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OPTIMAL SOLUTION OF INTERVAL
LINEAR SYSTEMS IS INTRACTABLE (NP-HARD)

Vladik Kreinovich, Anatoly V. Lakeyev and Sergey 1. Noskov

All known methods for finding optimal solutions to interval linear sys-
tems demand (in the worst case) exponential time. In this paper, we show

that this problem is NP-hard, and thus (unless NP=P) faster algorithms
are impossible.

ONTUMAJILHOE PEINIEHUE.CUCTEM
VHTEPBAJIbHBIX JIMHEWHbBIX YPABHEHUIN —
NP-TPYIHASA 3AOAYA .

B.Kpeitrosuu, A.B.Jlakees, C.1.Hockos

Bcee mspecTHBIe MeTOABI MOMCKA ONTHMMAJIBHBIX pelleHUi MHTep-
RAJILHBIX JIMHEAHBIX cHcTeM TpebGyror (B XyaueM caydae) sKcmo-
HeHUMaJIbHOTO BpeMeHW. B pafoTe mokasaHo, uro »Ta 3agaua NP—

TpyaHasd, U, Takum obpasoM (ecau toabko NP#P), Gosiee SnicTphiit
ANTOPUTM HEBO3MOYKECH.

1. Introduction

In many real-life problems, it is necessary to solve linear sys-
tems. In many real-life problems, the desired values z,,...,z, wust be
determined from their known linear combinations A; 2y + ...+ A;,x,,. In
other words, we must solve the system of linear equations Ajxq + ... +
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Ajnn = b1 <1 <N with known b; and A;;.

Interval m%mmmam. In the ideal case, when we know b; and A;; pre-
cisely, it is sufficient to know N = n (independent) linear combinations.
In many real-life problems, however, we know only the mbnm?m._m for the
values b; and A;;. In this case, we will not be able to find precise .S.&c.mm
of all z;, only intervals of their possible values. In this case, additional
linear combinations may increase the precision (i.e., diminish the inter-
val). In view of that, in some real-life cases, N is taken to be greater
than n.

Let’s give precise definitions (see, e.g., {12}):

Definition 1. Assume that p > 1is an integer. By an interval p—vector
b, we mean a sequence of p intervals by, by, ...,b,. Wesay that a p—vector
b= (by,...,b,) belongs to b (b€ b) if b; € b; for all ¢. Similarly, for any
integers p > 1 and ¢ > 1, by an interval p X gq—matriz A, we mean a
p X ¢ matrix whose elements are intervals A;;, 1 <i<p, 1<) <q We
say that a p x g matrix A with components A;j belongs to A (A € A)if

A;; € Aij for all 7 and j.

Definition 2. Assume that integers n > 0 and N > n are given. By
an interval linear system we mean a pair (A, b), where b is an interval
N—vector, and A is an interval N x n—matrix. This pair is also denoted
as Az = b. We say that an n—vector x = (21, ..., Z) is a possible solution
of a system Ax = b if Az = b for some matrix A € A and some vector
b € b. The sect of all possible solutions of an interval linear system will
be denoted by £33(A,b). In other words,
T33(A,b) = {z € R" |(34 € A)(3b € b)(Az = b)}.

Comment. This denotation was introduced by S. P. Shary (private com-
munication) to distinguish this notion from other notions of a solutions
set (see, e.g., [4]). .

Definition 3. We say that an interval linear system is consistent if it
has a possible solution, and that it is non-singular if its set of possible
solutions is bounded.

Comment. For example, a system is non-singnlar if N = n, and all
matrices A € A are non-singular [12]. Another case is when we have a
non-singular system, and add additional equations to it.
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Definition 4. An optimal (ezact) solution of an interval linear system
Az =b is a set of n intervals [z}, HE“ where 1 < j < n,

z; = min{z;| v € £33(A,b)} and &wr = max{z;| z € £33(A,b)}.

There exist several algorithms that find an optimal solution to a con-
sistent non-singular interval linear system (see [8], [1], [7], [10], [6], [11],
[12], and references therein). These algorithms handle the case of the
square matrix, when N = n. The main problem with these algorithms
is as follows: If we know A and b precisely, then one can compute the
components y,...,&, in polynomial time, namely, in time that grows as
< Cn®. Even for large n, this is feasible. However, for all known interval
algorithms, the running time increases exponentially with n (i.e., as a™)
even for N = n, and is, therefore, infeasible for large n.

In this paper, we prove that the problem of finding an optimal solution
to a consistent non-singular interval linear system is in the general case

intractable (or, using the precise mathematical notion from complexity
theory [3], NP-hard).

Therefore, we cannot expect polynomial-time algorithms for interval
linear systems (unless, of course, someone finds a way to solve all in-
tractable problems). .

2. Main result -

Problem. Given a consistent non-singular interval linear system, find
its optimal solution.

What ts NP-hard: a brief informal explanation. \We want to prove that
this problemn is NP-hard. This notion (see, e.g.. [}}]) teans that if there ex-
ists an algorithin solving interval systems in polynomial time (i.e., whose
running time does not exceed some polynomial of the input length), then
the polynomial-time algorithm would exist for practically all discrete
problems such as propositional satisfiability problem, disirete optimiza-
tion problems, etc, — and it is a comunon belief that for at least some
of these discrete problems no polynomial-time algorithm is possible (this
belief is formally described as P#NP). So, the fact that the problem is
NP-hard means that no matter what algorithin we use, there will always
be some cases for which the running time grows faster than any polyno-
mial, and therefore, for these cases the problem is intractable. In other
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words: no practical algorithm is possible that finds the optimal solution

to any non-singular interval linear system.

Theorem. The problem of computing an optimal solution to a consistent
non-singular interval linear system is NP-hard.

Comment. A similar results was announced in [5]. It has &m.o been
recently proved [9] that checking whether a square matrix is non-singular

is NP-hard.

Another case when computing an optimal interval mmaamnm.wm NP-
hard is given in [2): namely, it is proved gmﬁm that computing nr.m
range P(xi,...,Xn) of a given polynomial P(x,, ,&:v of several vari-
ables z1, ..., T, from given intervals of values X3, ..., X, is NP-hard.

3. Proof

To prove that our problem is NP-hard, we will prove S:.; if it were
possible to solve it in polynomial time, then it would be possible to solve
in polynomial time a problem that is already known to be va.-wm&“ the
so-called satisfability problem for 3-CNF (see, e.g., [3]). This problem
consists of the following: suppose that an integer v 1s fixed, and a formula
F of the type Fi&Fy&...&F} is given, where each of the expressions F;
has the form aVbor aVbVec, and a,b, c are either the variables 21, ..., Zv,
or their negations Zy, ..., Z, (these a, b, c, ... are called lLiterals). If we assign
arbitrary logical values (“true” or false”) to v variables z1, ..., zy, then,
applying the standard logical rules, we get the truth value of F'. We say
that a formula F is satisfiable if there exist truth values z1, ..., 2, for which
the truth value of the expression F is “true”. The problem is, given F.
to check whether it is satisfiable.

The reduction will be as follows. Let us start with a 3-CNF propo-
sitional formula F of the type Fi&Fy&...&F, with v Boolean variables
21, ..., 2y (i-e., variables that can take only two values: “true” and “false”).
Let us build an interval linear system as follows. This system will have
n = 2u + 2 variables 1, ..., @y, Ty, s L20, T2vt1, Tn, and the following
equations:

1) v+ 1 equations [-2,2Ja; =[1,2], 1 <i<v+ 1

2) v+ 1 equations [—1, ~1]z; 4 [1, }zypisr = [0.5,0.5), 1 < i <v+ 15

3) v+ 1 equations [1,1)z,4;4, = (0,1, 1 <i<v+1;

4) k equations that correspond to Fi,..., Fi: namely, if F; =aVbVe,
then the equation #(a) + t(b) + t(¢) + [0, 1]z, = [1,3], where t(z) =
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ZTyp14: and t(Z;) = 1 — 244144, and if F = a V b, then the equation
t(a) +t(b) + [0, 1}z, = [1,2].

As a result, we get an interval linear system with n = 2v 4+ 2 variables
and N = 3(v + 1) + k equations. The time that it took us to design this
system is evidently bounded by a polynomial of v.

Example. Let us take F = (21 V 22)&(21 V 23). Here, k = v = 2, 50
we have the following linear system:
[-2,2]z; =[1,2]
—lmu MT,N = :d w_
[~2,2]as = [1,2]
-1, -1]z1 + [1,1]z4 = [0.5,0.5]
—|H, |HH_&N + ?u :.H_w = —Omuom_
[-1,-1]zs + [1,1]2s = [0.5,0.5]
:, :H» E, :
?., :&.m = _HG H“_
[1,1)ze = [0,1]
?J :&A + :v :&.m + ﬁou :n\.m = _HHu M_
zq+ (1 —25) +[0,1zs = [1,2], or [1,1]zs + [-1, —1]as + [0, 1]z = [0, 1].
End of example.

We will now prove the following three statements:

i) for every formula F this system is consistent and non-singular;
ii) if a formula F is satisfiable, then [z, z}] = [0, 1];
i1) if a formula F is not satisfiable, then [z, 2}] = [1,1].

If we prove that, then we will be able to prove our theorem. Indeed,
suppose that there exists an algorithm that finds an optimal solution of
any consistent non-singular interval linear system in polynomial time (i.e.,
in time that does not exceed some polynomial of n). Let us show that
this algorithm will enable us to check satisfiability in polynomial time:
Indeed, for any 3-CNF formula F, we form an interval lincar system (as
above; it takes a polynomial time) and apply the hypothetic algorithm
to compute its optimal solution. If x; = 0, then F' is satisfiable; if

x,; = 1, then F is not satisfiable. The running time of this algorithm is
polynomial in N = 3(v + 1) + k and thus polynomial in v.

So, to complete the proof of our theorem, it is sufficient to prove the
above three statements 1) — 7).
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1. The above-described system is consistent.

To prove that, let us show that the following « is a possible solution:
Ty = ‘O.mq 1 M 1 m U, o4l = Om, Toti14:i = OqH M 1 m v, and In = 1.
Indeed,

1) The equations [=2,2]z; = [1,2], 1 <i < w41, are satisfied because
(—2)z; = 1 for i < v (where —2 € [-2,2] and 1 € [1,2]), and 22,4 = 1.

2) The equations [—1, —1]a; + [, Uzvyiyr = [0.5,0.5] are satisfied for
all <i<wv+1.

3) The equations [1.1]zy4i41 = [0,1], 1 £ 2 < v+ 1, are evidently
satisfied;

4) Each equation t(a) + #(b) + t(c) + [0, 1]z, = [1, 3] is satisfied for the
following reason: each of the values #(a), ¢(b), and t(c), is equal either to
0, or to 1. Therefore, t(a) + t(b) + t(c) is equal to either 0, or 1, or 2, or
3. If this sum is equal to 1, 2, or 3, then t(a) +t(b) + t(c) + 0 -z, € [1,3).
If #(a) + t(b) + t(c) = 0, then t(a) + t(b) +t(c) + 1 -2, = 1L € [1,3].

Similarly, the equations t(a) + t(b) + [0, 1}z, = [1,2] are satisfied. So,
the system is consistent.

2. Let us now prove that this system is non-singular.

Indeed, according to equations 3), T,4+14: € [0,1], and from this and
equations 2), we conclude that x; = xy414; — 0.5 € [-0.5,0.5] for 7 <

v + 1. Therefore, for each of the variables x;, its area of possible Sﬁ.cmm
is bounded. So, the system is non-singular.

3. Before we start proving two other properties, let us first prove that
for any possible solution of this system, z,414: € {0,1} for i <v+1.

Indeed, according to equations 1), [=2,2]z; = [1,2]. Therefore, if z;

is a possible solution, there cxists values r and s such that rx; = s,
r€[-2,2],and s € [1,2].

Since s = rx; € [1,2], we have rx; # 0, hence x; # 0. If z; > 0, then
from rz; > 0, we conclude that » > 0, s0 0 < r € 2. From s > 1 and
0 < r <2, we conclude that » = s/r > 1/2. Likewise, if x; < 0, we can
conclude that z; < —0.5.
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Therefore, x; € (—o0, —0.5]U[0.5,00) for ¢ < v+ 1.

According to equations 2), y414i = ; + 0.5. Therefore, z,414; €
(—00,0] U [1,00), i.e., either z,414; <0, or Typ14: > 1.

According to equations 3), 2,414+ € [0,1]. So, values < 0 and > 1 are
not possible. Therefore, either zy414; =0, or Ty414; = 1.

4. In particular, 3. means that for possible solution z, z, can take

only the values 0 and 1. We have already proved (in 1.) that 1 is a|

possible value of x,. Let us now prove that 0 is a possible value of z, if
and only if F is satisfiable. This will prove i¢) and ¢47), and thus complete
the proof of the theorem.

4.1. First, assume that F' is satisfiable, and z; are corresponding truth
values. Let us show that in this case the following vector x is a possible
solution: x,, = 0, 2,41 = —0.5; for 1 < i < v, Tyq14; = 1iff z; =“true”,
and z; = Tyqp145 — 0.5.

1) [-2,2)z; = [1,2] is satisfied, because either z; =

—0.5 (then
{~2)x; = 1), or ; = 0.5, then 2z, = 1.

2)[-1, =1]z; + [1, l]zp4i41 = [0.5,0.5] is satisfied.
3) Equations [1,1]zy4:+1 = [0,1] are trivially true.

4) Each of the values t(a), ¢(b), t(c) equals 0 or 1. Therefore, the sum
t(a) + t(b) + t(c) + [0, 1]z, = t(a) + t(b) + t(c) is equal to one of the
4 numbers 0, 1, 2, and 3. Since the values z1, 29, ..., 2 satisfy F, the
truth value of F' is “true”. Therefore, each of the subformulas F; is true,
which means that for each j, at least one of the expressions «, b, or ¢, 1s
true. If a is true, then, according to our assignment, ¢(a) = 1. Therefore,
[0, 1]z, +t(a)+t(b)+1t(c) is at least 1. Hence, t(a)+t(b)+t(c)+[0,1]z, €
[1.3]. So, these equations are also satisfied.

4.2. Now, assume that x; is a possible solution, and z,, = 0. Let us
show that the formula F is satisfiable. We will show, that the following
set of Boolean value makes it true: z; =“true” iff z, 4, = 1.

Indeed, according to 3., for every i < v, 2,414, is equal either to 0,
or to 1. Hence, for every a, either #{a) = 0 or t(a) = 1, and ¢(a) = 1 iff
a is true. Since z, = 0, for every F}, the corresponding sum is equal to
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#(a) + t(b) + t(c) + [0,1]zn = ta) + t(b) + t(c). mmnwcmm. of the m@ﬁmao.:
4), this sum is > 1. This means that at least one of its terms t(a) is
equal to 1. This, in its turn, means that at least one of ﬁrm literals a is
true. Therefore, the formula Fj =aV bV ¢ is true for all j. Therefore,

F=F&. &F&. &F is true. Q.E.D.
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A PRECONDITIONER SELECTION HEURISTIC
FOR EFFICIENT ITERATION WITH DECOMPOSITION
OF ARITHMETIC EXPRESSIONS FOR NONLINEAR
ALGEBRAIC SYSTEMS

R. Baker Kearfott and Xiaofa Shi*

We have recently considered decomposing a system of nonlinear equa-
tions by defining new variables corresponding to the intermediate results in
the evaluation process. In that previous work, we applied both a derivative-
free component solution process and an interval Gauss—Seidel method to
the large, sparse system of equations so obtained.

An analysis of the component solution process indicates when a lin-
earized Gauss-Seidel step is necessary, and how to make it more effective.
In this paper, we will present preliminary results on an improved, efficient
hybrid algorithm combining the component solution process with only an
occasional Gauss—Seidel step on a single component.

9BPUCTHWKA BbBIBOPA MPEIOBYCJIABJINBATEJIA IJIA
9®PEKTUBHOU NTEPAIIVIN C hMKOgEOwSESmHM
APUPMETUYECKNX BBIPAKEHUN IJ1A
HEJIMHEVHLBIX AJITEBPAMYECKNX CUCTEM

P.B. Kupdorr, K. n

Panee HaMM 6bIJIO PACCMOTPEHO Pa3JIoyKeHMe CUCTeMbl HeluHen-
HBIX ypaBHeHU# myTem onpeaesieHUWs HOBBIX NMepeMeHHbIX B COOTBeT-
CTBUM C IPOMEKYTOUHBIMU PeayIbTATaMU B Apolecce BoluMcienna. B
3TOK NpedblayWieil paboTe Mbl NPUMEHUIIM TOKOMIIOHEHTHBIA Npouecc
peienns Ges NPOM3BOAHLIX M MHTepBadbhblil MeTon Daycca-3aline-
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