrinsics
16.1 Absolute value: ABS(X)
16.2 Magnitude: MAG(X)
16.3 Maximum: MAX(X1, X2 [, X3,
16.4 Midpoint: MID(X)
16.5 Mignitude: MIG(X)
16.6 Minimum: MIN(X1, X2 [, X3,
16.7 NDIGITS(X)
16.8 Width: WID(X)

17 INT(X [, KIND])

18 Interval enclosures of mathematical functions
AINT(X [, KIND])
ANINT(X [, KIND])

ATAN2(Y,X)
CEILING(X [, KIND])

49
20
50
50
51
51
o1

52

52
52
23
23
54
o4
o4
25
25

56

19

20

21

I8 I0EXPCX) . . . o o e e e
18.11FLOORCX [, KINDI) oo s e
I8.I2LOGCX) . o . o o o e e
18.13LOGI0CK) . . o o v e e
18.14MODCX, Y) . . o o o e
18.15PRECISION(CX) o o o e e s
I8 I6RANGE(X) o o e e
I8.ITSIGN(X, Y) . . . o o
18 A8SINCX) . o o o o o
18 19SINH(X) . . . o . o e
18.208QRT(X)
I8 2ITANCX) .« o . o o o
18.22TANH(X) o o e

Conversions to interval types

19.1 INTERVAL(X [, Y, KIND]) it
19.2 DINTERVAL(X, [Y1]) e e
19.3 SINTERVAL(X, [Y]) e e e e s
19.4 QINTERVAL(X, [Y]) e e e e s

19.5 Conversion exampleso Lo
Interval array intrinsics

Interval I/O editing

21.1 Interval input
21.2 Interval output
21.3 External interval representationo Lo
21.4 Interval edit descriptors L
21.5 Interval VF editingo
21.6 Interval VE editing
21.7 Interval VEN editing L

67
67
68
68
68
69

69

21.8 Interval VES editing 75

21.9 Interval VG editing e 75
21.10Single number interval Y editing Lo oL 75
21.10.1Single number I/O and internal base conversions 78
21.11List-directed interval I/O oL oo 79
21.11.1 List-directed interval input 79

21.11.2 List-directed interval output 80
21.12Namelist interval I/O Lo Lo 80
21.13File compatibility with future releases 80

22 Acknowledgments 82
23 Appendix A: Interval Intrinsics 83

1 Introduction

This specification defines a set of representable extended real intervals, a subset of supported
intervals and their internal representation for IEEE 754 compliant processors. It is also a
specification of the needed additions to the syntax and semantics of Fortran 95 with which
to implement, test and document support for interval data types. It is not a complete
implementation specification, although some important implementation issues are addressed.

Real interval arithmetic operations are interval enclosures of their point counterparts. So
are rational expressions' computed using interval arithmetic. This fact, known as the fun-
damental theorem of interval arithmetic, is important because an interval enclosure of a
real expression contains the expression’s range over the sub-domain defined by its interval
arguments [12]. The property of including the range of a expression in an interval result is
also referred to as “containment”.

Sendov [16] extended the domain of interval arithmetic to include unbounded intervals. Wal-
ster et al [18] defined the set of values that interval enclosures of extended point expressions
must contain. Walster [20] defined a closed system of extended real intervals that includes
enclosures of intrinsics and relations where point results are undefined. Walster and Hansen
[23] extended the fundamental theorem to include multi-valued and irrational functions.
The practical consequences of these results as implemented herein are:

1The term “expression” is used to include both single and multi-valued functions.

1. Simple representation: Each supported interval can be internally represented using a
pair of IEEE floating-point numbers.

2. Algorithm efficiency: Branching is minimized and there are opportunities for additional
hardware support.

3. Closure: All arithmetic operations on any supported intervals produce supported in-
tervals.

4. Sharp Results: Whenever possible, sharp? interval results are produced.

5. Simplicity: User interface complexity is minimized.

A complete set of intrinsic interval enclosures of point intrinsics and operations for Fortran
is defined using [7] together with [18], [20] and [23]. For IEEE 754 compliant processors this
collection of definitions yields a consistent closed set of interval operations and intrinsics,
even in the presence of arguments and outcomes that would otherwise raise IEEE exceptions.
Appendix A contains algorithms for interval operations +, -, *, and / on IEEE 754 compliant
Processors.

This specification is written to be consistent as practical with the Fortran 95 Standard.
Additions to this specification for future versions of Fortran and other languages will be
provided in future versions.

2 Interval Implementation Quality

Speed and sharpness define the quality of an interval implementation. The result of an
interval operation is sharp if the resulting width, w ([a,b]) = b — a, is as small as possible
without violating the containment constraint.

The two components of interval implementation quality do not necessarily conflict. Taking
more time to compute sharp elementary and intermediate results can cause an interval
algorithm to execute faster.

Without special interval hardware, speed forces a pair of IEEE 754 floating—point numbers
to be used when representing the infimum and supremum of an interval. Speed can also be
achieved by eliminating exceptional events. This requires an interval system that is closed
with respect to arithmetic operations, including division by an interval containing zero and
the evaluation of expressions including both relations and functions.

ZAn interval X is “sharper” than interval Y, if WID(X) < WID(Y) (see section 16.8), that is, assuming
both X and Y contain the correct answer.

Sharpness of interval results can be improved by distinguishing both between zero and un-
derflow, on the one hand, and between infinity and overflow, on the other. Sharpness of
interval results can also be improved by permitting the result of interval operations to be
represented by a set of disjoint intervals.

Quickly computing sharp interval results can be achieved with various amounts of hardware
support. In some cases, different internal representations are required. Nevertheless, binary
file compatibility can be maintained, see section 21.13.

2.1 The “Simple”, “Sharp”, and “Full” Interval Systems

The three interval systems, “Simple”, “Sharp”, and “Full”, are designed to introduce in-
creasing result sharpness at the cost of implementation complexity and hardware support.
All three systems use extended real interval arithmetic as their base. The “Sharp” system
adds the ability to distinguish between underflow and zero, on the one hand, and between
overflow and infinity, on the other. This makes it possible to preserve sign information which
is otherwise lost. The “Full” system adds the ability to sharply represent division by intervals
containing zero as the union of two semi-infinite intervals. All three systems are closed with
respect to interval arithmetic operations. The present specification implements the “Simple”
system and requiring no hardware support other than IEEE 754 compliance.

3 Extended Real Intervals

Let IR denote the set of real numbers: R ={z | —0o < 2 < +00}. A real interval, or just an
interval, X = [z,7], is a closed, bounded subset of the real numbers, IR:

X=[z,z]={re Rlz<z<T} |,
where z and T denote the left endpoint or infimum?® and the right endpoint or supremum?*
of the interval X. The set of real intervals is denoted by I/R. An interval is a point or
degenerate interval if X = [z, 2] or £ = Z. The infimum of an interval is always less than or
equal to the supremum.

The set of extended real numbers, IR", is the set of real numbers, IR, extended with the two
ideal points plus and minus infinity: R* = R U {—oo} U {+00}. The set of extended real
intervals, IIR*, is the set of real intervals, IR, extended with the empty interval, @, and

3The largest number that is less than or equal to each of a given set of real numbers.
“The smallest number that is greater than or equal to each of a given set of real numbers.

intervals with one or both infinite endpoints.

;

IR U
0 u
{[-o0,2z] |2z € R} U

IR = {[.I’,+OO] |z e R} U
[—00, —o0] U
[— oo,—l—oo] U
[+00, +00]

where intervals with infinite endpoints are interpreted as follows:

[—o0,z] = {#z€ R'|z2<z,z€ R}
[z,400] = {z€ R'|z2>z,2€ R}
[—00,—00] = {z€ R'|z<z, Ve R}
[—oo0,+0] = R*
[+00,400] = {z€ R'|z>z,Vze R}

The set of values that an arithmetic operation on extended intervals must contain is the
“containment—set” of the operation, is denoted {X op Y} , and as conceived my Moore is

defined :

Definition 1

{XopY} = {(|é&=2o0py, x€ X andy €Y} ; where
op = {+,-,%x,+} , X€lIR,Y€IR

and in the case of division, 0 € Y ; because x + y is undefined if y = 0.

Remark 1 In case x op y is not uniquely defined, X op Y must still contain the set of all
possible values of & to which € = x op y can be equal. This set is the containment set of the
expression £ = x op y and is denoted {[z op y|}, see [18].

Remark 2 An interval operation produces an interval containing the set of all results ob-
tainable by performing the operation in question on every element of the argument intervals.
Therefore X op Y must contain {X op Y'}.

Neither the real nor the extended real number systems are closed with respect to arithmetic
operations. In the real number system, division by zero is undefined. In the extended real

(+00) — (+00) | (+00) X 0 | (400) + (+00)
(—00) + (+00) | (—o0) x 0 | (—00) + (+00)
(+00) + (=00) | 0 X (+00) | (+00) + (=)
(—00) — (=00) | 0 X (—o0) | (—00) +(—00)

number system, neither division by zero nor the following indeterminate forms are defined:

(1)

The following notation makes explicit the identities between the set and interval represen-
tations, both for the point at 0 and for the ideal points at Foo:

[—00,—x] =—-x,
[+00, +00] = +o0,
[0, 0] = 0.

The relationship between projective infinity, {£oo}, and affine infinities, —oo and +o0, is:

— oo U400 = {£oo} (2)

The following reciprocity relations exist between zero and projective infinity, which can then
be related to affine infinities using (2):

[0,0] = —[0,0] ;
{£oo} = —{£oo};
/(=) = 1/(+00)=1/{xoc} =10,0] ; and,
1/[0,0] = {&oo} .

To close the system of extended intervals with respect to the arithmetic operators, it is
necessary to define the result of interval operations on operands involving (), as well as
indeterminate forms, including those in table 1. This has been done in [18]|. Definition 1
does not apply to extended intervals or division by zero or the indeterminate forms in (1).
If op y is indeterminate, then define {[z op y|} to be the set of all possible values of £ to
which £ = z op y can be equal. If z op y is determinate, then {[z op y]} = = op y. The
following required results are derived from topological closure of arithmetic operations using
results in [20].

{op X} = 0 for op € {+,—,x,+} and VX € IR"; (3)
{Xop0} = 0 for op € {+,—,%x,+} and VX € [IR"; (4)
{[(o0) = (+o0)I} = R"; (5)

10

{l(=00) + (+o0)]} = R"; (6)
{{(+o0) + (-=o0)]} = R"; (7)
{l(=00) = (=00)]} = R*; (8)
{lojo)} = R ; (9)

{[(+00) x O]} = R"; (10)
{[(=00) x 0]} = R"; (11)

{0 x (+o0)]} = R"; (12)
{0x (-o0)]} = R"; (13)
{la/0} = {£x]}CR* VO0<a; (14)

{[(=a) /0]} = {0} CR" VO0<a; (15)
{{(+00) /(+o0)]} = [0,400] ; (16)
{[(=00) /(+o0)]} = [-00,0] ;. (17)
{[(+00) /(=0)]} = [-00,0] ;and, (18)
{{(=00) /(=o0)]} = [0,+00] . (19)

The result of equations (14) and (15) is unsigned or projective infinity, while not sharp
containment is preserved if IR is returned instead of {£oo}, because projective infinity is
contained in IR*.

The indeterminate forms in (1) are undefined in the point system because these forms define
multi—valued, not single—valued functions. Because intervals are sets of values, the results in
(3) can be used to return containing intervals.

The results from the definitions in (3) through (19) can be used to generalize Definition 1:

Definition 2
{XopY}={{lropy]} |z €X and yeY} ; where
op={+,—,x,+}, X €e [IR",Y € IIR", {[z op y]} = = op y when x op y is defined, but

whenever x op y is indeterminate, the definitions of {[x op y|} in (3) through (19) are used
instead.

4 Internal Representation using IEEE numbers

To support arithmetic operations on the complete set of extended real intervals requires
non—IEEE arithmetic operators, or the sacrifice of run—time performance. An alternative is
to exclude the intervals [—oo, —oo] and [4o00, +00] from the set of supported intervals. As
a consequence, the invalid operation exception (+o00) — (4+00) is avoided in inlined TEEE

11

floating—point addition and subtraction operations. Without loss of containment or closure,
any containing interval can be returned for the result of an operation on supported intervals
that produces an unsupported interval result. In particular, [—inf, —fp| can be returned
in place of [-inf,-inf] and [+fp, +inf] can be returned in place of [+inf], where fp
denotes the largest representable floating—point number®.

The following design objectives are supported by the chosen mapping of interval endpoints
onto the set of IEEE repesentable floating-point numbers:

e represent the empty, @), and entire, IR*, intervals;

e use IEEE features to implement the relative dominance of the empty () and the entire
(IR*) intervals; and,

e use the properties of IEEE floating-point arithmetic to achieve sharpness and speed.

Justification for limiting the first release of Sun’s compiler support for intervals to the “Sim-
ple” system is contained in [21]. While the “Simple” system produces results that are less
sharp in the presence of underflow and overflow than the “Sharp” and “Full” systems in
[20], simplicity is believed to be more important than sharpness in the first interval compiler
release.

The empty interval, @ , is represented using the unique internal representation [NaNy, NaNyl;
where NaNy is a non-default quiet not-a-number. To provide efficient hardware support for
the “Sharp” and “Simple” systems, NalNVy, must be unique and unobtainable in any other
way. The result of operations such as IEEE O*inf, inf/inf, or 0/0, produce a default
NaN. Using a non default Na/N to represent the empty interval enables empty intervals to
be efficiently propagated without introducing branches.

The entire interval IR" is internally represented using [—inf, +inf].

Zero interval endpoints are internally represented using either plus or minus zero. In the
“Simple” system, the sign of zero is ignored. Processors that implicitly initialize variables
to zero may initialize variables of interval type to [-0,-0], [+0,+0], [+0,-0] or [-0,+0].

The following examples for the “Simple” system are obtained form Definition 2 and equations
(5) — (19).
Given a,b,c,d € IR and a,b,c,d >0

[a, +inf] * [-c,d] = [-inf,+inf]
[-inf, -b] * [-c,d] = [-inf,+inf]

5The notation fp and - fp is not meant to imply that floating—point numbers are symmetrically distributed
around zero

12

[a, +inf] * [+ 0 , d] = [-inf,+inf]
[-inf, -b] * [+ 0,d] = [-inf,+inf]
[-inf, b] * [£ 0,d] = [-inf,+inf]

[-inf, b] * [-c,&+ 0] = [-inf,+inf]

For all intervals X € TIR* :

X/ [£ 0,d]
X / [c,£ 0]
X / [-c,d] = [-inf,+inf]
[a,+inf] / [c,+inf] = [0,+inf]
[-inf,-b] / [-inf,-d] = [0,+inf]
[-inf,-b] / [c,+inf] = [-inf,0]
[a, +inf] / [-inf,-d] = [-inf,0]

[-inf,+inf]

[-inf,+inf]

The following table shows how (in the “Simple” system) internal binary representations are
interpreted on output ("x" stands for an external character representation of x). In this
table, x # inf and x # 0.

‘ Internal binary ‘ Output ‘ External character |

[+ 0, £+ 0] — [0,0]

[+ 0,x] — [0,"x"]

[x, £ 0] — ["x",0]

[x, +inf] — ["x", +INF]
[+0, +inf] — [0,+INF]
[-inf,x] — [-INF,"x"]
[-inf, +0] — [-INF,0]

The following table shows how (in the “Simple” system) character strings are converted into
the internal binary representation ("x" stands for an external character representation of x).
In this table, x # inf and x # 0.

13

‘ Internal binary | Input ‘ External character ‘

[+0,x] — [[0,"x"]
[+0,x] — [1e-5000, "x"]
[x,+0] — | ["x",0]
[x,+0] — | ["x",-1E-5000]
[x,+inf] — ["x",+INF]
[+0,+inf] — | [0, +INF]
[-0,+0] — [0,0]

[-inf, 40] «—— | [-INF,0]
[-inf,+0] —— | [-INF, -1E-5000]
[-inf,x] — [-INF,"x"]
[-inf, —fp] —— | [-INF, -INF]
[+0, fp] «—— | [0,1E-5000]
[fp, +inf] — | [+INF, +INF]

Note: fp and fp are respectively: the smallest positive and largest representable

floating—point number.

5 The empty and entire intervals

5.1 The empty interval, ()

Three ways an empty interval can be produced are: by inputing of an empty interval (see sec-
tion 21); by intersecting, .IX. (see section 11.2), two disjoint intervals; or by evaluating the
interval enclosure of a expression using an argument that is strictly outside the expression’s
domain of definition.

The following are defining properties of the empty interval:

e The empty interval is a degenerate interval constant.

The empty interval is a proper subset, .PSB. (12.6), of every other interval.

The empty interval is set equal, .SEQ. (12.7), to itself.

The empty interval is disjoint, .DJ. (12.1), with any interval, including itself.

The intersection, .IX. (11.2), of the empty interval with any interval, including itself,
is empty.

14

e Any arithmetic operation on an empty operand produces the empty interval.

e Any interval enclosure of a point arithmetic expression of one or more arguments is
empty when any of its interval arguments is empty. Without loss of containment,
interval enclosures of invariant (or constant) expressions can safely return the value of
the invariant expression, even when the argument of the interval enclosure is empty,
see [20]. Examples of invariant expressions include f(z) = ¢ and f(z) = =", for n = 0.

e Any point-valued (non—interval) intrinsic of one or more empty interval argument is
undefined. A processor—dependent result is returned in this case. The point-valued
intrinsics are: INF, SUP, WID, MID, MIG, MAG, NDIGITS and INT see sections 10, 16 and
17.

5.2 The entire interval, R*

For convenience of exposition the term entire interval is used to denote the interval IR*. The
following are defining properties of the entire interval:

e The entire interval is a non-degenerate interval constant. Two entire intervals must
be treated as completely independent, see [23]. Consequently, R* — R* = IR* and
IR*/IR* = IR" (see section 7).

e The entire interval is a proper superset, .PSP. (12.5), of every other interval.
e Two entire intervals are set-equal, .SEQ. (12.7).

e The entire interval is disjoint, .DJ. (12.1), with no other interval except the empty
interval

e The intersection, .IX. (11.2), of the entire interval with any interval, X, is X.

e The result of any interval arithmetic operation on one or more entire interval operands
is the range of the operation with respect to the entire interval argument(s). This is
a consequence of the definition of the minimum width interval enclosure of a point
operation; X.op.Y = hull({{ | £ = z.opy, z € X, y € Y}), see [20]. Example:
[1,1]/[0,0] = {—o0} U {+o0} C R*

e The result of evaluating an interval enclosure of a point expression with one or more
entire interval arguments is the range of the expression with respect to the entire
interval argument(s). That is, f(R*) = hull({y | v = f(z), = € [R"}), see [20].
The extension to expressions of n-variables must include consideration of expressions
resulting in indeterminate forms, see [20].

Examples: R** = [0, 400] C R*, VIR* = [0, +00] C IR*, and sin (IR*) = [1,1].

15

e Any point-valued (non-interval) intrinsic of one or more entire interval arguments may
or may not be defined. If not defined, a processor must return a processor-dependent
result. The point-valued intrinsics are: INF, SUP, WID, MID, MIG, MAG, NDIGITS and INT,
see sections 10, 16 and 17.

6 Language Extensions

The language extensions described in this section are introduced to enable interval variables
to be declared, manipulated, input, and output.

6.1 Character Set

Processors are assumed to support square brackets, “[” and “]”, to delimit literal interval
constants, see section 6.4.

6.2 Interval related command line options

Interval features in the Sun f95 compiler are activated by means of the following command
line options

e —xinterval=(no|widestneed|strict) is a flag to enable processing of intervals and
to control permitted expression evaluation syntax.

"no", the first default, is a no-op.

"widestneed", the second default will promote all non-interval variables and literals
in any mixed-mode interval expression to the widest interval data type anyplace in the
expression. The details are spelled out in the interval specification document and a
paper by Robert Corbett.

"strict" will not permit any mixed-type or mixed-length interval expressions. All
interval type and length conversions will need to be explicit, or it will be a compile-
time error.

e —xia=(widestneed|strict) is a macro that enables the processing of interval data
types and sets a suitable floating-point environment.
If -xia is not mentioned, there is no expansion.

-xia expands into :
-xinterval=widestneed
-ftrap=Ynone

16

-fns=no
-fsimple=0.

-xia=(widestneed|strict) expands into
-xinterval=(widestneed|strict)
-ftrap=/none

-fns=no

-fsimple=0.

Previously set values of -ftrap, -fns, -fsimple are superseeded.

It is a fatal error if at the end of command line processing -xinterval=(widestneed|strict)
is set and either -fsimple or -fns is set to any value other than

-fsimple=0
-fns=no.

If at the the end of the command line processing -ansi is set and -xinterval is set to either
widestneed or strict a warning "Interval data types is a non-standard feature” is issued.

Note: -fround = <r>: (Set the IEEE rounding mode in effect at startup) does not interact
with -xia because interval operations save and restore the rounding mode upon entry/exit.

When recognition of interval types is activated:

e Interval operators and functions become intrinsic.

e The same restrictions are imposed on the extension of interval intrinsic operators and
functions as are imposed on the extension of standard intrinsic operators and functions.

e Interval specific function names (see section 6.13) are recognized.

In the remainder of this document, unless otherwise specified, the "-xinterval=strict"

command line option is assumed to be set.

6.3 -xtypemap=interval

The default size of an interval variable declared only with the INTERVAL keyword can be
changed using only the -xtypemap command line option®. The -r8const flag has no influence
on the default size of interval types. Allowed mappings for -xtypemap are:

-xtypemap=interval:128, promoting INTERVAL to INTERVAL(16) ; and

-xtypemap=interval:32, demoting INTERVAL to INTERVAL(4).

6Implementation of this option is not planned for current release.

17

6.4 Interval type

The type specifier for intervals is the keyword INTERVAL. An approximation method (charc-
terized by the kind type parameter) defines sets of values for a real data type. For interval
endpoints the Fortran processor must support the same approximation methods as are used
for real types. Both endpoints of an interval value must be represented using the same
approximation method.

In addition to the keyword INTERVAL, users may specify a kind type parameter’. If the
keyword INTERVAL is specified and the kind type parameter is not specified, the default kind
value is the same as that for the double precision real, the type of both endpoints is double
precision real, and the data entity is of type default interval.

Sun 95 also supports INTERVAL*8, INTERVAL*16, and INTERVAL*32 type specifiers corre-
sponding to interval values with REAL(4), REAL(8) and REAL(16) endpoints. In all cases
the types of both interval endpoints are the same.

The set of values that are representable using an interval constant or variable is a subset of
the mathematical real interval numbers.

Intervals are opaque. That is, there is no language support provided for direct access to
an interval’s underlying machine representation. An intervals’s infimum and supremum are
accessible using the intrinsics INF(X) and SUP(X).

If the SEQUENCE statement is present in a derived—type definition and a component has
an interval type then the type is not a numeric sequence type 2.

Note: Although COMMON, and EQUIVALENCE variable association, and LOC() enable pro-
grams to access the underlying internal representation of interval components, the results of
such access are processor dependent and should not be used. See also section 6.8.

Where literal constants are admitted in a program, an interval value is represented as an
interval literal constant.

interval-literal-constant is [endpoint]
or [left-endpoint, right—endpoint]
left—endpoint is endpoint
right—endpoint is endpoint
endpoint is signed—int-literal-constant

or signed—real-literal-constant

An interval literal constant is specified either by one or two decimal numbers. Thus, for
example, the constants [0.1] and [0.1,0.1] have the same interpretation. In either case,

"For the INTERVAL type Sun 95 supports kind type parameters equal to 4, 8 and 16
8No new constraint is introduced. The Fortran standard already makes these specifications for any type
other than default integer, default real, default complex, or default logical.

18

a decimal constant’s internal representation must contain the decimal constant, regardless
of the number of digits in the constant.

Interval constant properties:

An interval literal constant with a left endpoint greater than its right endpoint is
invalid.

Left and right endpoint data types may be different.

If either endpoint is not exactly representable on a given machine, the left endpoint is
rounded down and the right endpoint is rounded up to numbers known to contain the
exact decimal value.

If both endpoints are of type real but have different kind type parameters, they are both
internally represented using the method of the endpoint with more decimal precision.

If an endpoint is of type default integer, default real or double precision real, it is
internally represented as a value of the type double precision real.

An interval constant having both endpoints of type default integer, default real or
double precision real, has the type default interval.

If an endpoint’s type is INTEGER(8), it is internally represented using type REAL(16)
value. If an endpoint’s type INTEGER (4), it is internally represented using type REAL(8)
value. If an endpoint’s type INTEGER(1) or INTEGER(2), it is internally represented
using type REAL(4) value.

The kind type parameter of an interval constant is the kind type parameter value of
the part with the approximation method which is applied to both parts.

Examples:

kind([9_8,9.0]) == 16
kind([9_8,9_8]) == 16
kind([9_4,9_4]) =8

kind([9_2,9_21) == 4

kind([9,9.0_16]) == 16
kind([9,9.0]) == 8

kind([9,9]) == 8

kind([9.0_4,9.0_4]) == 4

kind([1.0Q0,1.0_16]) == 16
kind([1.0_8,1.0_4]) == 8

kind([1.0e0,1.0q0]) == 16
kind([1.0e0,1]) == 8

kind([1.0q0,1]) == 16

19

6.5 Derived-type Definition

INTERVAL cannot be used as a derived type name. For example

TYPE INTERVAL
REAL :: INF, SUP
END TYPE INTERVAL

is illegal.

6.6 Interval Intrinsic Expressions

An nterval expression is used to represent interval computations. An interval expression
evaluates to a scalar interval value or to an interval array value. An interval intrinsic
expression consists of interval operands and interval operators.

Interval operands are interval constants, interval variables, interval array constructors, high
precedence interval defined subexpressions, interval functions references, and (intrinsic and
defined) (sub)expressions enclosed in parentheses.

A defined expression is composed of operands and operators, where: operands may have
derived and intrinsic types; and, operators may be defined, intrinsic or extended intrinsic
operators. A defined expression may also be an interval expression if it evaluates to an
interval type.

A defined expression and an intrinsic expression differ either in that a defined expression has
at least one derived type operand, or in that a defined expression includes either a defined
operator or an extended intrinsic operator.

Operands are (as in the case of an intrinsic expression) constants, variables, array construc-
tors, function references, and (sub)expressions enclosed in paretheses. Defined expressions
may also include structure constructors used as operands.

In the integer exponenatiation operation X#*N, where X is interval and N is an integer type
variable, an integer—literal constant is allowed as an exponent only if the constant is in the
range [-MAX_INT,MAX_INT]. This prevents containment failures caused by the truncation of
integer constants that are not internally representable.

Simple interval expressions may consist only of one operand without an operator.

More complicated interval expressions consist of one or more operands processed by interval
intrinsic operators. They may contain interval subexpressions enclosed in parentheses.

Interval intrinsic operators are:

20

Operator Operation Use Interpretation

*x Exponenatiation XokxY Raise X to the power Y
Multiplication XxY Multiply X and Y
/ Division X/Y Divide X by Y
+ Addition X+Y Add X and Y
+ Identity +X Same as X (without a sign)
- Subtraction X-Y Subtract Y from X
- Numeric Negation -X Negate X
JH. Interval hull X.IH.Y Interval hull of X and Y
IX. Intersection X.IX.Y Intersect X and Y

Precedence of operators:

e The Unary operators +,- take precedence over the *x, *, +, - _IH., and .IX.
e The operator x* takes precedence over the *, +, -, .IH., and .IX. operators.

e The operators *,/ take precedence over the +, -, .IH., and .IX. operators.

e The operators +,- take precedence over the .IH. and .IX. operators.

o The operators .IH. and .IX.take precedence over the // operator.

Interpretation rules:

e An interval intrinsic expression is interpreted from left to right. That is, if there is an

operand between two operators of the same precedence (except exponentiation), the

left operator is combined with the operand.

o A parenthesized expression is treated as a data entity.

o If an expression includes operators of different precedence, the precedence of the oper-

ators controls the order of the combination of operators and operands.

e a sequence of exponentiation is combined from the right to the left; for example

[1,2]*%[3,4]*[5,6] is interpreted as [1, 2]([34}[5*‘])

6.6.1 Type, kind type parameter and shape

An interval expression evaluates to a result that is an interval. The results type, kind
type parameter, shape and value are determined from those of the operands and from the

interpretation of the expression.

21

Unary interval operator: If the operator 4+ or - is applied to one interval operand, the
type, kind type parameter and shape of the expression (and thus the type of the result) is
the same as the type of the operand.

Binary interval operator:
If both operands have the default interval type, the result also has the default interval type.

With the exception of the interval ** operator with the integer exponent, an interval operator
can only be applied to two operands of the same interval type and kind type parameter and
thus the type and the kind type parameter of the expression (and the type of the result) is
the same as the type of the operands.

If the second operand of the interval ** operator is of an integer type, the first operand can
be of any interval type and the result type and the kind type parameter is that of the first
operand.

A binary interval operator may be applied to two operands of different shapes (if one operand
is a scalar).

Shape: If a binary interval operator is applied to two operands with the same shape, the
result of the operation also has this shape. If the shapes of the operands are different (one
being a scalar) the result has the shape of the array operand.

6.7 Interval Relational Intrinsic Expression

An interval relational intrinsic expression compares the results of two interval intrinsic ex-
pressions or compares (in the case of .IN. operator) the result of an real intrinsic expression
with a result of an interval intrinsic expression.

An interval relational expression may appear only as an operand in a logical expression. The
interval relational expression evaluates to a default logical type scalar or array value.

The list of interval relational intrinsic operators for interval data entities is:

.8P., .PSP., .SB., .PSB., .IN., .DJ., .EQ., .NE., ==, /=, .SEQ., .SNE., .SLT.
.SLE., .SGT., .SGE., .CEQ., .CNE., .CLT., .CLE., .CGT., .CGE., .PEQ., .PNE.,
.PLT., .PLE., .PGT., .PGE.

The precedence of interval relational operators is the same as a the precedence of real rela-
tional operators, for example the .EQ. operator.

A scalar interval relational intrinsic expression evaluates to the default logical value, true,
if and only if the operands satisfy the relation specified by the operator; otherwise the
expression evaluates to the default logical value, false. If the operands are conformable
arrays, the result of the expression is produced element—wise.

Except for the .IN. operator, the types and kind type parameters of the operands in the
interval relational expression

22

Interval Expression; IntervalRelationalOperator Interval Expressions

must coincide.

If the first operand of the .IN. operator is of any integer or real type, the second operand
can be of any interval type.

The result of the interval relational expression has the default logical kind type parameter.

6.7.1 Semantics of .EQ. and .NE. operators for interval data type

The .EQ. (equivivalently ==) and .NE. (equivivalently /=) relational operators can be applied
to interval type operands. These operands are semanticly equivivalent to the interval set
relations .SEQ. (12.7) and .SNE. (12.12), respectively.

The .LT., .LE., .GT., .GE. relational operators do not accept interval type operands.

6.8 COMMON and EQUIVALENCE statements

Constraint: If an equivalence set contains an interval, all of the objects in the equivalence
set must have the same type with the same kind type parameter.

Constraint: An interval variable may only be storage associated with an interval variable
of the same size.

It is a desirable feature for Global Program Checking (GPC) to check for interval storage
association errors.

6.9 Interval assignment: -xinterval=strict

Let v be an interval variable and e be an interval expression.

An interval intrinsic assignment statement v = e is an assignment statement in which shapes
of v and e conform.

Execution of the interval assignment v = e causes the following steps to be taken:

1. All expressions used to identify the variable on the left—-hand side are evaluated.
2. The interval expression on the right-hand side is evaluated.’;

3. The result of the right—hand side is assigned (i.e stored) to the interval variable of the
left—hand side.

9Tn contrast to section 9 no widest-need evaluation is used

23

Note: Compiling with -xtypemap compiler option can have an effect on the assumed type
of e. See section 6.2.

6.10 Predefined interval operators

For the combinations of arguments listed below, interval intrinsic operators +, -, *, /,
.IH., .IX. and ** are predefined and cannot be extended by users.

(any INTERVAL type, any INTERVAL type)
(any INTERVAL type, any REAL or INTEGER type)
(any REAL or INTEGER type, any INTERVAL type)

The interval operator ** with the integer exponent is predefined and cannot be extended by
users for the following combination of arguments:

(any INTERVAL type, any INTEGER type)

Except for the operator .IN. interval relational operators described in 6.7 are predefined for
the combinations of arguments listed below and cannot be extended by users

(any INTERVAL type, any INTERVAL type)
(any INTERVAL type, any REAL or INTEGER type)
(any REAL or INTEGER type, any INTERVAL type)

The interval relational operator .IN. is predefined and cannot be extended by users for the
following combination of arguments:

(any REAL or INTEGER type, any INTERVAL type)

6.11 Extended Interval Intrinsic Operators

If the operator specified in the INTERFACE statement of an operator interface block is an
intrinsic interval operator (for example .IH.), this defines an extension of the intrinsic in-
terval operator. An operator function for such an extended intrinsic interval operator may
only extend the operator for those data types of its operands that do not belong to the data
types for which this operator is predefined.

In the following example both S1 and S2 interfaces are correct because .IH. is not predefined
for (LOGICAL,INTERVAL(16)) and REAL, REAL operands,

MODULE M

24

INTERFACE OPERATOR (.IH.)
MODULE PROCEDURE S1
MODULE PROCEDURE S2

END INTERFACE

CONTAINS

REAL FUNCTION S1(X,Y)
LOGICAL, INTENT(IN) :: X
INTERVAL(16), INTENT(IN) :: Y
S1=1

END FUNCTION S1

INTERVAL FUNCTION S2(X,Y)

REAL, INTENT(IN) :: X
REAL, INTENT(IN) :: Y
852=2

END FUNCTION S2
END MODULE M

In the following example both S3 and S4 interfaces are incorrect because .IH. is predefined
for (INTERVAL,INTERVAL) and (INTERVAL(4),INTERVAL(8)) operands.

MODULE M1

INTERFACE OPERATOR (.IH.)
MODULE PROCEDURE S4
MODULE PROCEDURE S3

END INTERFACE

CONTAINS

REAL FUNCTION S4(X,Y)
INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
S4=4

END FUNCTION S4

INTERVAL FUNCTION S3(X,Y)

INTERVAL(4), INTENT(IN) :: X
INTERVAL(8), INTENT(IN) :: Y
S3=[3]

END FUNCTION S3

25

END MODULE M1

The number of arguments of an operator function for an extended intrinsic interval operator
must agree with the number of operands needed for the intrinsic operator.

For example, the following definition is incorrect:

MODULE M

INTERFACE OPERATOR (.IH.)
MODULE PROCEDURE S1

END INTERFACE

CONTAINS

REAL FUNCTION S1(X)
REAL, INTENT(IN) :: X
S1=1

END FUNCTION S1

END MODULE M

A binary intrinsic interval operator can not be extended with unary operator function having
an interval argument.

For example, the following definition is incorrect:

MODULE M

INTERFACE OPERATOR (.IH.)
MODULE PROCEDURE S1

END INTERFACE

CONTAINS

REAL FUNCTION S1(X)
INTERVAL, INTENT(IN) :: X
S1=1

END FUNCTION S1

END MODULE M

6.12 Overloaded Interval Intrinsics Names

In a generic interface block, if the generic name specified in the INTERFACE statement is the
name of an interval intrinsic subprogram, the user—defined specific subprograms specified

26

in the generic interface block extends the predefined meaning of this intrinsic subprogram.
All references to subprograms having the same generic name must be unambiguous. The
intrinsic subprogram is treated as a collection of specific intrinsic subprograms, the interface
definitions of which are also specified in the generic interface block.

For example, the following definition is correct:

MODULE M

INTERFACE WID
MODULE PROCEDURE S1
MODULE PROCEDURE S2
END INTERFACE

CONTAINS

REAL FUNCTION S1(X)
REAL, INTENT(IN) :: X
S1=1

END FUNCTION S1

INTERVAL FUNCTION S2(X,Y)

INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
52=2

END FUNCTION S2
END MODULE M

In contrast, the following definition is correct.

MODULE M

INTERFACE ABS
MODULE PROCEDURE S1
END INTERFACE

CONTAINS

INTERVAL FUNCTION S1(X)
INTERVAL, INTENT(IN) :: X
S1=1

END FUNCTION S1

END MODULE M

The following definition is correct.

27

MODULE M2

INTERFACE MIN
MODULE PROCEDURE S3
END INTERFACE

CONTAINS

INTERVAL FUNCTION S3(X,Y)
INTERVAL(4), INTENT(IN) :: X
INTERVAL(8), INTENT(IN) :: Y
S3=[3]

END FUNCTION S3
END MODULE M2

6.13 Specific names for interval intrinsics

The Sun {95 specific names for interval intrinsics end with the generic name of the intrin-
sic and start with “V”, followed by “ §”, “D” or “Q” for arguments of type INTERVAL(4),
INTERVAL(8) and INTERVAL(16), respectively.

In the current release only the following specific intrinsics are supported for the INTER-
\Q\L(IG) data type: VQABS, VQAINT, VQANINT, VQINF, VQSUP, VQMID, VQMAG, VQMIG,
VQISEMPTY.

To avoid name space clashes in non—interval programs, the specific names are made available
by means of the command line options

"-xinterval", "-xinterval=strict" or "-xinterval=widestneed".
‘ Specific Name ‘ Argument ‘ Result ‘
E VSABS INTERVAL(4) INTERVAL(4)
xamples:
VDABS INTERVAL(8) INTERVAL(8)
VQABS INTERVAL(16) | INTERVAL(16)

7 Interval arithmetic operations

The implementation of interval arithmetic operations, {+, —, X, /} is based on the definition
2.

28

Using down and up arrows to indicate the direction of rounding in the next and subsequent
operations, the following formulas can be used to perform basic interval operations (see
section 8 for the definition of interval exponentiation operator):

X+4Y = [la+y,17+7

X-Y = [lz-717 -y

XxY = |min(lzxy, ax7 Fxy, x7),max(lzxy, 2 xF, Txy, Tx7)]
XYy = [min (l z/y, /7, T/y, T/y) ,max (T z/y, /7, T/y, f/gﬂ if0¢Y

X/)Y = RY,if0eY

Algorithms implementing interval arithmetic operations on [IIR" for IEEE processors are
contained in the Appendix A. See section 18 for interval enclosures of mathematical intrinsic
functions.

Note: Interval operations on valid interval operands may raise floating—point
IEEE 754 exceptions. These exceptions may be ignored. If it is required to track
floating—point IEEE exceptions in non—interval code, these exceptions will need
to be cleared after executing interval code. See [15] for instructions to clear IEEE
754 exceptions.

8 Interval power exponentiation operators X**n and
X*xY

The interval enclosure of the exponentiation operator, is more complicated than the four
arithmetic operators. There are two basic cases to consider: integer exponents, z", and
continuous exponents, V. The set of values an interval enclosure of X" must contain is:

{y|ly=2a", z€ X} .

Monotonicity can be used to construct a sharp interval enclosure of the integer power intrin-

sic. Withn=20,2"=1 V.

The set of values an interval enclosure of XY must contain is

{{[exp(y In(z))]} | 2 € X, y € Y],

where {[exp(yIn(z))]} is the containment set of the expression exp(yIn(z)).

The result is empty if either argument is empty.

29

When both the base and the exponent contain zero, the result is defined to be the interval

[0, +00]. This result follows from considering all the possible values satisfying the relation
{¢{ =exp(yln(z)), x € X, y €Y, x > 0}, see [20].

The following table contains the containment sets for all the singularities and indeterminate
forms of the intrinsic f(z,y) = {exp (yInz)}:

[= [y [{lexp(yna)]} |

0 <0 +o0,

1 | £o0 [0, 4+00]
+oo | O [0, 400]

0 0 [0, +00]

9 Widest—need interval expression evaluation

Widest-need interval expression evaluation is activated by the -xinterval=widestneed
command line option (see section 6.2).

The Fortran standard contains no accuracy requirement on the results obtained from the
evaluation of floating—point or integer expression, or the evaluation of intrinsics. The Fortran
standard also mandates that literal constants be treated as floating—point variables and
prohibits “widest need” expression evaluation, see [2]. Without loss of containment, this
combination of requirements precludes evaluating both interval expressions containing non—
interval literal constants and mixed mode interval and non—interval subexpressions.

The terminology adapted from [2] provides a more formal statement of the rules for widest—
need interval expression evaluation.

An arithmetic expression is complete if it is not an immediate operand of a generic operator.
For example argument expressions of user—defined operators are complete.

The final type of a complete expression is the type required by the context in which it
appears.

Note: Neither the interval constructor , nor interval intrinsics INF, SUP, WID, MID, MIG, MAG
are generic operators.

The final type of a complete expression is the same as its result type unless the expression
is: the right—hand side of an assignment; an initial value expression in a DATA statement; a
constant expression in an INTERVAL, PARAMETER statement, or an operand of a relational
operator.

Basic operands are constants, variables, array constructors, and functions references.

An intrinsic reference is a basic operand if the intrinsic being invoked is not one of the generic
operators.

30

The direct operands of a complete expression are those basic operands that are not also
contained in complete subexpressions. If the expression contains any complete subexpression,
the type and kind type parameter assigned to the components of each of these subexpressions
is determined separately.

9.1 Interval assignment statement

Let v be an interval variable and e be a non—complex numeric or interval expression.

An interval intrinsic assignment statement v = e is an assignment statement in which shapes
of v and e conform.

Execution of an interval assignment v = e causes the following steps to be taken:

1. All expressions used to identify the variable on the left—hand side are evaluated.

2. The expression on the right-hand side is evaluated using widest—need interval evalua-
tion.

3. The result of the right-hand side is converted to the kind type parameter of the left—
hand side if the kind type parameters of v and e are different.

4. The (possibly converted) result of the right-hand side is assigned (i.e stored) to the
interval variable of the left—hand side: v = INTERVAL(e, KIND(vw))

The algorithm for widest—need interval evaluation of the right—hand side of the interval
assignment statement can be logically split into the following steps.

1. All real operands of interval intrinsic operators are implicitly converted to containing
intervals having type defined by the following rule:

INTERVAL(Operand, KIND=KIND(Operand))

All integer operands of interval intrinsic operators are implicitly converted to containing
intervals having type defined by the following rule:

INTERVAL(Operand, KIND=2*KIND(Operand))

2. Let € denote the resulting interval expression implicitly constructed. The widest—
need kind type parameter (wnktp) of the interval expression €’ is determined using the
following Fortran intrinsics:

wnktp = SELECTED _REAL_KIND(
MAX(PRECISION(v),PRECISION(¢'))), MAX(RANGE(v), RANGE(¢'))))

31

3. All real, integer or interval literal constant direct operands are internally converted to
a containing INTERVAL(16).

4. All direct operands are converted to containing intervals with widest—need interval type
defined by the following rule:

INTERVAL(DirectOperand, KIND=wnktp)

5. The resulting interval expression is then evaluated.

9.2 Array constructor

If an array constructor is a direct operand in an interval expression, its type is interval, and
its elements are subject to widest—need interval expression evaluation.

REAL :: R
INTERVAL, DIMENSION(3) :: Y
Y= (/r,0.1,0.2/) ! interpretation Y = (/INTERVAL(r),[0.1],[0.2]/)

9.3 Interval constant expressions

Where interval constant expressions are allowed, real or integer constant expressions are
allowed. Widest—need interval evaluation will apply.

9.4 Interval initialization expressions

Where interval initialization expressions are allowed, real or integer initialization expressions
are allowed. Widest—need interval evaluation will apply.

9.5 Interval Relational Expressions

Let either operand of an interval relational operator be an interval expression and let the
other operand be a non—complex numeric expression or an interval expression. Then the
algorithm for widest—need evaluation of an interval relational intrinsic expression

exp; IntervaRelationalOperator exps

can be logically split into the following steps.

32

5.

All real operands of interval intrinsic operators in exp; and exp, 1° are implicitly
converted to containing intervals having type defined by the following rule:

INTERVAL(Operand, KIND=KIND(Operand))

All integer operands of interval intrinsic operators in exp; and exp, ! are implicitly
converted to containing intervals having type defined by the following rule:

INTERVAL(Operand, KIND=2*KIND(Operand))

. The widest-need kind type parameter (wnktp) of the interval expressions exp; and

exps is determined using the following Fortran intrinsics: (exzp; and exps are implicitly
evaluated)

wnktp = SELECTED _REAL_KIND(
MAX(PRECISION(ezp;),PRECISION(ezps))), MAX(RANGE(exp;),RANGE(ezp,))))

All real, integer or interval literal constants that are direct operands in exp; and exp,'?
are internally converted to containing intervals having the wnktp kind type parameter.

All direct operands in exp; and exp, '* are converted to containing intervals with
widest-need interval type defined by the following rule:

INTERVAL(DirectOperand, KIND=wnktp)

The resulting interval expression exp; and exp,'* are evaluated and compared.

Thus all of the following expressions are legal and evaluate to true.

LOGICAL :: L
L= [0.1D0].SEQ. [0.1Q0]

[0.1] .SEQ. [0.1D0]

L= 0.1.SEQ. [0.1D0]
L= 0.1.SEQ.[0.1Q0]

[0.1].SEQ.[0.1Q0]

Without widest—need evaluation only
L= [0.1] .SEQ. [0.1]

is legal.

The following expression is always illegal

L= 0.1 .SEQ. 0.1

10Tf IntervaRelationalOperator is .IN. then only ezp; is a subject to this conversion.
UTf IntervaRelationalOperator is .IN. then only exzp, is a subject to this conversion.
L2Tf IntervaRelationalOperator is .IN. then ouly exps is a subject to this conversion.
B3If IntervaRelationalOperator is .IN. then only exps is a subject to this conversion.
HMTf IntervaRelationalOperator is .IN. then only exps is a subject to interval evaluation.

33

9.6 INTERVAL versus REAL PARAMETERs

Under -xia=widestneed using real named constants to define interval constants must be
done with care.

Real named constants are evaluated in PARAMETER statements i.e. the behavior of REAL
PARAMETERs is identical to that of REAL variables.

In the following example interval X gets assigned a degenerate interval with both endpoints
equal to the result of the real expression 0.1, + 0.2,4.

REAL, PARAMETER :: PR = 0.1+0.2

REAL :: R = 0.1+0.2

INTERVAL :: X,Y

X = PR

Y=R

IF (X .SEQ. Y)) PRINT *, ’Checkl’

IF (X .SEQ. INTERVAL(0.1_4+0.2_4)) PRINT *, ’Check2’
IF (WID(X) == 0.) PRINT *, ’Check3’

An expression defining an INTERVAL PARAMETER is computed with the INTERVAL(16) preci-
sion and its result value always contain the mathematical value of the expression.

In the following example interval X gets assigned a non degenerate interval containing the
mathematical value of the expression 0.1 + 0.2.

INTERVAL, PARAMETER :: PY = 0.1+0.2

INTERVAL :: Y = 0.1+0.2

INTERVAL :: X

X=Y

IF (X .SEQ. Y) PRINT *, ’Checkl’

IF (X .SEQ. INTERVAL([0.1_16]+[0.2_16], KIND=8)) PRINT *, ’Check2’
IF (WID(X) /= 0.) PRINT *, ’Check3’

9.7 Examples: Extended operators with widest—need evaluation

The following code illustrates how widest—need expression evaluation occurs when a prede-
fined versus an extended version of an interval intrinsic operator is called.

MODULE M
INTERFACE OPERATOR (.IH.)
MODULE PROCEDURE S4

34

END INTERFACE
CONTAINS

INTERVAL FUNCTION S4(X,Y)

COMPLEX, INTENT(IN) :: X
COMPLEX, INTENT(IN) :: Y
S4=[0]

END FUNCTION S4
END MODULE M

USE M
INTERVAL:: X
REAL :: R
COMPLEX :: C

><
1

(R-0.1).IH.(R-0.2) ! INTRINSIC INTERVAL .IH. IS INVOKED,

! WIDEST-NEED ON BOTH ARGUMENTS

X= X.IH. (R+R) I INTRINSIC INTERVAL .IH. IS INVOKED,
! WIDEST-NEED ON BOTH ARGUMENTS
X=
! WIDEST-NEED ON THE SECOND ARGUMENT
X= (R+R).IH. (R+R+X) ! INTRINSIC INTERVAL .IH. IS INVOKED,

! WIDEST-NEED ON BOTH ARGUMENTS

I

I

I

I

X.IH. (R+R+X) ! INTRINSIC INTERVAL .IH. IS INVOKED,

!

!

!

! S4 IS INVOKED, NO WIDEST-NEED

X =C .IH. (C + R)
END

The following code illustrates how widest-need expression evaluation occurs when a user-
defined operator is called.

The following is the expected behavior for the current release:
MODULE M

INTERFACE OPERATOR (.AA.)

MODULE PROCEDURE S1

MODULE PROCEDURE S2

END INTERFACE

CONTAINS

35

INTERVAL FUNCTION S1(X,Y)
INTERVAL, INTENT(IN) :: X
REAL, INTENT(IN) :: Y
S1=[0]

END FUNCTION S1

INTERVAL FUNCTION S2(X,Y)

INTERVAL, INTENT(IN) :: X
INTERVAL, INTENT(IN) :: Y
S2=[0]

END FUNCTION S2
END MODULE M

USE M

INTERVAL:: X

REAL :: R

X= X.AA.(R+R) ' S1 IS INVOKED '°

X= X.AA.X ' S2 IS INVOKED

X= R.AA.R ! Error : No operator .AA. with (REAL,REAL) arguments is defined.

X= R.AA.X ! Error: No operator .AA. with (REAL,INTERVAL) arguments is defined.
END

9.8 Examples: Widest—need interval expression evaluation

To guarantee containment of pair of REAL variables, the interval hull, .IH., operator is
used:

REAL(16) EPS, A

INTERVAL X
X= (A-EPS) .IH. (A+EPS)

In the following examples, assume these variables have been declared:

INTEGER(2) :: I, INTEGER(4) :: DI, INTEGER(8) :: QI
REAL(4):: R, REAL(8) :: DR, REAL(16) :: QR
INTERVAL(4) :: X, INTERVAL(8) :: DX, INTERVAL(16) :: QX

5 T I . ..
15 A warning indicating a potential violation of containment is issued

36

Expression: X
Interpretation: X

DX + R * QI
SINTERVAL(QINTERVAL (DX)+QINTERVAL(R)*QINTERVAL(QI))

Expression: DX = R + WID(MAX(DI, QR+ SINTERVAL(R, I)))

Interpretation: DX = DINTERVAL(QINTERVAL(R)+
QINTERVAL(WID(MAX(QINTERVAL(DI),
QINTERVAL(QR)+ QINTERVAL(SINTERVAL(R, I)))))

Expression: DX = QR + WID(MAX(DI, DR+ SINTERVAL(R, I)))

Interpretation: DX = DINTERVAL(QINTERVAL(QR)+
QINTERVAL(WID(MAX(DINTERVAL(DI), DINTERVAL(DR)+
DINTERVAL(SINTERVAL(R, I))))))

Expression: DX = R + DINTERVAL(DR, R + WID(X + QX))
Interpretation: DX = DINTERVAL(R)+DINTERVAL(QREAL(DR), QREAL(R)+
WID(QINTERVAL(X)+QX))

Expression: DX = USER_FUNCTION_RETURNING_INTERVAL(R + WID(QX))

Interpretation: DX = DINTERVAL(USER_FUNCTION_RETURNING_INTERVAL(QREAL(R) +
WID(QX)))

Expression: DX = QX + DCOSC R * R + MID(X+X * DSIN(DR)))

Interpretation: DX = DINTERVAL(QX+QINTERVAL(DCOS(DREAL(R)*DREAL(R)+
MID(DINTERVAL(X)+ DINTERVAL(X)*DINTERVAL(DSIN(DR))))))

Expression: DX = DR .IH. R

Interpretation: DX = DINTERVAL(DR) .IH. DINTERVAL(R)

If default interval type is INTERVAL(16) then:

Expression: DX = R + INTERVAL(DR, R + WID(X + QX))
Interpretation: DX = QINTERVAL(R)+QINTERVAL(QREAL(DR), QREAL(R)+
WID(QINTERVAL(X)+ QX))

Note: Using DINTERVAL constructor in the statement

DX = R + DINTERVAL(DR, R + WID(X + DX))

insulates its arguments from widest-need evaluation. To guarantee containment the interval
hull, .IH., and widest-need expression evaluation are required

DX = R +DR .IH. (R + WID(X + DX))

37

Descriptions of intrinsic algorithms

The description of each Fortran intrinsic and operation contains an algorithm defining the
logic of a possible impelementation. These algorithms are not a part of the specification
body. They are provided only for IEEE 754 compliant processors.

The algorithms that rely on the MIN” and MAX intrinsics, (for example the .IX., MIG, MAG,
ABS, MAX, and MIN intrinsics), are guaranteed to correctly return an empty result for an
empty argument, only if the MIN and MAX propagate the NaNy pattern:

min{z, NaNy} = NaNy, for all floating—point
max{z, NaNy} = NaNy, for all floating—point =

10 Interval set intrinsics.

In the description of algorithms the notation X = [z, Z| for the components of the interval
X is taken for granted.

10.1 INF(X)

Description. Infimum !¢ of an interval.

Class. Elemental function.

Argument X is of type interval.

Result characteristics. The result is of type real. The kind type parameter is that of X.

Result value. The result is z. Because INF(() is undefined, if X is empty the result is a
quiet NaN.

Algorithm. If NOT. ISEMPTY(X) then z else NaN ;

10.2 ISEMPTY(X)
Description. Tests if X is the empty interval.

ISEMPTY(X)= (X =0)

Class. Inquiry function.

16 The largest number that is less than or equal to each of a given set of real numbers.

38

Argument X is of type interval.
Result characteristics. Default logical scalar.
Result value. If X is empty, the result is true otherwise the result is false.

Algorithm. ISNAN(z) and ISNAN(7)

10.3 SUP(X)

Description. Supremum 7 of an interval.

Class. Elemental function.

Argument. X is of type interval.

Result characteristics. The result is of type real. The kind type parameter is that of X.
Result value. The result is Z.

Because SUP()) is undefined, if X is empty the result is a quiet NaN.

Algorithm. If NOT. ISEMPTY(X) then T else NaN ;

11 Set operations

11.1 Interval Hull (X .IH. Y)

Description. Interval hull of two intervals

ifX =10 Y
XIHY = elseif VY =0 : X
else : [min{z, y}, max{Z, 7}]

Argument. X and Y are of type interval and have the same kind type parameter.
Result characteristics. Same as X.

Result value. If one of the operands of the interval hull operator is the empty interval then
the result is the other operand.

The interval result is an enclosure of the specified interval. An ideal enclosure is a fp-interval
of minimum width that contains the exact mathematical interval in the description.

Algorithm.

"The smallest number that is greater than or equal to each of a given set of real numbers.

39

if ISEMPTY(X) : [17]
else if ISEMPTY(Y) : |[z,7]

else : [min{z, y}, max{Z,7}]

11.2 Intersection (X .IX. Y)

Description. Intersection of two intervals.

XNY={z:zeXandzeY}

Arguments. X and Y are of type interval and have the same kind type parameter.
Result characteristics. Same as X.

Result value. If either operand of the interval intersection operator is the empty interval
then the result is the empty interval.

The interval result is an enclosure of the specified interval. An ideal enclosure is a fp-interval
of minimum width that contains the exact mathematical interval in the description.

Algorithm.

max{z,y}, min{Z,7}] : if max{z,y} < min{Z,7}
0 otherwise

12 Set relations

For a relation .op. € {<,>,<,>,=} between two points and y, the corresponding set
relation .Sop. between two intervals X and Y is

X SopY = (Vee X, JyeY : zopy)and (Vye Y,z € X : z.0p.y)

For the relation # between two points x and y, the corresponding set relation .S N E. between
two intervals X and Y is

X SNE. Y = (dzeX,VyeY: z#£y)or(yeY,Vee X: z#y)

These definitions apply when the operands are independent or dependent: (X.Sop.X).

The following table summarizes the results for X.Sop.X expressions, where .Sop. is one of
the set relational oparators: .SLT., .SGT., .SLE., .SGE., .SEQ. or .SNE.

40

X#0D X=90
‘ XSopX |z=7 ‘ TH£T
X.SLT.X || false | false | false
X.SGT.X false | false | false
X.SLE.X true | true true
X
X
X

.SGE.X true true true
.SEQ.X true true true
.SNE.X || false | false | false

Compile-time optimization can be applied to all of these expressions, because their results
are invariant with respect to the value of X.

Note: The above optimizations can be applied to variables, constants or expressions.

12.1 Disjoint (X .DJ. Y)
Description. Tests if two intervals are disjoint.
XDJLY = VeeX, VyeY : z#y)

The result is true if one or both arguments is empty.
Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z > 7 or T < y) or either X or Y or both is empty.
Otherwise the result is false.

Algorithm. not (z <gyandy <7z) '

Possible compile-time action.

From the definition of the disjoint operator it follows that X .DJ. X is false if X
is not empty. The proposed algorithm correctly enforces this result at run time,
but the check “ISEMPTY(X)” may be substituted for X .DJ. X at compile time.

18To get the desired true result if one or both arguments is empty the complement of (z < 7 and y < T)
rather than (z > 3 or 7 < y) must be used. This is because the equality test invloving a NaN operand is
always false and the inequality test is always trwe. That is NaN== NaN is false and NaN /= NaN is true.

41

12.2 In (R .IN. Y)
Description. Tests if the number is contained in the interval.

ReY = (JyeY: y=R)

Arguments.
R is of type integer or real.
Y is of type interval.

Result characteristics. Default logical scalar.

Result value. The result is true if (y < R and R < 7) otherwise the result is false. The
result is false if Y is empty .

Algorithm. y < Rand R <y

12.3 Interior (X .INT. Y).

Description. Tests if X is in interior of Y
XINTY = (X =0 or(Vze X, W eV, cY: ¢y <z<y)
Arguments. X and Y are of type interval

Result characteristics. Default logical scalar.

Result value. The result is true if (y < z and T < 7) or X is empty'®. Otherwise the result
is false.

Algorithm. (y < z and T < 7) or ISEMPTY(X)

12.4 Proper subset (X .PSB. Y)

Description. Tests if X is a proper subset of Y

X CY =X CY and X SNE. Y

Arguments. X and Y are of type interval

Result characteristics. Default logical scalar.

Tt is worth mentioning that in contrast to .PSP.) = false (see section 12.5), O.INT.() = true. The
interior of a set in topological space is a union of all open subsets of the set. An empty set is open and
therefore is a subset of the interior of the empty set.

42

Result value. The result is true if X is a subset of Y and X is set-not—equal (12.12) to Y.
Otherwise the result has the value false.

Algorithm.
(z>yand T <Fand (z>yorZ <7)) or(ISEMPTY(X) and not ISEMPTY (Y))

12.5 Proper superset (X .PSP. Y).

Description. Tests if X is a proper superset of Y

X DY =X DY and X SNE. Y

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if X is a superset of Y and Y is set—not—equal (12.12) to
X. Otherwise the result has the value false.

Algorithm.
(z<yandy <Tand (z<yory<7z))or (ISEMPTY(Y) and not ISEMPTY (X))

12.6 Subset (X .SB. Y).

Description. Tests if X is a subset of Y
X CVY = X=0o (VeeX, WeY,WeY: y<z<y)
Arguments. X and Y are of type interval

Result characteristics. Default logical scalar.

Result value. The result is true if (y < z and T < 7) or X is empty). Otherwise the result
is false.

Algorithm. (y <z and Z < 7) or ISEMPTY(X)

12.7 Set—equal (X .SEQ. Y)

Description. Tests if two intervals are set—equal.
X SEQY = Vee X, JyeY: z=y)and (VyeY,Iz € X: z=1y)

Any interval including the empty interval is set—equal to itself.

43

XSEQ.X = TRUE

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if z = y and T = g or both arguments are empty. Other-
wise the result is false.

Algorithm. z =y and T =7 or ISEMPTY (X) and ISEMPTY (Y)

12.8 Set—greater-or-equal (X .SGE. Y)

Description. Tests if one interval is set—greater—or—equal to another.
X SGEY = Vze X, JyeY: z>y)and (Vye Y,z € X : z > y)
X SGE. X = TRUFE

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z > yand T > 7) otherwise the result is false. The
result is false if only one of the arguments is empty. The result is true if both arguments
are empty.

Algorithm.
z>yand T >gor ISEMPTY(X) and ISEMPTY(Y)

12.9 Set—greater (X .SGT. Y)

Description. Tests if one interval is set—greater than another.
X SGTY = Vee X, yeY:z>y)and (VyeY,Iz € X 1z > y)
X SGT. X = FALSE
Arguments. X and Y are of type interval

Result characteristics. Default logical scalar.

Result value. The result is true if (z > y and > 7) otherwise the result is false. The
result is false if one or both of the arguments is empty

Algorithm. z >y and T > ¥

44

12.10 Set—less-or-equal (X .SLE. Y)

Description. Tests if one interval is set—less—or—equal to another.
X SLEY = (Ve e X, JyeY: z<y)and (VyeY, dJz € X: z <y)
X SLE.X = TRUFE

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z < y and < 7) otherwise the result is false. The
result is false if only one of the arguments is empty. The result is true if both arguments
are empty.

Algorithm. z <y and Z <y or ISEMPTY(X) and ISEMPTY(Y)

12.11 Set-less (X .SLT. Y)

Description. Tests if one interval is set—less than another.
X SLTY = (Vze X, JyeY: z<y)and (Vye Y,z € X : z <y)

XSLT.X = FALSE

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z < y and T < 7) and otherwise the result is false.
The result is false if one or both of the arguments is empty

Algorithm. z <y and T <7y

12.12 Set—not—equal (X .SNE. Y)

Description. Tests if two intervals are not set—equal.
X SNE.Y = (e eX, VyeY: z#£y)or(FyeY,Vee X: z#y)
Any interval including the empty interval is set—equal to itself, therefore

X SNE. X = FALSE.
Arguments. X and Y are of type interval

45

Result characteristics. Default logical scalar.

Result value. The result is true if (z # y or T # 7) or one or the other argument is the
empty interval. Otherwise the result is false.

Algorithm. not (z =y and T =gy or ISEMPTY(X) and ISEMPTY(Y)) *

12.13 Superset (X .SP. Y).

Description. Tests if X is a superset of Y.
X2V =¥ =0or(VyeY, Iz’ e X, " e X: 2/’ <y< ")
Arguments. X and Y are of type interval

Result characteristics. Default logical scalar.

Result value. The result is true if (z < y and 7 < F) or Y is the empty interval. Otherwise
the result is false.

Algorithm. (z <y and 7 < 7) or ISEMPTY(Y)

13 Certainly relations

For a relation .op. € {<,>,<,>,=,#} between two points # and y, the corresponding
certainly true relation .C'op. between two intervals X and Y is

X.Cop.Y =TRUFE iff(Vx € X, Vy €Y : z.0op.y=TRUE)

If the empty interval is an operand of a certainly relation then the result is false. The one
exception is the certainly—not—equal relation (13.6), which is ¢true in this case.

When both operands are completely dependent, X.C'op.X is defined :

X.Cop.X =TRUE iff (V2' € X, V2" € X : z'.op.2” = TRUE).

The following table summarizes the results for X.Cop.X expressions.

20Tn contrast to the algorithm in [7] the .SNE. operator’s algorithm must use the complement of the .SEQ.
relation (12.7). Otherwise if both operands are empty the required false result will not be produced. This
is because the equality test invloving a NalN operand is always false and the inequality test is always true.

That is, NaN== NaN is false and NaN # NaN is true.

46

X £0 X=90
‘ X.CopX |z=T ‘ T#T
X.CLT.X false | false | false
X.CGT.X false | false | false
X.CLE.X true | false | false
X
X
X

.CGE.X true | false | false
.CEQ.X true | false | false
.CNE.X false | false | true

Compile—time optimization can be applied to X.CLT.X and X.CGT.X expressions, because
their results are invariant with respect to the value of X.

13.1 Certainly—equal (X .CEQ. Y)

Description. Tests if one interval is certainly—equal to another !

X =Y = VzeX,VyeY: z=y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (Z < y and z > 7). Otherwise the result is false. If
one or both arguments is empty, the result is false.

Algorithm. T <yandz > 7%y

13.2 Certainly—greater—or—equal (X .CGE. Y)

Description. Tests if one interval is certainly—greater—or—equal to another.

X >2Y = VeeX,VyeY: z>vy)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z > 7) . Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. z > 75

2L(X .CEQ. Y) = true implies that X or Y can be substitutes for one another in any expression. This is
not possible if (X .SEQ. Y)= true, but (X .CEQ. Y) = false.

47

13.3 Certainly greater (X .CGT. Y)

Description. Tests if one interval is certainly—greater than another.

X >Y = VeeX, VyeY: z>y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z > 7). Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. z > 7

13.4 Certainly—less—or—equal (X .CLE. Y)

Description. Tests if one interval is certainly—less—or—equal to another.
X <Y = VeeX,VyeY: z<y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (Z < y). Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm.7 <y

13.5 Certainly—less (X .CLT. Y)

Description. Tests if one interval is certainly—less than another.

X <Y = (VzeeX,VyeY: z<y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (Z < y). Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. T <y

48

13.6 Certainly—not—equal (X .CNE. Y)
Description. Tests if one interval is certainly-not-equal to another 22
X #£Y = VzeX,VyeY: xz#y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (x > 7 or y > T) . Otherwise the result is false. If one
or both arguments is empty, the result is true.

Algorithm. not (z <gyand y <7)

14 Possibly relations

For a relation .op. € {<,>,<,>,=,#} between two points z and y, the corresponding
possibly true relation . Pop. between two intervals X and Y is defined as follows:

X.PopY =TRUFE iff (Jz € X, 3y €Y : z.0op.y=TRUE)
If the empty interval is an operand of a possibly relation then the result is false. The one
exception is the possibly not equal relation (14.6) which is true in this case.

Whenever both intreval operands are completely dependent, X.Pop.X is defined :
X.Pop.X =TRUE iff (32’ € X, 32" € X : 2'.op.2” = TRUE).
The following table summarizes the results for X.Pop.X expressions.
X #0 X=0
X.PopX |z=T ‘ TH£T
PLT.X || false | true | false

X

X.PGT.X false | true | false
X.PLE.X true | true | false
X
X
X

.PGE.X true | true | false
.PEQ.X true | true | false
.PNE.X || false | true | true

Compile—time optimization cannot be applied to any of these expressions, because none of
their results are invariant with respect to the value of X.

22The semantic and the algorithm for the .CNE. operator are equivalent to those of the .DJ. operator.

BTo get the desired true result the complement of (z < ¥ and y < T) rather than (z > ¥ or y > T) must
be used. This is because the equality test invloving a NaN operand is always false and the inequality test
is always true. That is NaN== NaN is false and NaN # NaN is true.

49

14.1 Possibly—equal (X .PEQ. Y)

Description. Tests if one interval is possibly—equal to another.
X PEQY = (Jze X, yeY: z=y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z <7 and T > y) . Otherwise the result is false. If
one or both arguments is empty, the result is false.

Algorithm.z <7 and Z > y

14.2 Possibly—greater—or—equal (X .PGE. Y)

Description. Tests if one interval is possibly-greater—or-equal to another.

X PGEY = (Fzc X, yeY: z>y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (Z > y) . Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm.7 > y

14.3 Possibly—greater (X .PGT. Y)

Description. Tests if one interval is possibly—greater than another.

X PGTY = (Jze€X, eY: z>y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (T > y) . Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. T >y

20

14.4 Possibly—less—or—equal (X .PLE. Y)

Description. Tests if one interval is possibly—less-or-equal to another.
X PLEY = (Jz€ X, JyeY: z<y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z < 7) . Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. z <7y

14.5 Possibly—less (X .PLT. Y)

Description. Tests if one interval is possibly—less than another.

X PLTY = (Jz € X, eY: z<y)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (z < 7) . Otherwise the result is false. If one or both
of the arguments is empty, the result is false.

Algorithm. z <7

14.6 Possibly—not—equal (X .PNE. Y)

Description. Tests if one interval is possibly—not—equal to another.

X PNEY = (3zeX, yeY: a#vy)

Arguments. X and Y are of type interval
Result characteristics. Default logical scalar.

Result value. The result is true if (Z >y or z < 7) . Otherwise the result is false. If one
or both arguments is empty, the result is true.

Algorithm. not (z < y and z >) **

24To get the desired true result if one or both arguments is emptythe complement of the algorithm for
the certainly equal relation rather than (Z > y or z < ¥) must be used. This is because the equality test
invloving a NaN operand is always false and the inequality test is always ¢rue. That is NaN== NaN is
false and NaN /= NaN is true.

o1

15 Precedence of Operators

The precedence of interval operations determines the order in which the operands are com-
bined, unless the order is changed by the use of parentheses. The precedence order of interval
operators is summarized in the following table.

In the absence of parentheses, if there is more than one operator in an expression, then the
operators are applied in the order of precedence. If the operators are of equal precedence,
they are applied left to right.

Interval relational operators have the same precedence as the other Fortran relational oper-
ators and therefore have higher precedence than logical operators.

Category of | Operators Precedence
operation
Numeric *ok Highest
Numeric * or /
Numeric unary + or -
Numeric binary + or -
Set JIX., .IH.
Relational .Sp., .PSP., .SB., .PSB., .IN., .DJ.,
.EQ., .NE., ==, /=,
.SEQ., .SNE., .SLT., .SLE., .SGT., .SGE.
.CEQ., .CNE., .CLT., .CLE., .CGT., .CGE.
.PEQ., .PNE., .PLT., .PLE., .PGT., .PGE. Lowest
Expression Interpretation
X+Y .IX. Z (X+Y) .IX. Z
Examples: X + Y .SB. Z (X+Y) .SB. Z
X .SB. Y .IX. Z X .SB. (Y .IX. Z)
X .IX. Y .SEQ. Z (X .IX. Y) .SEQ. Z

16 Special interval intrinsics

16.1 Absolute value: ABS(X)
Description. Range of absolute value.

ABS(X) D {|z| |z € X}

Class. Elemental function.

Arguments. X is of type interval

22

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

If the argument is empty, the result is the empty interval.

Algorithm. [MIG(X), MAG(X)]

16.2 Magnitude: MAG(X)

Description. The greatest absolute value in the non-empty interval.
max{|z| | z € X}

Class. Elemental function.

Arguments. X is of type interval

Result characteristics. The result is of type real.
Result value. max{|z|, |Z|}.

MAG((@)= NaN, MAG(R*)= +INF

Algorithm. max{|z/|, |Z|}

16.3 Maximum: MAX(X1, X2 [, X3, ...1)

Description. Range of maximum.

The containment set for max(Xy,...,X,)) is : {max(Xy,...,X,))} =
{¢] ¢ =max(zq,...,z,), z; € Xi} = [sup(hull(zy,...,z,)),sup(hull(zy, ..., T))]

The implementation of the MAX intrinsic must satisfy: MAX(X1, X2[X3,...1) O {max(Xi,..., X,)}
Class. Elemental function.
Arguments. The arguments are of type interval and all have the same kind type parameter.

Result characteristics. The result is of type interval. The kind type parameter is that of
the arguments.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description. 2°

25 As long as at least one argument of the MAX intrinsic is not empty, the returned value will not be empty.
Ouly if all arguments are empty is max(Xq,...,X,) = 0.

23

16.4 Midpoint: MID(X)

Description. Midpoint of the non-empty interval.
Class. Elemental function.

Arguments. X is of type interval

Result characteristics. The result is of type real.

Result value. The result is a processor-dependent approximation of (z + Z)/2. For non-
empty argument the result must fulfill the property z < MID(X) < Z.

MID(@)= NaN, MID(RR*)= 0
Algorithm. if z = 7 then z else if | z |=| T | then 0, else (0.5 %z + 0.5 % T)

16.5 Mignitude: MIG(X)
Description. The smallest absolute value in the non-empty interval.
min{|z| | z € X}
Class. Elemental function.
Arguments. X is of type interval
Result characteristics. The result is of type real.
Result value. The result is min{|z|, |Z|}, if 0 ¢ X; otherwise the result is 0.
MIG(@)= NaN, MIG(R*)= 0
Algorithm.
min{|z|, |Z|} : f0¢X

0 : otherwise.

16.6 Minimum: MIN(X1, X2 [, X3, ...1)

Description. Range of minimum.

The containment set for min(Xy,...,X,)) is: {min(zq,...,z,))} =

{&] & =min(zy,...,z,), z; € X;} = [inf(hull(zq,. .., z,)),inf(hull(zT, . .., 7))
The implementation of the MIN intrinsic must satisfy: MIN(X1, X2[X3,...1) D {min(Xy,...,X,)}
Class. Elemental function.

Arguments. The arguments are of type interval and all have the same kind type parameter.

o4

Result characteristics. The result is of type interval. The kind type parameter is that of
the arguments.

Result value. The interval result value is an enclosure for the specified interval. An ideal

enclosure is a fp-interval of minimum width that contains the exact mathematical interval

in the description. 26

16.7 NDIGITS(X)

Description. Maximum number of significant decimal digits in the single-number repre-
sentation (see section 21.3) of the non-empty interval X.

Class. Elemental function.
Arguments. X is of type interval.
Result characteristics. Default integer scalar.

Result value. The integer result is the maximum number of significant digits in a decimal
number y such that X is contained in an interval whose endpoints are defined by adding and
subtracting 1 unit in the last digit (uld) of y.

For example 2.3 4+ [—1, 1],q = [2.2,2.4] and 2.30 + [—1, 1],uq = [2.29, 2.31]

If X is a degenerate non-empty interval (z = T), then the result is MAX_INT (the largest
representable integer).

NDIGITS (@) = NDIGITS(R*) = 0
Examples

NDIGITS ([0.0, .5]) =1
NDIGITS ([1, 1]) = MAX_INT
NDIGITS ([2.345690 E+7, 2.345679E+7]) =7

16.8 Width: WID(X)

Description. Width of the non-empty interval.
Class. Elemental function.
Arguments. X is of type interval

Result characteristics. The result is of type real.

26 As long as at least one argument of the MIN intrinsic is not empty, the returned value will not be empty.
Ouly if all arguments are empty is min(Xi, ..., X,,) = 0.

25

Result value. The result is a processor—-dependent upper bound on (Z — z). That is, if
(Zz — z) is not machine representable then it is upwardly rounded.

WID(@)= NaN, WID(IR*)= +INF
Algorithm.(Z — z) rounded up.

17 INT(X [, KIND])

Description. Convert the midpoint of the non-empty interval argument to integer type.
Class. Elemental function.

Arguments. X is of type interval

KIND (optional) is a scalar integer initialization expression.

Result characteristics. Integer. If KIND is present, the kind type parameter is that
specified by KIND; otherwise, kind type parameter is that of default integer type.

Result value. The result value is INT(MID (X)).
INT () = INT(NaN), INT(R*) =0

18 Interval enclosures of mathematical functions

All Fortran intrinsics that accept real data accept interval data.

The results from [20] eliminate any restriction on the domain of any interval enclosures of
real expressions. Points at which real functions are not defined, need not be excluded from
the domain of the function’s interval enclosures. Extended intervals can always be used to
return an interval enclosure.

18.1 ACOS(X)
Description. Interval enclosure of the inverse cosine intrinsic over an interval.
acos(X) 2 {{[acos(z)]} |z € X N [-1,1]}.

Special values. acos(IR*) = [0, 7.
Class. Elemental function.

Arguments. X is of type interval

26

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if the argument is empty.

18.2 AINT(X [, KIND])

Description. Interval enclosure of the truncation to a whole number intrinsic over an
interval.

AINT(X) O {{AINT(z)} |z € X}.
Class. Elemental function.
Arguments. X is of type interval.
KIND (optional) is a scalar integer initialization expression.

Result characteristics. The result is of type interval. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, kind type parameter is that of X.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if argument is empty.

18.3 ANINT(X [, KIND])

Description. Interval enclosure of the nearest whole number intrinsic over an interval.

ANINT(X) D {{ANINT(z)} | = € X}.

Class. Elemental function.
Arguments. X is of type interval.
KIND (optional) is a scalar integer initialization expression.

Result characteristics. The result is of type interval. If KIND is present, the kind type
parameter is that specified by KIND; otherwise, kind type parameter is that of X.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if argument is empty.

57

18.4 ASIN(X)

Description. Interval enclosure of the inverse sine intrinsic over an interval.
asin(X) 2 {{[asin(z)]} |z € X n [-1,1]}.

Special values.asin(R*) = [—7/2,7/2].

Class. Elemental function.

Arguments. X is of type interval

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if the argument is empty.

18.5 ATAN(X)

Description. Interval enclosure of the inverse tangent intrinsic over a pair of intervals.
atan(X) O {{[atan(z)]} | z € X}.

Special values. atan([+o0]) = [7/2], atan([—o0]) = [—7/2], atan(R") = [-7/,7/2]
Class. Elemental function.

Arguments. X is of type interval

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if the argument is empty.

18.6 ATAN2(Y,X)

Description. Interval enclosure of the inverse tangent intrinsic over a pair of intervals.

atan2(Y, X) D {{[atan2(y,z)|} y € Y,| z € X}, where

atan2(y,) = 0, given hsinf =y, hcosf = z and h = (22 + y?)1/2

28

Class. Elemental function.

Special values. The following table from [20] contains all the indeterminate forms of the

ATAN2 intrinsic.

‘ Yy ‘ x ‘{[sin@]} ‘ {[cos@]}‘

{91}

0 0 -1,1] | [-1,1] | [-=,7]
+oo | +oo || [0,1] [0, 1] 0,5
+oo | —oo || [0,1] [—1,0] 5T
—oo | —oo || [=1,0] | [-L,0] | |-m F
"o | 4oo || 21,00 | [0,1] EX

Arguments. Y is of type interval, X is of the same type and kind type parameter as Y.
Result characteristics. Same as the arguments.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if one or both arguments are empty.

To get a sharp interval enclosure (denoted by ©), in the case when T < 0 and 0 € Y, the
following convention is used to uniquely define all possible returned interval angles (see [19]
for complete discussion):

-m < m(0) <. (20)

This choice, together with

0<w(O)<2r. (21)

results in a unique definition, of the interval angles, ©, that atan2(y, z) must include.

The following table contains the tests and the arguments of the real ATAN2 function that
can be used to compute the endpoints of © in an algorithm that satisfies the constraints in
(20) and (21). The first two columns define the cases to be distinguished. The third column
contains the range of possible values of m (©). The last two columns show how the endpoints
of ©® are computed, using the real ATAN2 intrinsic function. Of course, directed rounding
must be employed to guarantee containment.

29

Y | X | m(0) | 0 | 0 |

—y<7|T<0| T<m(O©) <7 ATAN2 (7,7) | ATAN2 (y,7) + 27
—y=7|T<0 m(@)=m ATAN2 (7,) 2r— 0
J<-y|T<0|-—m<m(0©)<—F|ATAN2(7,7) — 27 | ATAN2(y,7)

18.7 CEILING(X [, KIND])

Description. Returns the least integer greater than or equal to the supremum of the
interval.

Class. Elemental function.
Arguments. X is of type interval
KIND (optional) is a scalar integer initialization expression.

Result characteristics. Integer. If KIND is present, the kind type parameter is that
specified by KIND; otherwise, kind type parameter is that of default integer type.

Result value. The result value is CEILING(SUP (X)).
CEILING (@) = CEILING(NaN), CEILING(IR*) = + MAX_INT

18.8 COS(X)

. 9
Description. Interval enclosure of the cosine intrinsic over an interval®’

cos(X) D {{[cos(z)]} |z € X}.
Special values. cos(R*) = [—1,1]
Class. Elemental function.
Arguments. X is of type interval
Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if the argument is empty.
Examples.

Co0S([-INF, +INF])= [-1,1]

2TThis is a quality of implementation option to provide a sharp enclosure of denegerate interval angles
modulo 7.

60

18.9 COSH(X)
Description. Interval enclosure of the hyperbolic cosine intrinsic over an interval.

cosh(X) D {{[cosh(z)]} | z € X}.

Special values. cosh([+o0]) = [+o0], cosh([—o0]) = [+00].
Class. Elemental function.

Arguments. X is of type interval

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if the argument is empty.

18.10 EXP(X)
Description. Interval enclosure of the exponential intrinsic over an interval.

exp(X) 2 {{lexp(2)]} [z € X}

Special values. exp(R") = [0, +o0]

Class. Elemental function.

Arguments. X is of type interval

Result characteristics. Same as the argument.

Result value. The interval result value is an enclosure for the specified interval. An ideal
enclosure is a fp-interval of minimum width that contains the exact mathematical interval
in the description.

The result is empty if argument is empty.
Examples.

EXP([-INF, +INF])= [0, +INF]

18.11 FLOOR(X [, KIND])

Description. Returns the greatest integer less than or equal to the infimum of the interval.

61

Class. Elemental function.
Arguments. X is of type interval
KIND (optional) is a scalar integer initialization expression.

Result characteristics. Integer. If K