
HAL Id: hal-02321950
https://hal.science/hal-02321950

Submitted on 21 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interval Computations in Julia programming language
Evgeniya Vorontsova

To cite this version:
Evgeniya Vorontsova. Interval Computations in Julia programming language. Summer Workshop on
Interval Methods (SWIM) 2019, ENSTA, Jul 2019, Paris, France. �hal-02321950�

https://hal.science/hal-02321950
https://hal.archives-ouvertes.fr


Interval Computations in Julia programming language

Evgeniya Vorontsova1, 2

1Far Eastern Federal University, Vladivostok, Russia
2Grenoble Alpes University, Grenoble, France

Keywords: Numerical Computing; Inter-
val Arithmetic; Julia Programming Language;
JuliaIntervals; Octave Interval Package

Introduction

The general-purpose Julia programming lan-
guage [5] was designed for speed, efficiency,
and high performance. It is a flexible,
optionally-typed, and dynamic computing
language for scientific, numerical and tech-
nical computing applications. Julia is open
source language with all sources free avail-
able on GitHub. The language was developed
and incubated at MIT [6]. Currently, after
Julia 1.0 was officially released to the pub-
lic in August 2018, the language is becoming
increasingly popular. Julia has been down-
loaded more than 8.4 million times, as of May
2019 [2], and is used at more than 1,500 uni-
versities.

So, it is very important for researchers,
working in a field of interval analysis, to have
fast, efficient and robust publicly available
software packages for performing computa-
tions with interval arithmetic written in Julia.

IntervalArithmetic.jl

In this paper, we review and compare a re-
cently developed Julia package for perform-
ing Validated Numerics, i.e. rigorous com-
putations with finite-precision floating-point
arithmetic, IntervalArithmetic.jl [4], with per-
formance of GNU Octave interval package for
real-valued interval arithmetic [1]. This Oc-
tave toolbox was chosen for comparison be-
cause of several important reasons. First of
all, it is a free, open-source software, unlike

INTLAB [9], a Matlab/Octave toolbox for Re-
liable Computing. The other fundamental dif-
ference between INTLAB and GNU Octave
interval package is non-conformance of INT-
LAB to IEEE 1788-2015 — IEEE Standard
for Interval Arithmetic [3]. On the other hand
GNU Octave interval package’s main goal is
to be compliant with the Standard. Likewise,
authors of IntervalArithmetic.jl wrote [4] that
they were working towards having the pack-
age be conforming with the Standard. So, all
calculations in these packages are performed
using interval arithmetic: all quantities are
treated as intervals. The final result is also
an interval contained the correct answer.

In next section we would like to show some
practical examples with interval arithmetic in
Julia.

Examples

Getting Started

The basic object in the IntervalArithmetic.jl
package is the parameterized type Interval.
By default, Interval objects contain Float64
s. Intervals are created using the @interval
macro:

using IntervalArithmetic
a = @interval(1, 2)
b = @interval(3, 4)
print(a + b, a - b, a * b, a / b)

The output of this code is

[4, 6] [-3, -1] [3, 8]
[0.25, 0.666667]

As you may have noticed, the package permits
to write quite clear and intuitive code for in-
terval computations.



Matrix Multiplication

In this section we present the results of exper-
iments comparing the IntervalArithmetic.jl li-
brary with the GNU Octave interval package.
In summary, we show that Julia interval li-
brary is significantly faster than the Octave
library.

In our first experiment we measured the
time to evaluate the interval matrix multipli-
cation. The Julia code is:

function MultMatr(A, B)
return A*B

end
n = 10
M1 = 10* rand(n, n)
M2 = 10* rand(n, n)
iM1 = map(Interval , M1)
iM2 = map(Interval , M2)
A = iM1 .± 5
B = iM2 .± 5
@benchmark MultMatr(A,B)

Here we use BenchmarkTools package by Jar-
rett Revels [8], a framework for writing and
running groups of benchmarks.

And Octave code for MultMatr function is:

pkg load interval
function [t] = MultMatr(n)

A = infsupdec(rand(n),
10* rand(n) + 1);

B = infsupdec(rand(n),
10* rand(n) + 1);

tic
C = A*B;
t = toc;

end

Table 1: Time for interval matrix multiplica-
tions
Matrix size,

rows
Julia,
ms

Octave,
ms

10 0.095 13.317
100 111.91 849.61
1000 125870 863340

For Octave we create 10 random interval

matrix pairs and calculate the mean experi-
mental time over all multiplications. The re-
sults of the first setting are summarized in
Table 1. This experiment shows that perfor-
mance of Julia interval package for that prob-
lem is significantly better.

Elementary functions

In our second experiment we compared the
times for evaluation of the elementary func-
tions (exp, sin, cos, etc.) for random interval
arguments. The design of the experiment is
taken from [7].

Table 2: Time for 105 evaluations of the ele-
mentary functions
Function Julia, s Octave, s

exp 0.49 102.7
sin 0.749 147.85
cos 0.638 230.2
tan 0.49 126.13

arcsin 0.858 119.01
arccos 1.132 169.02
arctan 1.318 127.01

The results of the second setting are sum-
marized in Table 2. We may see that these
calculations in Julia are almost two orders of
magnitude faster.

Plotting

In this section, we will illustrate how to vi-
sualize the interval extension of a given func-
tion over an interval. The process of splitting
the interval into many smaller adjacent pieces
for range evaluations of the given function is
called mincing.

Figures 1- 2 show visualization of minc-
ing process for one function (Julia code was
adapted from [10]). For implementation The
IntervalBox type constructed from an array
of Interval was used.



Figure 1: Function cos(x) + 0.5 sin(2x),
10 sub-intervals.

Figure 2: Function cos(x) + 0.5 sin(2x),
50 sub-intervals.

Acknowledgement

The work was supported by the Russian Foun-
dation for Basic Research, project no. 18-29-
03071 mk.

Conclusion

Public available Julia package for interval
arithmetic has been investigated. Experimen-
tal comparison of Octave and Julia packages
for interval arithmetic shows that Julia Inter-
valArithmetic.jl package is significantly faster
then Octave interval package. In addition, the
implementation process of interval arithmetic
computations in this Julia package is easy and
convenient, due to intuitive syntax of the lan-
guage and the package.

References

[1] O. Heimlich GNU Octave interval pack-
age, version 3.2.0, 2015–2018, https://
octave.sourceforge.io/interval/.

[2] Julia computing newsletter, May 2019.
https://juliacomputing.com/blog/
2019/05/03/may-newsletter.html,
2019.

[3] IEEE Std 1788-2015 — IEEE Stan-
dard for Interval Arithmetic. IEEE: In-
stitute of Electrical and Electronic En-
gineers, IEEE Computer Society, New
York, June 2015, https://ieeexplore.
ieee.org/document/7140721.

[4] L. Benet and D. Sanders. JuliaInter-
vals.jl Package — Rigorous numerics
with interval arithmetic & applications.
https://github.com/JuliaIntervals/
IntervalArithmetic.jl.

[5] J. Bezanson, A. Edelman, S. Karpinski,
and V. Shah. Julia: A fresh approach
to numerical computing. SIAM Review,
59:1, 65–98, 2017.

[6] J. Bezanson, S. Karpinski, V. Shah,
and A. Edelman. Why we created
julia. https://julialang.org/blog/
2012/02/why-we-created-julia, 2012.

[7] W. Mascarenhas. Moore: Interval Arith-
metic in Modern C++, https://arxiv.
org/pdf/1611.09567.pdf.

[8] J. Revels. BenchmarkTools Julia pack-
age, https://github.com/JuliaCI/
BenchmarkTools.jl.

[9] S. Rump. Intlab — interval laboratory.
In Tibor Csendes, editor, Developments
in Reliable Computing, 77–104, Kluwer
Academic Publishers, Dordrecht, 1999.

[10] D. Sanders. Métodos numéricos para sis-
temas dinámicos, https://github.com/
dpsanders/dinamica_nacional.

https://octave.sourceforge.io/interval/
https://octave.sourceforge.io/interval/
https://juliacomputing.com/blog/2019/05/03/may-newsletter.html
https://juliacomputing.com/blog/2019/05/03/may-newsletter.html
https://ieeexplore.ieee.org/document/7140721
https://ieeexplore.ieee.org/document/7140721
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://julialang.org/blog/2012/02/why-we-created-julia
https://julialang.org/blog/2012/02/why-we-created-julia
https://arxiv.org/pdf/1611.09567.pdf
https://arxiv.org/pdf/1611.09567.pdf
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/dpsanders/dinamica_nacional
https://github.com/dpsanders/dinamica_nacional

