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Abstract

The work presents a necessary and sufficient condition for the gen-
eralized AE-solution sets to interval linear systems of equations to be
unbounded. The criterion requires solvability of one of the totality of
2n linear inequalities constructed from the initial interval system. It is
shown that the problem of recognizing the boundedness of AE-solution
sets is NP-complete in general.
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1 Introduction

We consider systems of interval linear algebraic equations of the form

a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

. . .
...

...

am1x1 + am2x2 + . . . + amnxn = bm

(1)

with interval coefficients aij and interval right-hand sides bi, i = 1, 2, . . . , m, j =
1, 2, . . . , n, or, briefly,

Ax = b, (2)

where A = (aij) is an interval m × n-matrix, x = (x1, x2, . . . , xn)> and b = ( b1,
. . . , bm)> is an interval m-vector. The systems (1)–(2) are understood as families of
point (noninterval) systems of linear algebraic equations of the same form Ax = b with
m× n-matrices A from A and m-vectors b from b.
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The notation of our paper adheres to the informal international standard [5]. Also,
we denote by Rm×n the set of m × n-matrices, while the inequalities between the
matrices and the vectors are understood elementwise and coordinatewise, respectively.

As opposed to ordinary noninterval systems of equations, we can consider various
solution sets to interval equations systems of the form (1)–(2). Historically, the united
solution set (see [1, 20] and others)

Ξuni(A, b) = {x ∈ Rn | (∃A ∈ A)(∃b ∈ b)(Ax = b ) }

was the first and remains the most investigated one so far. As the time passed,
practical needs caused the introduction and investigation of another solution sets for
the interval systems of equations.

In [19, 23], the set of inner solutions (later renamed to the tolerable solution set)

Ξtol(A, b) = {x ∈ Rn | (∀A ∈ A)(∃b ∈ b)(Ax = b ) }

was introduced and interpreted. In [7, 30], the controllable solution set was introduced
as a result of solving the interval version of the automatic control problem. The
controllable solution set is defined to be

Ξctr(A, b) = {x ∈ Rn | (∀b ∈ b)(∃A ∈ A)(Ax = b ) }.

From the above examples, the difference among various solution sets is that

(i) different quantifiers are attributed to different interval elements from the matrix
A and right-hand side vector b,

(ii) the orders of the quantifiers can vary in the logical formuli that stand after the
vertical line in the definition of the solution set and “selects” appropriate points.

When carefully taking into account these differences, i.e., when attributing either
existential or universal quantifier to each of the elements from A and b, and choosing
a certain order for these quantifiers, we obtain a large number of different concepts
(forms of understanding) of the solution sets to (1)–(2). Such solution sets seem to
have been appeared for the first time in [34] in connection with the game theory
problems. Later, S.P. Shary continued investigation of such solution sets to interval
systems of equations, and these results have been summarized in [31, 32].

The present paper avoids considering the most general definition of the solution
sets that we can construct on this way. Our treating will be restricted to the case
thoroughly examined by S.P. Shary [29, 31, 32]. Namely, we assume that a logical
quantifier is attributed to each element from A and b and, furthermore, all the uni-
versal quantifiers precede all the occurrences of the existential quantifiers.

Before turning to formal considerations, we should first give precise definitions of
the necessary objects following the works [29, 31, 32]. We suppose that an m × n-
matrix Λ = (λij), λij ∈ {−1, 1}, i = 1,m, j = 1, n, and an m-vector β = (β1, . . . , βn)>,
βi ∈ {−1, 1}, i = 1,m, are given, along with the interval m × n-matrix A and the
intervalm-vector b. The matrix A = (aij) is decomposed into two matrices A∃ = (a∃ij)
and A∀ = (a∀ij) so that

a∃ij =

{
aij , if λij = 1,

0, if λij = −1,
a∀ij =

{
0, if λij = 1,

aij , if λij = −1.

Similarly, we decompose the vector b = (b1, . . . , bm)> into two vectors

b∃ = (b1, . . . , bm)> and b∀ = (b1, . . . , bm)>
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such that

b∃i =

{
bi, if βi = 1,
0, if βi = −1,

b∀i =

{
0, if βi = 1,
bi, if βi = −1.

It is obvious that A = A∀ + A∃, b = b∀ + b∃.

Informally, we can speak that the matrix Λ and vector β describe the distribution
of uncertainty types over the elements of the interval matrix A and interval vector
b. The matrices A∃ and A∀ and vectors b∃ and b∀ serve for the same purpose, but
sometimes using them may prove more vivid and/or convenient.

Definition 1 (S.P. Shary [29, 31, 32]) Let us be given an interval system of linear
algebraic equations Ax = b. For a quantifier matrix Λ and a quantifier vector β and
associated matrices A∃, A∀ and vectors b∃, b∀, the generalized AE-solution set of the
type Λβ to the system Ax = b is

ΞΛ,β(A, b) =
{
x ∈ Rn |

( ∀A′ ∈ A∀ )(∀b′ ∈ b∀ )(∃A′′ ∈ A∃ )( ∃b′′ ∈ b∃ )( (A′ +A′′)x = b′ + b′′)
}
. (3)

The main purpose of our paper is to inquire into the algorithmic complexity (in
the sense of [2]) of the problem relating to these sets:

Problem. To determine whether the solution set (3)
to an interval linear system is unbounded.

Apart from purely theoretical interest, the above problem has a certain practical
value. In systems analysis, identification theory and data fitting, the fact that the
set of feasible values of the parameters (which is often a solution set to an interval
systems of equations) is unbounded shows that the original problem statement may
be not completely correct. This leads to serious consequences in the general strategy
of its solution.

In the sequel, we assume that the reader is familiar with the principal concepts
of the computational complexity theory, such as polynomial time solvability, NP-
hardness, NP-completeness, polynomial reducibility of a problem to the other one
(see [2]). It is worth noting that the first result on NP-complexity of interval linear al-
gebraic problems, the one concerning determination of singularity of an interval square
matrix, seems to have been obtained in the work [22].

The works [3, 8, 9, 11, 12, 14, 15, 16, 24, 25, 27] are devoted to investigation of com-
putational complexity of the problems arising in connection with various solution sets
to interval linear systems of equations. These are problems of recognizing nonempty-
ness of the solution sets and computing their enclosures, including the particular cases
under additional conditions on the system (boundedness, finiteness, positivity, etc.).
We note that the work [13] studied the complexity of estimation of the generalized
solution set to interval linear systems.

A large number of other NP-complete (and NP-hard) problems that naturally arise
in connection with the interval computations can be found in the book [10].
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2 Characterization of Generalized Solution Sets

This section derives an Oettli-Prager-type description of the generalized solution sets,
which will be needed further in our considerations. In doing this, we rely upon the
characterization of the generalized solution sets to interval linear systems suggested
by S.P. Shary in [29, 31, 32].

In our work, we use traditional definitions of the interval operations and relations
for both scalars and matrices (vectors), see [17, 18, 32]. For the interval m×n-matrix
A and n-vector x ∈ Rn, the product Ax is defined as the natural interval extension of
the usual point matrix-vector product [17, 18, 32]. On the other hand, the following
useful equality is valid in this particular case:

Ax = {Ax | A ∈ A }.

As a sequence, the following statement can de derived:

Theorem 2.1 (S.P. Shary [29, 31, 32]) For any quantifiers Λ and β of the same sizes
as A and b, respectively, the following equivalent representation of the AE-solution set
holds:

ΞΛ,β(A, b) =
{
x ∈ Rn | A∀x− b∀ ⊆ b∃ −A∃x

}
.

In the rest of the paper, for two m × n-matrices A = (aij) and B = (bij), we
will denote by A ◦ B their Hadamard product A ◦ B = (aijbij) (see e.g., [4]). Using
Theorem 2.1 along with the well-known Oettli-Prager theorem (see e.g., [1, 18, 21, 32]),
it is possible to obtain the following result:

Theorem 2.2 (J. Rohn [26]) For any quantifiers Λ and β of the same sizes as A and
b, respectively, the equality

ΞΛ,β(A, b) =
{
x ∈ Rn | |Acx− bc| ≤ (Λ ◦∆)|x|+ β ◦ δ

}
(4)

is true, where Ac = 1
2
(A + A), ∆ = 1

2
(A−A), bc = 1

2
(b + b), δ = 1

2
(b− b).

Using the description (4), we can substantiate the following assertion:

Theorem 2.3 Let Ty = Diag{y1, . . . , yn}. The solution set ΞΛ,β(A, b) is unbounded
if and only if, for some y ∈ Q =

{
x ∈ Rn | xi ∈ {−1, 1}, i = 1, n

}
, there exists a

solution to the system of linear inequalities

−(Λ ◦∆)Tyx− β ◦ δ ≤ Acx− bc ≤ (Λ ◦∆)Tyx+ β ◦ δ,

Tyx ≥ 0,

−(Λ ◦∆)Tyz ≤ Acz ≤ (Λ ◦∆)Tyz,

Tyz ≥ 0,

n∑
i=1

yizi ≥ 1.

(5)
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Proof: It follows from the formula (4) that, for any y ∈ Q, the intersection of the
solution set ΞΛ,β(A, b) with the orthant Rny = {x ∈ Rn | Tyx ≥ 0} is a convex
polyhedron.

Hence, the set ΞΛ,β(A, b) is unbounded if and only if some of these polyhedrons
are unbounded (for a certain y ∈ Q). On the other hand, we are reminded [28] that a
nonempty polyhedron is unbounded if and only if its characteristic cone is non-zero.

In the system (5), solvability of the first two inequalities is equivalent to the poly-
hedron being nonempty, while solvability of the rest inequalities is equivalent to the
fact that its characteristic cone is non-zero. �

3 Computational Complexity

To state the problems of interest correctly, we shall assume that, for each m and n,
there is a fixed m × n-matrix Λ(m,n) = (λij(m,n)) such that λij(m,n) ∈ {−1, 1},
i = 1,m, j = 1, n, and an m-vector β(m) = (β1(m), . . . , βm(m))T such that βi(m) ∈
{−1, 1}, i = 1,m. In other words, the matrix-valued function Λ and the vector-valued
β are defined such that the function Λ determines a correspondence between m × n-
matrices of {−1, 1} and the pairs of natural numbers (m,n), (m ≥ 1, n ≥ 1), while the
function β sets a correspondence between the m-vectors of {−1, 1} and the natural
numbers m.

In the rest of the paper, we use the following standard yet helpful notation. For a
real number λ, we denote the positive part of λ by λ+ = max{0, λ}, and the negative
part of λ by λ− = max{0,−λ} respectively. For the m×n-matrices Λ and the m-vector
β, the positive parts Λ+ and β+ and the negative parts Λ− and β− will be understood
elementwise and componentwise, respectively.

Hence, for any interval system of the form (1)–(2) having m equations for n vari-
ables, it is possible to define the solution set ΞΛ(m,n),β(m)(A, b). Furthermore, we
assume that the matrix Λ(m,n) and the vector β(m) are “easily computable” in the
following sense.

Definition 2 [13] The functions Λ and β are called easily computable if there exists
a pseudo-polynomial time algorithm computing the matrix Λ(m,n) and the vector
β(m), i.e., an algorithm whose processing time is limited by a polynomial in m and n.

Also, we will say that an interval matrix A is integer if the endpoints of its entries
are integer numbers. The main problem that we deal with in the present paper is

Problem UNB(Λ, β)

(checking unboundedness of the AE-solution sets ΞΛ,β(A, b))

Given. Integer interval m× n-matrices A = [Ac −∆, Ac + ∆]
and integer interval m-vectors b = [bc − δ, bc + δ].
Functions Λ(m,n) and β(m) described above.

Question. Is it true that the solution sets ΞΛ(m,n),β(m)(A, b)
to the interval linear systems Ax = b are unbounded?



Reliable Computing 19, 2014 295

From the foregoing considerations, the computational complexity of this problem is
substantially determined by the number of the existential quantifiers in the definition
of ΞΛ,β(A, b), i. e., by the number of (+1)’s in the matrix Λ(m,n) and in the vector
β(m). Roughly speaking, if the number of existential quantifiers is “large enough”,
that is, a sufficiently large number of the columns of the matrix Λ contain at least
one (+1), and a sufficiently large number of rows of the extended matrix (Λβ) contain
at least one (+1), then the problem formulated above is NP-complete. If the total
number of (+1)’s in the matrix Λ grows slowly in comparison with the number mn
(specifically, it has the order of log2(mn)), then the above problem can be solved in
polynomial time.

To formulate what is meant by the term “sufficiently many existential quantifiers”,
we need additional clarification. When defining the term precisely, we will use usual
notation for submatrices of a matrix [4], i.e. if Λ = (λij) is an m × n-matrix and
I = {i1, . . . , ik}, J = {j1, . . . , jl}, (1 ≤ i1 < i2 . . . < ik ≤ m, 1 ≤ j1 < j2 . . . < jl ≤ n,
then we denote the k × l-matrix located at the intersections of the rows with the
numbers i1, . . . , ik and the columns with the numbers j1, . . . , jl by Λ(I|J). Similarly,
for the m-vector β and I = {i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ m, we denote the k-vector
with the corresponding components as β(I).

Definition 3 [13] The functions Λ and β are said to be computationally 1-saturate (or,
briefly, 1-saturate) if there exists an algorithm allowing the numbers m,n, k, l and two
submatrices Λ0, Λ1 of the matrix Λ(m,n) of dimensions k × s and s× l, respectively,
to be found for any natural number s, so that the following conditions hold:

1) the running time of the algorithms is restricted by a polynomial in s (that is,
similar to Definition 1, the algorithm is quasi-polynomial with respect to s);

2) m ≥ k + l + s+ 1, n ≥ l + s;

3) if Λ0 = Λ(m,n)(K | J), Λ1 = Λ(m,n)(I | L), then K ∩ I = J ∩ L = ∅, i. e.,
submatrices are located in different rows and different columns;

4) each of the columns in the submatrix Λ0 contains at least one element (+1);

5) each of the rows in the submatrix (Λ1γ) obtained by adding of the column
γ = β(m)(I) to the submatrix Λ contains at least one element (+1);

In other words, up to within the transposition of rows and columns, the extended
matrix (Λβ) has the form

(
Λ(m,n)β(m)

)
=

 Λ0 ∗ ∗ ∗
∗ Λ1 ∗ γ
∗ ∗ ∗ ∗

 , (6)

where the submatrices Λ0 and Λ1 possess the properties 4 and 5 from Definition 3.

Comment. Denote by UΛ(m,n) the number of (+1)’s in the the matrix Λ(m,n). If
the functions Λ, β are 1-saturate, then, from the condition 1 of Definition 3 and from
the fact that the complexity of construction of the matrix Λ(m,n) is greater or equal
to mn, it follows that there exist such constants C > 1, M > 1 that mn ≤ CsM .

Since UΛ(m,n) ≥ s according to the condition 4 of Definition 3, we arrive at the
estimate

UΛ(m,n) ≥
(

1

C

) 1
M

(mn)
1
M , (7)
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i.e., in this case the relation

lim sup
m,n→∞

UΛ(m,n)
M
√
mn

> 0.

holds true for some M > 1. Therefore, the condition (7) is at least necessary for the
functions Λ, β to be 1-saturate. It imposes a restriction from below on the order of
growth of UΛ(m,n).

Theorem 3.1 If the functions Λ, β are easily computable and 1-saturate, then the
Problem UNB(Λ, β) is NP-complete.

Proof: The fact that the problem lies in the class NP follows from the description of
the solution set ΞΛ,β given in Theorem 2.2 and Theorem 2.3. Indeed, it follows from
the description that the intersection of ΞΛ,β with any orthant may be defined as a
solution set to the system of 2m + 2n + 1 linear inequalities of 2n variables, whose
solvability can be determined with the use of the polynomial ellipsoid algorithm for
linear programming problem [6].

We demonstrate now that a classical NP-complete problem called Partition (see
details in [2]) is polynomially reducible to our problem under study. The problem
Partition can be formulated as follows:

Given. Positive integer numbers d1, . . . , ds, s > 1.

Question. Is there a sequence of signs εl, . . . , εs ∈ {−1, 1}
such that εld1 + . . .+ εsds = 0.

Let us reduce this problem to the problem UNB(Λ, β). For given positive integer
numbers d1, . . . , ds, we choose m = ms+2, n = ns+2, k = ks+2, l = ls+2 so that
the conditions of Definition 3 (in which (s + 2) is substituted for s) are satisfied.
Furthermore, without loss in generality, we can assume that the extended matrix (Λβ)
has the form (6).

We denote

li =

s∑
j=1

λ+
ij

for i = 1, k and

li =

s+l∑
j=s+1

λ+
ij

for i = k + 1, k + s and consider the following system composed of ms+2 interval
equations of ns+2 variables:

s∑
j=1

[−λ+
ij , λ

+
ij ]xj = li, for i = 1, k,

(li + β+
i )xi−k +

s+l∑
j=s+1

[−λ+
ij , λ

+
ij ]xj = β+

i , for i = k + 1, k + s,

xi−k = 1, for i = k + s+ 1, k + s+ l,

x1d1 + . . .+ xsds + xs+l+1 − xs+l+2 = 0, for i = k + s+ l + 1,

xs+l+1 − xs+l+2 = 0, for i = k + s+ l + 2,

0 = 0, for i > k + s+ l + 2.

(8)
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From Theorem 2.2, we can conclude that a vector x ∈ Rns+2 belongs to the solution
set ΞΛ,β of the system (8) if and only if it satisfies the following system of inequalities:



li ≤
s∑
j=1

λ+
ij |xj |, for i = 1, k,

(li + β+
i )|xi−k| ≤

s+l∑
j=s+1

λ+
ij |xj |+ β+

i , for i = k + 1, k + s,

|xi−k − 1| ≤ 0, for i = k + s+ 1, k + s+ l,

|x1d1 + . . .+ xsds + xs+l+1 − xs+l+2| ≤ 0, for i = k + s+ l + 1,

|xs+l+1 − xs+l+2| ≤ 0, for i = k + s+ l + 2.

(9)

Next, we demonstrate that the vector x = (x1, . . . , xns+2)> ∈ Rns+2 satisfies the
system (9) if and only if

xs+1 = . . . = xs+l = 1, xs+l+1 = xs+l+2,

x1, . . . , xs ∈ {−1, 1},
x1d1 + . . .+ xsds = 0.

(10)

The fact that a vector x ∈ Rns+2 satisfies the system (9) under the conditions (10)
can be verified easily by straightforward substitution of x into the system.

To prove the converse implication, let us imagine that for x ∈ Rns+2 , the inequality
(9) is satisfied. Then the first and last of the equalities (10) follow from the third,
fourth and fifth inequalities of (9), respectively. From the first equality of (10), we
obtain for i = k + 1, k + s

s+l∑
j=s+1

λ+
ij |xj | =

s+l∑
j=s+1

λ+
ij = li,

and then, from the second inequality of (9), we get that (li + β+
i )|xi−k| ≤ (li + β+

i ).
Since due to the condition 5 of Definition 3 it follows that li + β+

i ≥ 1 for i =
k + 1, k + s, then

|xi| ≤ 1 for i = 1, s. (11)

Let

kj =

k∑
i=1

λ+
ij

for j = 1, s. Notice that
s∑
j=1

kj =
k∑
i=1

li and, due to the condition 4 of Definition 3,

kj ≥ 1, j = 1, s.
Further, by adding together all the first inequalities from (9), we obtain that

s∑
j=1

kj =

k∑
i=1

li ≤
k∑
i=1

s∑
j=1

λ+
ij |xj | =

s∑
j=1

(
k∑
i=1

λ+
ij

)
|xj | =

s∑
j=1

kj |xj |,

i.e.,
s∑
j=1

kj ≤
s∑
j=1

kj |xj |.
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It follows from the latter inequality and the inequality (11) that |xj | = 1 for all j = 1, s.
Hence, the second relation from (10) is valid.

Next, we can conclude that, for the system (8), the solution set ΞΛ,β is unbounded
if and only if there exists a solution to the problem Partition for the given d1, . . . , ds.
Furthermore, due to the conditions of the theorem, the system (8) is constructed by
applying d1, . . . , ds times the algorithms which are polynomial with respect to the
length of the input. Therefore, the problem Partition is polynomially reducible to the
problem UNB(Λ, β). �

In the interval linear system Ax = b of the form (8) constructed in the proof of
Theorem 3.1, the m×n-matrices A and the interval right-hand side m-vectors b meet
the additional requirement

Λ− ◦∆ = 0m,n, β− ◦ δ = 0m,

where 0m,n is zero m×n-matrix, 0m is zero m-vector. Hence, the equality ΞΛ,β(A, b) =
Ξuni(A, b) holds true for them. consequently, it is possible to use the technique [16] to
reduce the problem UNB(Λ, β) to the solution of interval linear systems with positive
interval matrices.

More precisely, let us call the system (1)–(2) strongly positive if A > 0m,n and
b > 0m. Then the following statement holds.

Corollary If the functions Λ and β are easily computable and 1-saturate, then the
problem UNB(Λ, β) for strongly positive interval systems is NP-complete.

Let us now show that if the number of (+1)’s in the matrix Λ(m,n) is “not too
large”, then the problem UNB(Λ, β) is polynomially solvable.

Theorem 3.2 If the functions Λ and β are easily computable, and the condition

lim sup
m,n→∞

UΛ(m,n)

log2(mn)
≤ C

is satisfied for a fixed integer C, then there exist polynomial time algorithms that solve
the problem UNB(Λ, β).

Proof: By Theorem 2.2 and Theorem 2.3, the problem UNB(Λ, β) is equivalent to the
problem of checking the unboundedness of the solution set to the system

|Acx− bc| ≤ (Λ ◦∆) |x|+ β ◦ δ. (12)

By decomposing Λ into the positive and negative parts Λ = Λ+ −Λ−, inequality (12)
can be rewritten in the form

|Acx− bc|+ (Λ− ◦∆) |x| ≤ (Λ+ ◦∆)|x|+ β ◦ δ. (13)

Note that, since UΛ(m,n) ≤ C log2(mn), we have no more than C log2(mn) nonzero
coefficients at the components of the vector x in the right-hand side of this inequality.
Since Λ is easily computable, we can find these components in polynomial time. Also,
we assume that, up to a renumeration of the components, the right-hand side of
(13) contains only the components |x1|, . . . , |xk| with non-zero coefficients, where
k ≤ C log2(mn).
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Next, it can be shown that the system (13) is equivalent to
Acx− bc = u1 − u2,

x = v1 − v2,
u1 ≥ 0, u2 ≥ 0, v1 ≥ 0, v2 ≥ 0,

u1 + u2 + (Λ− ◦∆)(v1 + v2) ≤ (Λ+ ◦∆)|x|+ β ◦ δ.

(14)

If we fix the signs of the first k coordinates of the vector x in the system (14), it
transforms into a system of linear equations and inequalities, while its solvability
can be determined in polynomial time [6]. Therefore, to verify the unboundedness
of (13), we only need to write all the possible distributions of the signs for the first
k coordinates of the vector x (2k totally), and to investigate the system of linear
equations and inequalities for each one of them. Since the number of such systems is
2k ≤ 2C log2mn = (mn)C , we also can answer the question on unboundedness of the
solution set (13) in polynomial time. Hence, the problem UNB(Λ, β) is polynomially
solvable. �

NP-hardness (intractability) of the problem of unboundedness recognition of the
AE-solution sets means that in practice, in addition to exponentially complex recog-
nition procedures, it is desirable to have, at our disposal, a range of efficient (easily
computable) sufficient criteria. One of the possible simple ways to determine whether
a solution set is bounded can be based on examination of the united solution set
Ξuni(A, b), which is the widest of the AE-solution sets, i. e., Ξuni(A, b) ⊇ ΞΛβ(A, b)
for any Λ and β. In its turn, boundedness of the united solution sets can be recognized
by examination of the rank of the interval matrix A: if A has full column rank, then
Ξuni(A, b) is bounded. See details in [33].
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