
Siberian Mathematical Journal, Voi. 35, No. 5, 1994 

O N  T H E  S O L U T I O N  S E T  O F  A L I N E A R  E Q U A T I O N  

W I T H  T H E  R I G H T - H A N D  S I D E  A N D  O P E R A T O R  

G I V E N  B Y  I N T E R V A L S  
A. V. L a k e e v  a n d  S. I. Noskov  UDC 519.35:519.862.6 

I n t r o d u c t i o n  

While solving problems in various areas of knowledge by mathematical methods, the problem 
is often encountered of processing approximate data. The approximate character can be expressed, 
in particular, by interval representation of the results of the corresponding measurements. For solving 
problems of the type, research is intensively conducted in recent years within the so-called interval 
mathematics [1]. One of the problems, which can be ranked as classical, is that of solving a system of 
linear equations with the coefficients and the right-hand side given by intervals; i.e., finding the set of 
solutions x to an equation 

(1) 
where A �9 I ( R  re• is a real interval m x n-matrix, ~ �9 I ( R  m) is an m-dimensional interval vector, and 
x �9 R n [1]. The solution set of system (1) can be defined in different ways depending on the quantifiers 
that bound the coefficients of the matrix and the right-hand side [2]. In the present article we consider 
the following solution sets of equation (1), which are most frequent in the literature: 

7"~ 1 : {X �9 R n [ 3C �9 A 3c �9 ~ Cx : c} is the total solution set [3-5], 
T~2 = {x �9 R n I VC �9 A 3c �9 B Cx = c) is the admissible solution set [6-8], 
T~3 = {x �9 R n I Vc �9 ]$ 3C �9 A Cx = c} is the set first considered while solving an interval modal 

control problem [9], 
7~4 = {(x �9 R n I VC �9 A 3c �9 ]~ Cz  = c)&(Vd �9 B 3D �9 A Dx = d)} is the set of all pointwise 

algebraic interval solutions [10, 11]. 
The purpose of the present article is to describe these sets in terms of the endpoints of the inter- 

vals A and B; moreover, we consider an analog of equation (1) in arbitrary ordered vector spaces. 

w 1. D e s c r i p t i o n  of t he  So lu t ion  Sets  

We will introduce necessary notions and notation, basically following the terminology stemming 
from [12, 13]. 

Throughout the sequel, by F we mean some ordered vector space over R 1 and by E, some vector 
lattice. We shall denote the order relation in E and F (as well as in other ordered and preordered 
spaces introduced below) by the same symbol <. As usual, E+ and F+ are the cones of positive 
elements in E and F. If x, y C E then we denote by z V y and x A y the supremum and the infimum 
of the elements x and y; by x + and x - ,  the positive and negative parts of x; and by Ixl = x + + x- ,  
the modulus of the element x. If F1 is another ordered vector space then the space L(F1,F)  of 
linear operators from F1 into F is assumed to be preordered by means of the cone L+(F1, F)  of 
monotonic operators. If a, b E F and a < b (A, B E L(F1, F) and A < B) then, as usual, the set 
[a, bl = {c �9 F l a < c < b} ( [ A , B ] = { C � 9  l A < C < B } ) i s a n i n t e r v a l i n F ( i n L ( F l , F ) )  
and I ( F )  ( I (L (F1 ,F) ) )  is the set of all nonempty intervals in F (in L(F1,F) ,  respectively). 

We denote by A(F) �9 I ( L ( F , F ) )  the set of multipliers in F; i.e., A(F) = [OF, IF], where O f  
and I f  are the zero and identity operators in F. If F1, F2 C F and ~1,~2 �9 R 1 then, as usual, 
~IF~ + ,~2F2 = {~lZ~ + ,~2x2 I Zl �9 F1, z~ �9 F2}. 

Irkutsk. Translated from Sibirski~ Matematicheskff Zhurnal, Vol. 35, No. 5, pp. 1074-1084, September-October, 
1994. Original article submitted February 9, 1993. 

0037-4466/94/3505-0957 $12.50 (~ 1994 Plenum Publishinz Coruoration 957 



We consider equation (1) in the case when A = [A,B] �9 I (L(E,F))  and 1~ = [a,b] �9 I(F). In this 
case, if we denote [A,B]x = {Cx [ C �9 [A, B]} for x �9 E then the sets T4i, i = 1,4, can be represented 
as 

l~l = {z �9 E i ([A,B]z) fl[a,b] # o} ,  7~2 = {x E Z [ [A,B]z C_ [a,b]}, 
7 ~ 3 = { x � 9  n 4 = { x � 9  (2) 

The  following relations between 7~i, i = 1,4, are obvious: 

T~I _~ T~2 UT~3 ~ T~4 ---- T~2 NT~3. 

We will int roduce notions tha t  will be needed for describing these sets. 

DEFINITION 1. Say tha t  an ordered vector space F possesses property C (compressibil i ty) if, for 
all z, y E F+,  x < y, there exists a multiplier  a E A(F)  tha t  takes y into x, i.e. such tha t  a y  = z. 
We denote by E(C) the class of ordered vector spaces possessing proper ty  C. 

DEFINITION 2. Say tha t  a vector lat t ice E possesses property D (disjointness) if, for all x, y E E+,  
x A y = 0, there exists a mult ipl ier  a E A(E) such tha t  ax  = x and ay  = 0. We denote by E ( D )  
the class of vector latt ices possessing property D. 

A character izat ion of the classes E(C) and E(D) is contained in the following lemmas. 

L e m m a  1. For every ordered vector space, the following conditions are equivalent: 
(a) F e ~:(C); 
(b) for every x e F+, the equality h ( F ) x  = [0, x] holds; 
(c) for every ordered vector space F1 and every [A,B] E I(L(F1,F)),  y E FI+, the equality 

[A, B]y = fAy, By] holds. 

PROOF. Equivalence of conditions (b) and (a) is immediate  from Definition 1. 
We will show equivalence of assertions (a) and (c). Suppose tha t  f E K:(C), [A,B] E I (L(FI ,F))  

and y �9 FI+.  The  inclusion [A, B]y C fAy, By] is obvious. Let z �9 fAy, By]. Then 0 < x - Ay < 
(B - A)y and, consequently,  there exists an a �9 A(F)  such tha t  a(B - A)y = x - Ay. By let t ing C = 
A + a ( B -  A), we obtain C �9 [A,B] and Cy = z, i.e., x �9 [A,B]y. Consequently,  fAy, By] C [A,S]y, 
and (c) is valid. Now, let condition (c) be satisfied for F .  Assign F1 = F ,  A = OF, and B = I f .  
Then,  for each x �9 F+,  the  equali ty [OF, IF]z = [0, x] holds; therefore, F E K:(C). 

L e m m a  2. For every vector lattice E, the following conditions are equivalent: 
(a) E � 9  
(b) for every x �9 E,  there exists an a E A(E) such that the equality ax = x + holds; 
(c) for every ordered vector space F and every [A,B] �9 I (L(E,F)) ,  x �9 E, the equality [A,B]x -- 

[A,B]x + - [ A , B ] x -  holds; 
(d) for every x �9 E,  the equality A(E)x  = h ( E ) x  + - A ( E ) x -  holds. 

PROOF. Equivalence of conditions (b) and (a) is immediate  from Definition 2. 
Show tha t  (b) implies (c). Suppose tha t  F is an ordered vector space, [A,B] �9 I (L(E,F)) ,  

and x �9 E.  The  inclusion [A,B]z C_ [A,B]x + - [A,B]x- is obvious. Test the reverse inclusion. 
Let y �9 [A,B]x + - [ A , B ] x - .  Then y = Clx + - C2x- for some C1,C2 E [A,B]. Take a �9 A(E)  such 
tha t  c~x = x +. By pu t t ing  C = C l a + C 2 ( I E - a ) ,  we obtain Cx = y and C �9 [A,B], i.e., y �9 [A,B]x. 

To prove the fact tha t  (c) implies (d), it suffices to assign F = E, A = OE, and B = IE in 
the s ta tement  of condit ion (c). 

The  fact tha t  (d) implies (b) is obvious, since always z + E A(E)z  + - A ( E ) x - .  The  lemma is 
proven. 

It is in terest ing to note tha t  we may define the class K:(D) without  explicit ly using the notions of 
supremum and infimum, as is seen from the next proposition: 

P r o p o s i t i o n  1. For every ordered vector space F, the following conditions are equivalent: 
(a) f is a vector lattice and F �9 E(D) ;  
(b) for every x �9 F ,  there exist xl, x2 �9 F+ and a �9 A(F)  such that x = x 1 -- X2, ~Xl = Xl, and 

Cr = 0. 
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PROOF. The  fact that  condit ion (a) implies (b) is immedia te  from the definition of the  class K:(D). 
We will show the  converse. Let F satisfy condition (b). It is known [12] that  if x V 0 exists for 

each x �9 F then  F is a vector lattice. Take x �9 F,  xl,  x2 �9 F+, and a �9 A(F)  such that  x = Xl - x2, 
ax l  = xl ,  and ax2 = 0. Demonst ra te  that  Xl = x V 0. Indeed, obviously, Xl _> 0 and x:  _> x, and if 
y > 0 and y _> x then  y >_ ay  >_ ax  = aXl - ax2 = Xl. Consequently, Xl = x V 0, and F is a vector 
lattice. Moreover, from the  equality Xl = x V 0 = x + it follows that  ax  = x + and condit ion (b) of 
Lemma  2 is satisfied. Therefore, F �9 K:(D). 

As is known, the  sum of two intervals in any vector lattice is an interval too. It turns out that  
this assertion is also valid in any ordered vector space that  possesses property C. 

L e m m a  3. Suppose that F �9 IC(C), [a,b], [c,~ �9 I (F ) .  Then [a,b] + [c,~ = [a + c , b +  ~ .  

PROOF. The  inclusion [a, b] + [c, d] C_ [a + c, b + d] is obvious. We will show the  reverse one. 
Suppose tha t  x �9 [ a + c , b + d ] .  Then 0 < x - ( a + c )  < (b+ d) - (a + c) and there exists an a �9 A(F)  
such tha t  a ( b + d - a - c ) = x - a - c .  D e n o t e x l = a + a ( b - a )  a n d x 2 = c + a ( d - c ) .  Then  it is 
obvious tha t  xl  �9 [a, b], x2 �9 [c, d], and Xl + x2 = x, i.e., x �9 [a, b] + [c, d]. 

Significance of the  in t roduced classes K:(C) and K:(D) is explained by the  fact that  the  following 
theorem is valid for them,  which allows one to obtain a description for the sets ~ i ,  i = 1,4. 

T h e o r e m  1. Suppose that E �9 tZ(D), F �9 rE(C), [A,B] �9 I ( L ( E , F ) ) ,  and x �9 E. Then 
[A, B lx  �9 I ( F )  and the following formula holds: 

[A, B]x = [Ax + - B x - ,  B x  + - Ax-] .  (3) 

The  proof results from applying assertions (c) of Lemmas 1 and 2 and Lemma 3. 

REMARK. In the case when E = R n and F = R rn with coordinatewise order, the  theorem 
essentially repeats  the known Oett l i -Prager theorem [14]. 

From Theorem 1 we immedia te ly  obtain a description for 7~i, i = 2, 4. 

T h e o r e m  2. Suppose that E �9 IC(D), F �9 IC(C), [A,B] �9 I ( L ( E , F ) ) ,  and [a,b] �9 I ( F ) .  Then 

~-2 = {Xl -- X2 [ Xl ~ 0, X2 _~ 0, AXl - Bx2 > a, BXl  - Ax2 <_ b}, 

~7~3 -- {Xl - x2 I Xl A x2 -~ 0, AXl - Bx2 <_ a, BXl  - Ax2 >_ b}, 

T~4 = {Xl - Z2 ] Xl A x2 = O, AZl - Bx2 = a, B x i  - Ax2 = b}. 

(4) 

PROOF. Denote  the  sets in the r ight-hand side of formulas (4) by 7~i, i = 2,4. Demonstra te  
that  7~i = ~ i .  The  inclusion T~i C ~ i  for i = 2, 4 results from the representat ion of any x E E in 
the form x = x + - x - ,  formula (3), and the following obvious observation: if [al, bi],[a2, b2] �9 I ( F )  
then [ah bl] C [a2, b2] if and only if a: _> a2 and bl <_ b2. The reverse inclusion for i = 3, 4 follows from 
the fact that  if x = Xl - x 2  and Xl Ax2 = 0 then xl  = x +, x2 = x - ,  and formula (3) is again applicable. 
Show tha t  ~J~2 C_ ~r~ 2. Suppose that  x = Xl - x2 �9 7"42. Denote 5:1 = xl - Xl A x2, 5:2 = x2 - xl A x2. 
It is obvious tha t  x = 5:1 - 5:2, 5:1 A 5:2 = 0; consequently, 5:1 = x +, 5:2 = x -  and, in addition, 
Ab:I - B5:2 = AXl - Bx2  + (B - A)Xl A x2 >_ a and Bb:: - A5:2 = B x :  - Ax2 - (B  - A ) z :  A x2 <_ b, 
since B - A > 0 and Xl A x2 >_ 0. Therefore, by formula (3), [A, B]x C_ [a, b] and x �9 7"42. The  theorem 
is proven. 

In order to obtain an analogous description for the set R1, at least in the case when E �9 K:(D) 
and F �9 /C(C), it is necessary in virtue of Theorem 1 to have some criterion for intervals in F to 
meet .  It is easy to observe that  if [hi, bl], [a2, b2] �9 I ( F )  and [hi, bl] N [a2, b2] # ~ then al _< b2 and 
a2 (_ bl. We will indicate  a class of ordered vector spaces, for which the converse is valid as well, i.e., 
if al _< b2 and a2 _< bl then [al, bl] N [a2, b2] # O. 

Int roduce some relation -4 on nonempty  subsets of F as follows: if F1, F2 C F then  F1 -4 F2 if 
and only if x < y for all x �9 F1, y �9 F2. 

DEFINITION 3. We say that  an ordered vector space F is a Ko-space if, for all nonempty  subsets 
F1, F2 C F ,  the  following condit ion is satisfied: 

F1 -4 F2 --~ (3a  �9 F)  F1 -4 {a} -4 F2; (5) 
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i.e., if F1 -~ F2 then there is an element a E F serving as an upper bound for F1 and a lower bound 
for F2. 

Observe that ,  using condition (5), we can also define other well-known classes of ordered spaces. 
For instance, if this condition holds for all nonempty subsets at least one of which is finite, then we 
obtain the definition of a conditional vector lattice; and if F is a vector lattice and condition (5) is 
satisfied for all nonempty F1 and F2 (one of which is at most countable), then we obtain the definition 
of a K-space (a K~-space). 

L e m m a  4. For an ordered vector space F to be a Ko-space, it is necessary and suf~cient that 
one of the following conditions be satisfied: 

(a) for all al, a2, bl, b2 E F,  i f  ai <_ bj, i , j  = 1, 2 then there exists an element c E F such that 
ai < c < b I (i.e., condition (5) is satisfied for two-element sets F1 and F2); 

(b) we have the following criterion for any two intervals, [al, bl], [a2, b2] E I ( F ) ,  to meet: [aa, bl]N 
[a2, b2] • t21 if  and only i f  al < b2, a2 <_ bl. 

The proof is straightforward from Definition 3. 
Obviously, the class of K0-spaces contains that of vector lattices and is also closed under direct 

products, direct sums, and the passage to subspaces whose intersection with the cone of positive 
elements is normal (= an order ideal) in the latter. 

With the help of Lemma 4, for K0-spaces, we obtain a description for the set 7~1. 

T h e o r e m  3. I f  E E ]C(D), F E E ( C ) ,  [A,B] E I ( L ( E , F ) ) ,  [a,b] �9 I ( F ) ,  and F is a Ko-space, 
then 

~'~1 ---- {Xl -- X2 [ Xl A X2 ---- 0, AXl - Bx2 <_ b, BXl  - Ax2 >_ a}. (6) 

The proof is similar to that of Theorem 2. 
In the case when the vector space F is a vector lattice, by using the centrally symmetric repre- 

sentation of intervals, we obtain the following description for the sets TO.i: 

T h e o r e m  4. Suppose that E �9 IC(D), F �9 E ( C ) ,  [A,B] �9 I ( L ( E , F ) ) ,  [a,b] �9 I ( F ) ,  and F is 
a vector lattice. Assign 

21_ 1 ~(a 1 C =  ( A + B ) ,  D =  ( B - A ) ,  c =  +b) ,  d =  ( b - a ) .  

T~ e11 
n l  = {x  I Dlx l  + d ~ [Cx - c[} , 7E2 = {x  I d >_ Dlzl  + ICx - cl}, 

7r = {x I DIzl >_ d + ICz - cl}, ~4 = { z  I Cx  = c, DIxl = d}. (7) 
PROOF. We will prove formula (7) for 7~1 (for the remaining TC.i's, the proof is similar). Since F 

is a vector lattice; F is a K0-space and, therefore, ~1 is representable as (6). Moreover, by using 
equalities z + 1(Ix[ + x) and z -  ! (  = = 2 I~1-  ~), we obtain: 

A z +  - B z -  = I (A + B ) z  - I (B  - A)Izl  

B x  + - A x -  = ~ ( a  + B ) z  + I (B  - A)!zl 

= C z  - Dlx l ,  

= C z  + Dlxl. 
(8) 

Next, as has already been mentioned, if x = xl - x2 and :gl /X X2 ---- 0 then xl = x + and x2 = x- ;  
therefore, from (6) it follows that x E 7~1 if and only if 

A z  + -  B x -  < b, B x  + -  A z -  > a. (9) 

Substituting equalities (8) into these formulas and taking it into account that  a = c -  d and b = c + d, 
we conclude that  (9) is equivalent to C z  - D[x I <_ c + d and C z  + DIz  I >_ c -:- d, i.e. to 

Dlxl + d > Cx - c > - (  Olxl + d). (1o) 
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Since F is a vector lattice, for any elements y, z �9 F the inequality - z  <_ y _< z is equivalent to 
the inequality [y[ < z; therefore, (10) is equivalent to nIx l  + d > [Cz - c[ and the proof is complete. 

Observe that  the representation of ~4 in the form (7) is also valid without the supposition that  F 
is a vector lattice. 

For the case E = R" and F = R m, both ordered coordinatewise, a description for the set 7~1 in 
the form (7) was obtained in the paper [14] and a description for 7~2 in the form (7), as well as in the 
form (8), in the paper [8]. 

REMARK. The nonlinear condition xl A x2 = 0 in the description for the sets TCi, i = 1,3,4, 
together with the positiveness restriction xl, x2 �9 E+, is bilinear in some cases. 

In particular, if the lattice E is Archimedean then, on making use of an embedding of E into 
the space Coo(Q) of continuous functions on Q with values in R 1 U { + o o , - e r  for some extremally 
disconnected compact space Q and the multiplication operation for functions in Coo(Q), we conclude 
that  there exists a symmetric bilinear mapping ~v : E x E ---* Coo(Q) such that,  for xl,  x2 �9 E+, 
the conditions Xl A x2 = 0 and ~0(Xl,X2) = 0 are equivalent. If, in addition, E has finite dimension n 
then, as is known, E is algebraically and latticially isomorphic to R '~ with coordinatewise order and, 
consequently, we may take the scalar product as ~v. More precisely, there exists a symmetric bilinear 
mapping ~v : E x E --~ R 1 such that the quadratic form generated by it is positive definite and, for 
zl ,x2 �9 E+, the conditions Xl A x 2 = 0 and T(Xl,X2) = 0 are equivalent. Thus, in the case when 
E = R m and F = R n both ordered coordinatewise, we obtain 

C o r o l l a r y .  Suppose that [A,B] �9 I ( n  rex") and [a,b] �9 

T4.2 = 

R3 = 

T~4 = 

the following description for the sets T~i: 

I ( Rm ). Then 

{;T 1 -- X2 [ X t ___~ 0, ;T2 ___~ 0, (:gl, 2~2) = 0, A x l  - B x 2  < b, B x I  - A x 2  >_ a } ,  

{Zl  -- X2 I Zl  --~ 0, X2 __~ 0, Axl - B x 2  >_ a, Bxl  - A x 2  <_ b}, 

{XI -- X2 I Xl ~ 0, X2 ~__ 0, (Xl,  X2) = 0, Axl  - B x 2  < a, Bx l  - A x 2  >_ b}, 

{Xl -- X2 [ Xl __> 0, X2 __> 0, (Xl,  X2) - - - -  0, AXl --  Bx2 = a, Bxl  - -  Ax2 = b}, 

where (., .) is the inner product in R n. 

w 2. S t u d y i n g  P r o p e r t i e s  of t he  Classes K:(C) and  K:(D) 

We now turn to settling the following question: which of the known classes of ordered vector spaces 
possess properties C or D? First, we will indicate some structural properties of the classes K:(C) 
and K:(D) which will show, in particular, that the classes are rather wide. We use conventional 
methods and constructions [12]. 

P r o p o s i t i o n  2. (a) The classes IC(C) and IC(D) are closed under direct products and direct 
s u m s .  

(b) //" E E/C(D) and E1 is a normal subspace o[ E, then E1 e 1C(D). 
(c) I[ F E IC(C) and F1 is a subspace o[ F such that the cone F1 M F+ is normal in F+, then 

F1 e PC(C). 
(d) If  E E IC(D), Eo is a linearly ordered vector space, and E0 o E is the lexicographic product 

of Eo and E [15], then Eo o E 6 IC(D). 
(e) I f  F �9 IC(C) then R 1 o F �9 IC(C). 

PROOF. Assertion (a) is immediate from the definitions. 
To prove (b), it is sufficient to observe that if E1 is normal in E and a �9 A(E), then a(E1) C E1 

and, consequently, the restriction of a onto E1 belongs to A(E1). 
Suppose that  F �9 K:(C), F1 is a subspace of F,  and FI+ = F1 M F+ is normal in F+. Denote by 

P : F ---* Ft any projection from F onto F1 and assign a p  ---- P a  for a �9 A(E). Then it is easy to 
show that  a p ( F )  C_ F1 and apx  -= ax  for every x �9 FI+. Therefore, the restriction of a p  onto F1 
belongs to A(F1) and if x, y �9 FI+, x < y, and a �9 A(E) is such that ay = x, then apy  = ay = x. 
Consequently, F1 �9 K:(C). 

We will now prove (d). By the definition of lexicographic product, E0 oE  = {(z0, x) [ x0 �9 E0, x �9 
E} and (E0o E)+ = {(xo, x ) ] x o  > 0 V (xo = 0 & x > 0)}. In view of Lemma 2, it suffices to show 
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that ,  for every z �9 Eo o E,  there is an a �9 A(Eo o E) such that  az  = z +. Take a z = (xo, x) �9 Eo o E. 
Since Eo is linearly ordered, for zo we have (zo > 0) V (xo < 0) V (xo = 0). If xo > 0 then  z + = z 
and cr = I. If xo < 0 then  z + = 0 and a = 0. If zo = 0 then z + = (0, z +) and, since E �9 K:(D), 
there exists an ao �9 A(E)  such that  aox = x +. In this case, it is easy to show that ,  by letting 
a : Eo o E ~ Eo o E, a(yo, y) = ((1/2)y0, soy), we obtain a �9 A(Eo o E) and, in addit ion,  a z  = z +. 
Consequently, Eo o E �9 K:(D). 

Let us prove (e). Take F �9 ]C(C) and zl, z2 �9 (R 1 o F)+ ,  zl < z2. We need to show that  there 
is an a �9 A(R 1 o F)  such that  az2 = Zl. Suppose that  zi = (hi ,x i ) ,  hi �9 R 1, xi �9 F,  i �9 1,2. Then 
0 < ~1 < ~2. Consider three cases separately: $1 = $2 = 0, )~1 = )~2 > 0, and )h > ~2 > 0. 

If ~ = ~2 = 0 then  0 _< Zl < x2 and, since F �9 K:(C), there exists an so �9 A(F)  such that  
aoz2 = Zl. Then,  by let t ing a()~, z) = ((1/2)~, aoz)  for all ($, x) �9 R ~ o F ,  we obtain a �9 A(R 1 o F)  
and ~ z 2  ---- Z l .  

If ~1 = ~2 > 0 then Xl < x2. Assign a(~,:c) = ( $ , z  + -~2(Xl - x2)) for ()~,x) �9 R 1 o F.  It is easy 

to show that ,  in this case, a �9 A(R 1 o F)  and az2 = zl. 
If ~2 > ~1 > 0 then,  for (~, z) �9 R ~ o F,  assign a(~,  x) = ~ Z l .  In this case, it is also easy to show 

that  a �9 A(R 1 o F)  and az2 = Zl. 
So, in each of the cases, there is an a �9 A(R 1 o F)  such that  az2 = Zl and, consequently, 

R 1 o F �9 K:(C). Proposi t ion 2 is proven. 
Wi th  the  help of Proposi t ion 2, starting with given spaces that  belong to the classes K:(C) or K:(D), 

we can obtain new spaces in the same classes. 
The  following theorem answers the question that  is formulated at the beginning of Section 2. 

T h e o r e m  5. T h e  class 1C(C) MK:(D) contains 
(a) a11 f in i te -d imens ional  vector  lattices; 
(b) all vec tor  la t t ices  that  are K~r-spaces. 

P R o o f .  (a) By Theorem XV.4 of [15], every finite-dimensional vector latt ice E is ei ther  the direct 
sum of vector lattices of lesser dimension or the lexicographic product  E - R 1 o E0 of the set R ~ of reals 
and a vector lat t ice E0 of dimension less than that  of E by one. Since, obviously, R 1 �9 K:(C) n K:(D), 
the desired assertion can be obtained by induction on the dimension with the help of Proposi t ion 2. 

Let us prove (b). Let E be a K~-space. We will show that  E �9 K:(D). Take x, y �9 E+ such that  
x A y = 0. Consider the principal band Ez generated by x [13]: 

= ( z  �9 E I Vu �9 E I 1A x = 0 --,  lul A Izl = 0} .  

By Theorem IV.3.4 of [13], for every z E E, there exists an orthogonal project ion P r z  of it onto Ez 
and 

P r z  = sup(z A nx)  (11) 
n 

for z E E+. Moreover, the operator Pr is linear. From (11) it is clear that  0 < Pr z < z for z E E+; 
therefore, Pr E A(E).  In addition, it is obvious that  Pr x = x and P r y  = 0; consequently, E E K:(D). 

We will now demonst ra te  that  E E K:(C). Take x , y  E E+, y < x. Once again, consider 
the principal band Ez and the orthogonal projection operator Pr : E ---* Ez. The  space Ez, as 
a normal  subspace (=  an order ideal) of E, is itself a K~r-Space and, by Theorem IV.3.6 of [13], x 
is an order unit  in Ez (i.e., for every z E Ez, i f z  > 0 then x A z  > 0). Moreover, it is obvious 
that  y E Ez. Next,  by Theorem V.8.1 of [13], we can define in Ez a mult ipl icat ion operat ion (some 
function ~ : (Ez x Ez) ---* Ez defined not everywhere in general) so that  Ez becomes a generalized 
ordered commuta t ive  ring with a unit  (see Definition V.8.2 in [13]), in which x serves as a unit  for 
the multiplication; i.e., for every z e Ex, the values ~v(z, x) and ~v(x, z) are defined and ~v(z, x) = 
~(x,  z) = z. In addit ion,  from the definition of a generalized ordered commuta t ive  ring it follows 
that ,  for every z E E , ,  the value ~v(y, z) is defined, since 0 < y < x and 0 < ~v(y, z) < ~(x,  z) = z 
whenever  z > 0. Moreover, from the same definition it follows that  the function ~v(y,-) : E ,  ---* Ex 
(as a funct ion of the  second argument)  is a linear operator in E , .  Now, assign a z  = ~ ( y ,  Pr z) for 
each z e E.  Then  az  = T ( y , P r z )  > 0 for z �9 E+, since P r z  > 0, a z  = ~v(y, P r z )  < P r z  < z and 
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a z  = ~v(y, Pr z) = ~ ( y , x )  = y; i.e., a �9 A(E) and c~z = y. Consequently, E �9 K:(C). The theorem is 
proven. 

We will give examples of an ordered vector space not possessing properties C or D. 

EXAMPLE 1. Let F0 be a 3-dimensional vector space with basis al ,  a2, a3. Order it with the cone 

F0+ = {oLlal -I- o~2a2 q- a3a3 [ Oil �9 R 1, ai _> 0, i = 1,3, a l  + a2 _> a3} .  

Let Eo be a 3-dimensional vector lattice with coordinatewise order corresponding to some basis 
bl, b2, b3 E Eo, i.e., Eo+ = {albl +a2b2 +a3b3 [ai  E R 1, ai >_ 0, i = 1, 3, }. We will demonstrate that 
Theorem 1 fails for the pair Fo, Eo. Take an Ao E L(Eo, Fo) that is defined on the basis of Eo as follows: 
Aobl = al, Aob2 = a2, Aob3 = �89 + �89 + a3. It is obvious that Ao is a positive operator; therefore, 
[O, A0] E I (L (Eo ,  Fo)). In addition, A E [O, A0] if and only if there exist numbers A1,)12 E [0,1] and 
ill,/~2 E [0, 1/2] such that Abl = Alal,  Ab2 = A2a2, and Ab3 = /~lal q-/~2a2 4- (/~1 -'[- /~2)a3. Take 
an x E E0+, x = 2bl + 263. It is obvious that y = al + a2 <_ Aox = 3hi + a2 + 2a3 and y > 0 
in F0, i.e., y E [0, Aox]. At the same time, if the equality Ax = y was valid for some A �9 [O, A0] 
then we would have 2(A1 +/31)al + 2/~2a2 + 2(/~1 + f12)a3 = al + a2 and, consequently, /32 = 1/2, 
fll = -/32 = - 1 / 2  r [0,1/2]. Therefore, y r [O, A0]z and [O, A0]z -~ [0, A0z]; i.e., formula (3) is not 
valid in this case. In particular, it follows that F0 r K:(C). 

We also point out that  F0 is not a K0-space. 

EXAMPLE. Let F1 be a 2-dimensional vector space with basis el, e2 and let FI+ = {ale1 + ~2e2 I 
( O t l =  O~ 2 • 0) V (O~1 > 0~;O~2 > 0)}. It is easy to show that F1 is a K0-space, F1 �9 K:(C), and, since F1 
is not a vector lattice, F1 r K:(D). 

EXAMPLE 3. Consider the vector lattice C[0, 1] of continuous functions from the interval [0, 1] 
into R 1 in natural  order; i.e., we assume fl  _< f2 whenever f l ( t )  <_ f2(t)  for all t �9 [0, 1]. It is known [12, 
p. 181] that  each multiplier a �9 A(C[0, 1]) is representable as multiplication by a continuous function 
from [0, 1] into [0, 1]; i.e., a �9 A(C[0, 1]) if and only if there exists a continuous qo: [0, 1] ---, [0, 1], 
such that ( a f ) ( t )  = tp(t) f ( t )  for all f �9 C[0,1] and t �9 [0,1]. We will demonstrate that  C[0,1] r 
E ( C )  tAIC(D). Indeed, define f l ( t ) =  1 - 2 t  for t �9 [0,1/2], f l ( t ) =  0 for t �9 (1/2,1], f 2 ( t ) =  0 for 
t �9 [0,1/2], and f2(t) = 2 t - 1  for t �9 (1/2,1]. It is clear that f l  > 0, f2 >_ 0, and f l A ] ' 2  = 0. 
If a �9 A(C[0, 1]) is such that af~ = f~ and a f2 = 0, then, for the function ~ that corresponds to a,  
we have qo(t)fl(t) = f l ( t )  and qo(t)f2(t) = 0 for all t �9 [0,1]. But then qo(t) = 1 for t �9 [0,1/2) and 
~(t) = 0 for t �9 (1/2,1]. Therefore, ~o cannot be continuous and, consequently, C[0, 1] r K:(D). Next, 
define f3(t) = t2sin2(1/t)  for t �9 (0,1] and f3(0) = 0 and .f4(t) = t 2 for t �9 [0, 1]. Then 0 < f3 <_ f4, 
and if a f4 = f3 for some a �9 A(C[0, 1]) then, for the function ~ that corresponds to a,  we obtain 
~v(t)f4(t) = f3(t)  for all t �9 [0,1]. But then = sin2(1/t) for t �9 (0, 1], and cannot be continuous 
at the point t = 0. Consequently, C[0, 1] r K:(C). 

From the given examples it is clear that an arbitrary ordered vector space need neither possess 
property C nor be a K0-space; there are ordered vector spaces possessing property C and present- 
ing Ko-spaces but failing to be a vector lattice; an Archimedean vector lattice need possess neither 
property C nor property D. 

w 3. A l g o r i t h m i c  C o m p l e x i t y  

Consider the problem of solvability of equation (1), i.e. the problem of checking whether the sets 7~i, 
i = 1,4, are nonempty, from the viewpoint of computational complexity [16]. We shall restrict our- 
selves to the case of E = R m and F = R n both ordered coordinatewise and integer matrices A, B and 
vectors a, b. More precisely, for a fixed i = 1,4, by the problem R.i r O we mean the following: 

PROBLEM T~i. Given are integer m x n-matrices A and B,  A < B,  and integer m-dimensional 
vectors a and b, a < b. Does there exist an n-dimensional real vector x such that x E TQ? 

It is easy to observe that, for every i = 1,4, the problem 7"r ~ E~ belongs to the class .hfP [16]. 
Indeed, an indeterminate algorithm solving the problem 7~i ~ E~ in polynomial time is constructed 
as follows. First, we "guess" at the signs of the coordinates of the vector x. With the signs fixed, 
by Theorem 4 the problem R.i ~ O now transforms into that of solvability for a system of linear 
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inequalities which is polynomially solvable [17]. In addition, since by Theorem 2 the set 7?-2 can be 
described as a system of linear inequalities, the problem 7~2 r O is in the class P (polynomially 
solvable). As regards the problems ~ i  ~ o for i = 1,3, 4, we have the following: 

T h e o r e m  6. The problems ~ i  ~ 0, / 'or  i = 1, 3, 4, are AlP-complete. 
PROOF. We will show that  the following A/P-complete problem PARTITION [16] is polynomially 

reducible to the problems ~ i  # O. 
PROBLEM PARTITION. Let q positive integer numbers sa , . . . ,  Sq (q > 1) be given. Is it possible 

to choose signs ei E {-1 ,  1}, i = 1,q,/ 'or si so that El81 §  § eqSq = 0; i.e., is the set 

T~o "- ( E I , . . . , E q )  T ) Z e i s i = O ,  e i E { - 1 , 1 } ,  i = l , q  
i=1 

nonempty, where (.)T is the taking of transpose? 
While reducing problems, we make use of the description for ~ i  obtained in Theorem 4 and 

the routine matrix-vector notation. In particular, we assume Oq to be the zero q x q-matrix and 
Eq to be the identity q x q-matrix; moreover, 0q = (0 , . . . , 0 )  T, eq = ( 1 , . . . ,  1) T, e = ( s , . . . , s )  T, 
and s = ( S l , . . . ,  sq) T are q-dimensional vector-columns. We also point out that,  in the case under 
consideration (a finite-dimensional vector space with coordinatewise order), the moduli of a vector z 
is the vector constituted by the modulus of the coordinates of z. 

We will show that  problem PARTITION is reducible to the problem 7~a ~ O. 
Let a q-dimensional vector s = (S l , . . . , sq )  T be given. Assign m = 2q + 1, n = q, and define 

(2q + 1) x q-matrices C and D and (2q + 1)-dimensional vectors d and c as follows: 

D =  , C =  Oq , d =  0q , c =  eq ; 
Eq eq Oq 

moreover, A = C - D, B = C + D, a = c - d, and b = c + d are integer and, obviously, A < B and 
a < b. Show that ,  with these A, B, a, and b, the set 7a,.1 coincides with 7~0. 

Indeed, by Theorem 4, z E 7~1 if and only if Dlxl + d > [Cz - cl, which in our case amounts to 
the system of inequalities 

o Is rxl ,  Ixl _> > 
or, equivalently, Izl = eq, sTx = 0; i.e., if and only if z E 7a,.0. Since, obviously, the matrices A and B 
and the vectors a and b are constructed from the vector s in polynomial time, problem PARTITION 
is polynomially reducible to the problem ~1 # O. 

The fact that  problem PARTITION is reducible to the problem 7~4 # O can be proven similarly, 
if we assign m = q + 1, n = q, 

, C ~ D =  , C =  ,,q , d =  ,,q 

Now, consider the problem 7%3 -r O. Assign m = 3q+ l ,  n = 2q, and define (3q+ 1) x 2q-matrices C 
and D and (3q + 1)-dimensional vectors c and d as follows: 

/ D = Oq C = Oq d = 
' Eq ' 

Eq Oq Eq / 

(o) 
eq 
Oq ' 
Oq 

(0) 
2eq . 

C = Oq ' 

Oq 

moreover, as before, A = C - D, B = C + D, a = c - d, and b = c + d. We shall write solutions to 

t h e c o r r e s p o n d i n g i n t e r v a l p r o b l e m a S ( y ) , w h e r e z a n d y a r e q - d i m e n s i o n a l v e c t o r - c o l u m n s .  Then, 
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byTheorem4,  ( y )  ET~3isequivalentto 

o(l;l)> 
or to the following system of inequalities: 

o ~ I~ Txl, lyl ~ ~q + J 2 y -  2eql, lyl ~ Ixl, I~1 ~ lyl, 

which is clearly equivalent to the system 

sTx  = 0, 2lY -- eq l -  lyl + ~q -< 0, Izl = lyl. (12) 

Since, obviously, 

lY - eqJ = 21y - % 1 -  lY - eql < 2Iy - e q l -  (ly - eq[) - -  2 ly  - e q l -  lyl + eq, 

the second inequality of system (12) is equivalent to y = % and, consequently, (12) can be written as 

s T~ = 0, y = ~q, Ixl = % .  (13)  

Fr~ (13) i t  f~176 that if x E 7~~ then ( x )eq E 7~3 and, conversely, if ( y ) E  T~3 then y = eq 

and z E T~0. Since it is clear that the matrices A and B and the vectors a and b are constructed 
from the vector s in polynomial time, problem PARTITION is polynomially reducible to the problem 
7?.3 # ~.  The theorem is proven. 

Thus, if P :~ AlP then, while solving the problem T~i # O for i = 1,3,4, it is impossible to 
eliminate exponential exhaustion. 
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