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2008 : Peugeot gasoline car engine
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and debits
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Adjustments (~100 parameter intervals)



Set Inversion Problem

Figure 1: R c R" is the set of feasible adjustments, and P C RP the set of desired performance of a

system. Set inversion computes S = f"' (PYNR.



Looking for an input-output relation
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Figure 2. Symbolic Regression via Genetic Programming permits to build an approximation of an
unknown tunction defined on R, and valued on P.



Symbolic Regression via Genetic Programming
combined with Set Inversion
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Figure 3. Combining Genetic Programming (GP) and Set Inversion (SI) permits first to find an
approximation of the model and in a second step to invert performance set in order to find the efficient
and possible adjustments. Experimental input-output data could be filtered and decimated if it is
needed in order to remove some frequencies and to avoid overfitting phenomena.



Example of Symbolic Regression

COriginal and noised signal sin(Sx)*exp(-x™2)
!
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Figure 4. Performance set for the function f(x) = sin{5 - x) - ¢~ . An uniform random noise
e(x) e [—0.25, 0.25] for x € [—3, 3] has been added to the initial output data-set fi[—3.3]).
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Figure 5. Result for the genetic programming of the f(x) = sin(5x) - ¢~ noised example. This

tree corresponds to the approximation of f{x} = sin(5x) - e~ = f(x) on|—3. 3] with function

basis set {+, —. -, /, exp, log. sin, cos. tan, neg}. The letters ‘1’ and *r’ correspond respectively to lefi
and right positions of operands in a binary expression, respectively.



Brief Historical Overview

- R. Moore (1966), T. Sunaga (1958) , M. Warmus (1956, 1961) : Generalized Interval
Arithmetic (GIA).

- H.-J. Ortolf, E. Kaucher in the 70’s : the intervals form a group with respect to
addition and a complete lattice with respect to inclusion.

- In order to adapt it to semantic problems, in the beginning of 80’s, E. Gardenes et al.
developed an approach called modal interval arithmetic.

-+ S. Markov and others in the 90’s : Directed Interval Arithmetic, in which Kaucher’s
Generalized Intervals can be viewed as classic intervals plus direction.
Proper/Improper Intervals : Intervals with sign.



Another approach

- Generalized intervals : pseudo-intervals and anti-pseudo-intervals correspond
respectively to the proper and improper ones.

- Canonical construction based on the semi-group completion into a group.
- Associated Real Vector Space. Analogy with Directed Intervals.
- Banach Vector Space Structure : Linear Algebra and Differential Calculus.

- Extensions to Pseudo-Intervals N-dimensional Free Algebra with N=4,5 or 7.



Minkowski operations

An interval X 1s defined as a non-empty, closed and connected set of real numbers. One writes
real numbers as intervals with same bounds, Ya € ® ,a = [a, a]. We denote by [[R = P,
the set of intervals of ®. The arithmetic operations on intervals, called Minkowski or classical
operations, are defined such that the result of the corresponding operation on elements belonging
to operand intervals belongs to the resulting interval. That is, if ¢ € {+, —, %, /} denotes one of
the usual operations, one has, if X and Y are bounded intervals of &,

XoY={xoy/xekX yel]



Usual Representation of Intervals

b B
] >

0,b={z R, a<e <} CR



Another representation of Intervals

(P1)

y + R (y=x)
fa,b]

b (P2)

. > =

1,0 = (0,0) € R with a <t




Algebraic completion

As (IR, +) is a commutative and regular semi-group, the quotient set, denoted by IR, associated
with the equivalence relations:

(A,B)~(C,D) = A+D=B+C,

forall A, B, C, D € IR, 1s provided with a structure of abelian group for the natural addition:

(A,B)+(C,D)=(A4+C, B+ D)

where (A, B) 1s the equivalence class of (A, B). We denote by ~.(A, B) the inverse of (A, B)
for the nterval addition.



We have ~(A,B) = (B, A). It X = [a,a],a € R, then (X,0) = (0, —X) where —=X =
|—a, —al, and ~.(X,0) = (0, X). In this case, we identify X = |a, a| with a and we denote
always by [ the subset of intervals of type |a, a].

Naturally, the group IR is isomorphic to the additive group R” by the isomorphism

((la, b], [c.d]) — (a — ¢, b —d). We find the notion of generalized interval and this yields
immediately to the following result:

Proposition 1. Let X = (X, Y) € IR, and| : TR — R which gives the interval length. Thus

1. IfI(Y) < I(X), there is an unique A € IR ~ & such that X = (A, 0),

2. Ifl(Y) = (X)), there is an unique A € IR ~. R such that X = (0, A) = ~(A, 0),

3. If 1Y) = [(X), there is an unique A =« € R such that X = (, 0) = (0, —«).



Intervals with signs

Any element X = (A,0) with A € IR - K 15 said positive and we write X > (. Any element

X = (0,A) with 4 € IR =R is said negative and we write X < (. We write X > X'if
X~ X' >0, Forexample if X and X" are positive, X > X" &= 1(X) = I(X'). The elements

(, 0) with & € R" are neither positive nor negative.



Real Vector Space Construction

External multiplication: - : [ x [E — TR

defined, for all A € [, by

a-(A,0) = (@A, 0).
a-(0,A4) =0, ad),

foralle = 0. If ¢ < 0 we put B = —a. So we put:

a-(A,0) = (0, BA),
a - (0, A) = (BA, 0).



We denote o X instead of « - X. This operation satisfies

1. Forany a € R and X € IE we have:

a(~X) = ~(aX),
(—a) X = ~(xX).

2. Forall @, 8 € R, and for all X, X’ € IR, we have

(@ + X =aX + BX,
(X + XV=aX+aX,
(apf)X =a(BX).



Pseudo-Intervals Vector Space

Theorem 1. The triplet (IR, +. -) is a real vector space and the vectors X1 = ([0. 1], 0) and
X2 = (1, 1], 0) of [IK determine a basis r;fm So dimp [R = 2.

The linear map

v : IR — R?

defined by

@( (la, b],0)) = (b — a, a),
(0, [c,d])) =(c —d, —¢)

is a linear isomorphism and T is canonically isomorphic to 2.

Definition 1. (IR, +. -) is called the vector space of pseudo-intervals.



Free Algebra associated
to Pl-Vector Space

Goals :

- To build a well-defined and distributive interval product.

- To avoid data dependencies in inclusion functions
definitions.

- To build unequivocally inclusion functions from native ones.
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One observes that the semi-group [ can be identified to Py U Py 2 U P 3. Let us consider as
well the following vectors of R’

[ e1=(1,1),
o2 = ({13,
| e3=(=1,0),
ey =(~1,-1).

They correspond to the intervals [1, 1], [0, 1], [—1,0],and [—1, —1]. Any pointof P, UP 2 U
P, 3 admits the decomposition

(a, b) = aje1 + are2 + azes + wdeq

with ; = 0. The dependance relations between the vectors ¢; are

Car T e o |
g4 = —€].



Pseudo-Intervals Product in A4

The multiplication table 1s

er | e | ey | eq

1 | er | e | ex| ey

€2 | €2 | €2 | €3 | €3

ez eyl ey | e | e

€4 €4 | €3 | €2 £

This algebra 1s associative and 1ts elements are called pseudo-intervals.



Pseudo-Intervals Division

Proposition 2. The multiplicative group A}y of invertible elements of Ay is the set of elements
x = (x1, X2, X3, x4) such that

Xy ;E ﬂ:I1~
X3 3= X9,

This means that the invertible intervals do not contain 0. If x € A7 we have:

.-I X X2 X3 X4
. e Al e A s Al e

11 IE



Proposition 3. Monotony property: Let Xy, X; € IR. Then

xlC:fg:'rX|lZEJf3-ZﬁJFHHZEm.
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A, Free Algebra

We can refine our result of the product to come closer to the result of Minkowski. Consider the
one dimensional extension Ay & Res = As, where ¢5 1s a vector corresponding to the interval
[=1, 1] of P; 5. The multiplication table of A5 1s

] | €2 | €3 | €4 | €5

] £ £7 £ £ €5

ety T O o O I O N e O [ e T I

€y | €y | €3 | €2 | €7 | €5

€4 | €4 | €3 | €2 | €1 | €5

&5 | €9 | €5 £ £'s €5




Looking for a Minkowski product

Example. Let X = [-2,3]and ¥ = [-4,2]. We have X € Pj>jand ¥ € P;>5. The
product in A4 gives
XeY =[-16, 14].

The product in A5 gives
XeY =[-1210].

The Minkowski product 1s
[-2, 3].[-4,2] =[-12, §8].

Thus the product in A5 1s better.
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Conclusion. Considering a partition of | », we can define an extension of ‘A4 of dimension n,
the choice of n depends on the approach wanted of the Minkowski product. For example, let us
consider the vector eg corresponding to the interval [—1, %]. Thus the Minkowsky product gives
eq - €5 = e7 where e7 corresponds to [—{ []. This yields to the fact that Ag 1s not an associative
algebra but it 1s the case for 17 whose table of multiplication 1s

e1 | ex | ey |es|es | eq | €7

e1 e e ey |es|es|es | e

er | er |er | ex ey | es|es | e

ey ey les|ler e )es | er | e

eq leg lesler e |es | er | e

€5 5 &5 €5 €5 &5 €5 &5

£h | €h &g | €7 &7 | €5 &7 | €a

e1ler |er | es | es |l es | es | @7




A_ Is the right Free Algebra

Example. Let X = [-2,3]and ¥ = [—4, 2]. The decomposition on the basis {e, .- -, €7}
with positive coefficients writes

X =e542e7, Y =26

XeoVY =(es+2e7)(deg) = des + 8eg = [—12, 8].

We obtain now the Minkowski product.



Inclusion functions

folx) =x2=2x+1, fix) = (x=172% Hx) =x(x=2)+1.
= [3, 4] are [flo(X) = (2, 1], [f11(X) = [4,9] and [f](X) = [6, 12]

e(X)=1(3,4-3,0,0)=1(3,1,0,0) = 3e1 + e2.



Since ey = (1,0,0,0), e2 = (0, 1, 0, 0) and with means of product table, one has

@[ flo(X))

= (Ber+e2)’ —2@3e1 +e2) +1
9¢i +2-3e1e2 +e5 —2-3e; — 2e2 + 1

Oey + 6ez + €2 — 61 — 2e3 + 1 = 4e1 + Ses
= p([4,9D,

o([fl1(X)) = Ber+ex—1)°
= (21 + e2)*

4{{? + 4eje2 + E‘%

dey + der + e

= 4de1 4+ Ser

= @([4.9]),



e([fl2(X)) = @Beir+e2) - Ber+ex—2)+1
= O¢1 4+ 3e1e2 — 6e1 4+ 3eler —1—{3% — 2e2 4+ e
d4e1 + 3er 4+ 3er2 + &2 — 2e0
= de1 + Se2
= o([4.9)).

Thus, [ f1o(X) = [f]i(X) = [f]o(X) = [4,9] and the inclusion function 1s defined univocally
regardless the way to write the original one.



Matrix diagonalization
( Iterated Power Method)

2 —€,24+€] [6b—€e,064+€] [5—€.5+ €]
M = 6 —e,604+€] [2—€,24€] [B—€.8+4¢€
5 —€,54+€] [B—€e,84+€] [6—€,6+4 €

If one uses scilab to compute the spectrum of the previous matrix without radius (e = (), the
highest eigenvalue is approximatively 16.345903 and the corresponding eigenvector is
(0.4728057, 0.5716783, 0.6703510). In order to show that arithmetics and interval algebra de-
veloped above are robust and stable, let’s try to compute the highest eigenvalue of an interval

matrix. One uses here the iterate power method, which 1s very simple and constitute the basis of
several powerful methods such as deflation and others.



Largest eigenvalue bounds

20 ! ! ! !

Interval bounds

- a a a a

0 0.2 0.4 0.6 0.8 1

Interval radius

Lower bound —4— Upper bound —&—

Figure 1: Largest eigenvalue convergence computed with iterate power method to the value

computed with scilab 16.345903.



Component bounds of the eigenvector associated to the largest eigenvalue
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Figure 2: Eigenvector components associated to the largest eigenvalue convergence computed
with 1terate power method to the eigenvector computed with scilab (0.4728057, 0.5716783,
0.6705510).



Matrix Inversion (Schutz-Hotelling Algorithm)

[-2-6,-2+4¢]
X=| [f-e5+¢
19—¢,94¢]

[<T—¢,T4+¢] [4-¢d+€] )¢
(<1 =€, ~14€] [6-¢ 6+ :_Z AE‘X
[-8—¢,-84¢] [3-¢3+¢] L

Scilab inversion function gives numerically for e = ()

X l

e
n

[ —0.0924025 0.0225873  0.0780287
~0.0800821 0.0862423 —0.0657084

\ 0.0636550 0.1622177 -0.0759754

=X A Xp) 2



Inverse matrix firskt column
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Figure 3: First column elements bounds convergence according interval radius e.



Inverse maktrix secund column

Interval bounds
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Figure 4: Second column elements bounds convergence according interval radius e.



Inverse matrix third calumn
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Figure 5: Third column elements bounds convergence according interval radius e.



Topology

Any element X € TE is wrilten (A, 0) or (0, A). We define 1ts length /(X) as the length of A
and its center as c(A) or —c(A) in the second case.

Theorem 3. The map || || : [R — B given by
X || = 1(X) + |c(X))]

for any X € IR is a norm.

Theorem 4. The normed vector space IR is a Banach space.

We can consider another equivalent norms on IR, For example
XN = 1| ~ X]| = max{|x], |y]}

where X = ([x, v]. 0), but the initial one has a better geometrical interpretation.



Continuity & Differentiabllity

Definition 3. A function f : IR — IR is continuous at Xy if

Ve = 0, dn = 0 such that || X ~ Xol|| < n mmplies || f(X) ~ f(Xo)|| < e.

Definition 4. Consider Xy in IE and f : [R — IR continuous. We sav that { is differentiable
at Xy if there exists a linear function ¢ : IR — IR such that

1)~ f(Xo)~ g(X ~ Xo)l| = o||X ~ Xoll).



Examples.

e f(X) = X. This function is continuous and differentiable at any point. Its derivative is
FxX)y=1.

e f(X)= X-. Consider Xy = (Xg. 1) = ([a, ]. 0) and X € B(Xn, £). We have

X2~ X5 = 10X ~ Xa)(X + Xo)||
< [IX ~ Xall 11X + Xoll.

Given e = 0, let np = thus if || X ~ Xo|| < 5., we have ||X~* ~ Xj|| < £ and

X + Xoll”
f is continuous and differentiable. It is easy to prove that (X)) = 2X is its derivative.

e Consider P = ap + a1 X + --- + an X" € R[X]. We define f : IR — IR with
f(X) = ao X2+ a1 X + --- + a, X" where X" = X - X" 1 From the previous ex-
ample, all monomials are continuous and differentiable, it implies that f 15 continuous and
differentiable as well.

e Consider the function Q2 given by Qa([x. v]) = [x*, y°]if |x| < |v| and Q2([x. y] =
[v7. x°] in the other case. This function is not differentiable.



Optimization examples

Let's minimize the function x = x - exp(x) with fixed-step gradient method which belongs
lo the so-called gradient descent method [35]. This example 15 very simple but 1t shows that the
result 15 garanted to be found within the final interval. One sets imuial guess interval to [=3, 2],

fixed-step of descent to 1077, finite difference step to 10~ and accuracy of gradient to 107",

Fixed step descent methed with finite differences Fixed step descent method with finite differences
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-35 1 1 ||||||i 1 1 ||||||i T ] L .......i L .......i L N
1 10 100 1000 1 10 100 1000
Iterations Iterations
Lower bound ——  Upper bound —— Lower bound == Upper bound s
Figure 6: Convergence of the fixed-step gradient algorithm for the function ¥ = x - exp(x) to Figure 7: Convergence of the fixed-step gradient algorithm for the derivative of the function

an interval centered around [—1, —1] = —1. X > x-exp(x) to an interval centered around [0, 0] = 0.



Let’s optimize the same function x —— x - exp(x) with a second order method such as the
Newton-Raphson one, which is the basis of all second order methods such as Newton or quasi-
Newton’s ones [35]. One sets initial guess interval to [0, 10], finite difference step to 10~ and
accuracy of gradient to 10™". One can state on Figures (8,9) that it finds the same minimum
which is an interval centered around —1.
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Figure 8: Convergence of the Newton-Raphson algorithm for the function x +— x - exp(x) to  Figure 9: Convergence of the Newton-Raphson algorithm for the derivative of the function
an interval centered around [—1, —1] = —1. x > x - exp(x) to an interval centered around [0, 0] = 0.



PROBABILIST SET INVERSION: i/ -algorithm

Figure 1: R < R" is the set of feasible adjustments, and P C RP the set of desired performance of a

system. Set inversion computes S = f~l@ngy.

pX) = plfIX)CP| f(x)e[fl(X), Vx € X)
mes([ f1(X) NP)
mes([£1(X))
mes(WNP)  mes(d)

mes(\))  mes(Y)




Set Inversion Examples

fite,y) = 2+ v x+y), R =[—1,2% P =[1,2] % [1,4]
Flxy) = (x2— 2 —), Ry =[0.6] x [—10. 10]. P> = [0. 5] x [—4. 4].

1 4+ x

filx,y) = I:IE — }-‘2 cexp(x) +x-exp(yv),x - (x 4+ vy) — }?2}, Ry =Py =[5, 5]E

fa(x, v.2) = (x. v, 2, x> —y2 +275) with Ry = [—5, 5] and P4 = [—10, 10]%.
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Adjustement y axis
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Figure 4: y-algorithm for f5.




Adjustement y axis
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Figure 5: yr-algorithm for f3.
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Figure 6: yr-algorithm for f4(x, yv.2) = (x, v, 2, ¥ —y24 2y with Ry = [-5, 5] and P4 = [-10, 10)*.



Improvements of PSI

Due to the bisection, the algorithm computational complexity is exponential according to the

iterations N, and it 1s not improved compared to SIVIA one. In our scheme, computational time

1s defined as r
}'I:'rrm.u'} =0(N) =k 21% -

- Adaptive mesh, with bisection spanned only in the space directions where the

derivative magnitude is larger than a certain fixed value, because it is not
useful to bisect in flat directions.

- Random and/or Monte-Carlo-like methods.



Cnacu6o bosibwoe !

Merci beaucoup !
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