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Abstract. For a system of linear equations Ax = b, the following natural questions appear:
« does this system have a solution?

- if it does, what are the possible values of a given objective function f(xi, ..., X)) (€.g., of alinear
function f(x) = > cix) over the system’s solution set?

We show that for several classes of linear equations with uncertainty (including interval linear
equations) these problems are NP-hard. In particular, we show that these problems are NP-hard even
if we consider only systems of n+ 2 equations with n variables, that have integer positive coefficients
and finitely many solutions.

1. Brief Informal Introduction

Itisknown that agorithmsfor solving interval linear algebraic equations and linear
programming problems with interval uncertainties are often very time-consuming
(for the latest algorithms, see, e.q., [12], [14], [15]). Thisis partialy explained by
the result (proven in [6]-9]) that in general, the problem of solving interval linear
systems is NP-hard (as well as other related problems, such as finding the largest
possible value of agiven linear function on a set of al solutions). In this paper, we
improve the results from [6], [7].

2. Formulation of the Problem. NP-Hard Problems

DENOTATIONS.

« Inthis paper, we will use standard denotations R, Q, Z, N, for the sets of redl,
rational, integer, and natural numbers, respectively.

« N, = N\{0} will denote the set of all positive integers.
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« By R"(Q",Z", ...), we will denote the set of n-dimensional vectors with coor-
dinates from R (correspondingly, from Q, Z, ...). In matrix operations, these
vectors will be treated as columns.

« AT will denote atransposition of A.

« Foreveryi < j, mj: Rl — R' will denote a projection, i.e., a function
that transforms a j-dimensional vector into the vector consisting of its first i
coordinates: 73 j(X1, ..., X, ..., %) = (X1, ..., Xi).

« By R™" (correspondingly, Q™*", Z™*", ...), we denote the set of al (m x n)-
matrices with elements from R (correspondingly, from Q, fromZ, ...).

DEFINITION 2.1.

« Letm, n, and sbe non-negative integers. By asystem of mlinear equationswith n
unknowns and s-parametric uncertainty (or alinear system, for short), we mean
atripleQ = (D, A,b), where D 0 RSisanonempty set,and A: D — R™"and
b: D — R™ are mappings from the set D into, correspondingly, the sets R™*"
and R™. This system will also be denoted by

A(d)x = b(d). (2.1)

« By a(united) solution set 3(Q) of alinear system Q, we mean the set

3(Q)=%(D,AB)={xOR"| ™ OD : A(d)x = b(d)}.

EXAMPLE. Aninterva m x n linear system Ax = b with an interval matrix
A and an interval vector b can be represented as a linear system in the sense of
Definition 2.1, if we take:

« s=mh+m. For thiss, RS = R™" x R™, 0, every s-dimensional vector p
can be represented as apair (A, b) of an (m x n)-matrix A and an m-dimensional
vector b.

« AsD, wetake the set of all vectorsd = (A, b) for whichAOA and b Ub.

« As A(d), we take afirst (matrix) component of d; as b(d), we take the second
(vector) component.

In this case, the solution set as defined by Definition 2.1 coincides with the united
solution set as defined, e.g., in[12], [14], [15]:

3(Q)=%(A,b)={xOR"|ADA bOb : Ax=Dh}.

Comment. For a linear system A(d)x = b(d), the following problems naturally
appear:
 Doesthis system have asolution, i.e., is Z(Q) nonempty?

« If alinear system has solutions, what are the possible values of agiven objective
function f (e.g., of alinear function f(x) = > ¢ix)?
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In this paper, we will show that for several reasonable classes of linear systems,
these problems are in general computationally intractable, or NP-hard.

For exact definitions of this notion, see, e.g., [3]. Intuitively, a problem is NP-
hard if whenever we can solve this problem in polynomial time, we will be able
to solve a huge class of different real-life problems in polynomial time; this class
(called NP) is so huge that it is usually considered to be impossible to have an
algorithm that solves al problems from this class in polynomial time. Therefore,
we can conclude that no polynomial time algorithm can solve a given NP-hard
problem.

Let us give an intuitive idea of the class NP. This class contains problems with
the following property (that many real-life problems have): each of these problems
may be difficult to solve, but if we have acandidate for a solution, then it is easy to
check that thisisindeed a solution. For example:

- if aproblem consists of solving asystem of equations, then it iseasy to substitute
the candidate into all these equations and check;

« if aproblem consists of proving a theorem, then it is easy to check the proof
step-by-step (if it isindeed a detailed proof, and not just an idea of the proof);

- if a problem consists of finding the dependency that explains the results of
the experiments, then we can simply substitute the data into the candidate
dependency and check whether all the data satisfy it;

« in design problems, we can usually easily check whether the given candidate
design satisfies all the requirements.

Such problems in which checking a candidate solution is easy (i.e., can be donein
polynomial time) are called problems from the class NP. For such problems, if we
guessed correctly, we will check the guess and get a solution. A problem is called
NP-hard if, whenever we can solve this problem in polynomial time, we can solve
all problems from the class NP in polynomial time.

DEFINITION 2.2. Let Sbe aclass of linear systems. Then, the following problems
can be defined:

e Problem N(S):
Instance: asystem Q OS.
Question: Isit true that Z(Q) # (?
The set of al systems Q OSfor which thisis true will be denoted by NS.
e Problem M(NS):

Instance: a system Q O NS (i.e., Q O Swith Z(Q)#0) with n unknowns
X1, ..., Xn, @d N+ 1 integers ¢y, Cy, ..., Cn.

Question: Isit true that

max{zn: GiXi | X = (X1, .o, Xn) T DZ(Q)} > co?
i=1
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Sometimes, it isimportant to solve these problems not for al problems from the
class S but only for problems that are in some sense “regular”: e.g., for which the
solution set is bounded, or finite, etc. Such “regular” problems form subclasses of
the class S. Let us introduce the denotations for the corresponding subsets:

DENOTATIONS.
» By BS we denote the class of al problems Q 0O S for which the set 3(Q) is
bounded.

« By RS we denote the class of al problems Q O S for which the set 2(Q) is
regular, i.e., non-empty and bounded.

« By FS wedenotetheclassof al problemsQ 0O Sfor which the set Z(Q) isfinite.

» By DS we denote the class of al problems Q 0O Sfor which the set 3(Q) is
discrete, i.e., nonempty and finite.

Comment. Due to this definition, the following relations hold:

RS=NSn BS=NBS=BNS and DS=NSn FS=NFS=FNS

DENOTATIONS. Let Sbe aclass of linear systems. Then:

« S™" ' m,n > 0, denotestheclass of al systemsfrom Sthat consist of mequations
with n unknowns.

« For every natural number k ON, S® =, o S™ M and S0 = )5 o S™™X,

Comments.

« Itiseasy to seethat S*) n Sk) = () for ky #kp, and that S= U, 7 SX.

« To solve a“maximization problem” M(NS), i.e., to find out whether there exists
a solution x O Z(Q) for which > cix > co, it is often useful to first find out
whether there is a solution x 0 Z(Q) for which the equality > ¢ix = ¢ holds.
This problem is equivalent to checking non-emptiness of the set of solutions for
the following auxiliary linear system:

DENOTATION. Let Q = (D, A,b) be alinear system with n unknowns, and let
¢ =(Cy,Cy, ...,Cn)T ORM1 be a sequence of real numbers. By Q. = (D, A¢, bc), we
will denote the following linear system:

i:Zlcm = co, 22)
A(d)x = b(d), d OD.

Thissystem can obviously berepresented intheform (2.1) with naturally defined
mapsAc : D — RMD*"gnd b, : D — R™1L.
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3. Classesthat Represent Boolean Vectors and the Main Lemma

NP-hard problems are usually formulated in termsof discrete systems, i.e., systems,
in which we have n variables xy, ..., Xy, each of which takes only two values. These
two values can be, eg., interpreted as “true” and “fase” in which case, each
variable becomes Boolean, and the vector (1, ..., X,) becomes a Boolean vector. If,
e.g., these values are 1 and —1, then the set of possible values of X = (Xg, ..., Xn) iS
{—1,1}". Therefore, a natural way to prove that a problem is NP-hard for a class
Sof linear systems is to prove that such Boolean vectors can be represented in S,
Thisleads usto the following definition:

DEFINITION 3.1. We say that aclass Sof linear systemsdescribes Boolean vectors
if there existsapolynomial-time algorithm/{ that for every integer n > 0, constructs
asystem Q" O Swith n(n) > n variables for which m, o(2(Q7)) = {—1,1}", and
Q2 OSfordl aON x N7,

Comment. Obviously, if a class S describes Boolean vectors, and SO S, then
S aso describes Boolean vectors. Therefore, in the further results, we will try to
prove the property of “describing Boolean vectors’ for classes that are as small as
possible.

MAIN LEMMA. If a class S describes Boolean vectors, then the problems N(S
and M(NS) are NP-hard.

Proof.

1. We will prove this result by showing that for such classes S, we can reduce
the problem Partition (known to be NP-hard [3]) to each of the problemsN(S) and
M(NS). Thus, if we could solve the problems N(S) or M(NS) in polynomial time,
we would be able to solve Partition in polynomial time, and therefore, we would
have P = NP.

Partition problem is defined as follows:

Problem Partition:

Instance: u > 0 positive integersvy, ..., v,,.

Question: Does there exist a sequence of signs Xy, ..., %, O{—1,1} such that

>ioqxvi =0?

Let us show how to reduce every instance of this problem to N(S) and M(NS). Let
avector v = (v, ..., V,) be given. Then the question of Partition is to check whether
the set Zr(v) = {x O{—1,1}* | 3I_; xvi = 0} is non-empty.

2. Reducing this problem to N(S) is easy: Let us take the system Q*, whose
existence is guaranteed by the property that the class S describes Boolean vectors,
and take Q4, whereag = 0and a; = v; fori = 1,...,u. Then, Q5 OS, and clearly,
1, n(u) (Z(Q4)) = Zr(V); therefore, Zr(v) # 0 iff Z(Qz) # 0. Itisclear that if we know
v, then we can construct the system Q4 0Sin polynomial time.

3. Let us now show that Partition can be also reduced to M(NS). Taken = u + 1.
Let Q7 be asystem whose existence is guaranteed by Definition 3.1, and letg = 2v;
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for1 <i<p,andag=a,+1=>"_,V. Then, thefirst equation of the extended
system Q2 will have the following form:

U u u
2<Zvixi>+(2vi)x“+1=2vi. (3.1)
i=1 i=1 i=1
The vector (1, ...,1,—1)T 0{—1,1}" satisfies the equation (3.1). By the choice of
Q1 this vector belongsto 3, 1(2(Q")) and therefore, it can be extended to a vector
X = (L., L =1% 00T OZ(QM). Hence, x* 0 2(Q4), and consequently,
Q21 ONS

Let us now take cp = c,+1 = 1 and ¢ = O for all other i < n, and consider
the corresponding maximization problem. This problem is solvable iff there exists
asolution x 0 (Q3) for which S cix > co. For our choice of coefficients, this
inequality isequivalent tox,+1 > 1. Since Q3 was obtained by adding an equation to
Q" every solution x of Q2 isalso asolution of Q7, i.e., Z(Q2) O =(Q"). Therefore,
due to our choice of Q7, the first n = u + 1 components of each solution x are
equal to +1. In particular, X,+1 O {—1,1}. So, the only case when x,+1 > 1is
when x,+1 = 1. Inthis case, the equation (3.1) isequivalent to >"-F_ ; vix; = 0. Since
X 0{—1,1} fori < p, if such asolution exists, then the Partition problem also has
asolution. Vice versa, if a Partition problem has a solution xy, ..., X, then adding
Xy+1 = 1 and extending the resulting vector 0{—1, 1}" leads to an element of X(Q")
that also satisfies the corresponding instance of the problem M(NS). So, Partition
isindeed reducible in polynomial timeto M(NS) and therefore, the problem M(NS)
is NP-hard. O

4. Auxiliary Result: Reduction to the Case When Different Parameters
Describe Uncertainty inAandinb

In general, one and the same parameter d; can influence both the matrix A and the
right-hand side b. In the above interval example, some coordinates of the vector d
are responsible only for A and some only for b. A natural question is: if we impose
this restriction on linear systems, will we then restrict the class of linear systems?
The answer is“no”: every linear system can be thus reformulated.

DEFINITION 4.1. We say that a linear system has separated parameters if the
following three statements are true:

« s=t+]|(sothat D O RS =R! x R);
« Adepends only on thefirst t parameters p of the vector d OD; and
b depends only on the last | parameters g of d.

DENOTATION. We will denote a system with separated parameters by
A(p)x = b(q). (4.1)
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PROPOSITION 4.1. For every linear system Q, there exists alinear system Q' with
separated parameters that is equivalent to Q in the sense that 2(Q) = 2(Q'").

Proof. Beforewe start proving thisresult, let usremark that every (m x n)-matrix
A can be represented as a (m [h)-dimensional vector

(A11!A12! ...,A]_n,AZl, ...,A2n, ...,Am]_, ,An'h)

This is exactly how the matrix A is represented inside the computer in many
programming languages. An m-dimensional vector b can be described as (by, ...,
bm). If inthe computer, the description of the matrix Aisfollowed by the description
of a vector b, then we get the following sequence of rea numbers (or, in more
mathematical terms, the following (m Ch + m)-dimensional vector):

(Aa1, -, A, b1, ..., b).
In the remaining part of this proof, we will denote this vector by (A, b). Now, we
areready for the proof itself.
Letustake Q' = (D', A, b'), where:
em =m
en=m;
e S=mh+m;
« theset D' isthe set of al possible S-dimensional vectorsd' = (A(d), b(d)) that
correspond to different valuesd 0D (i.e., D' = {(A(d), b(d)) | d OD});
« the new mapping A'(d") isdefined, for d' = (d, ..., dy, gyam), 8

Ay, . Ao O ety o Annem) = (A4, - Ay )
and
« the new mapping b'(d") is defined as

by, ... Ao Anets - Amnem) = @t - O nem)-
From this construction, it is clear that this new linear system has separated param-
eters: Indeed:

« thevaue A'(d") depends only on the first mh parameters of the vector d’, while
- thevalue b'(d") depends only on the last m parameters of the vector d'.

L et usshow that avector x isasolution of the new linear system Q' iff xisasolution
of the original linear system Q':

« If xisasolution of the new linear system, this means that for somed’ OD’, we
haveA'(d")x = b'(d"). By definition of theset D', every element of thisset isof the
form (A(d), b(d)) for somed 0OD. So, d’' = (A(d), b(d)) for somed OD. For this
d’, we can apply the definitions of A" and b’ given above, and get the following
formulas: A'(d") = A'((A(d), b(d))) = A(d) and b'(d") = b'((A(d), b(d))) = b(d).
Therefore, from A'(d')x = b'(d'), we conclude that A(d)x = b(d) for somed OD,
i.e., that x isasolution of the original linear system Q.
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 Vice versa, let x be a solution of the old linear system. This means that for
some d O D, we have A(d)x = b(d). By definition of the set D', the vector
d" = (A(d), b(d)) belongs to this set D'. By definition of the mappings A" and
b, for this vector d’, we have A'(d") = A'((A(d), b(d))) = A(d) and b'(d") =
b'((A(d), b(d))) = b(d). Hence, from A(d)x = b(d), we conclude that A'(d")x =
b'(d') for somed 0OQ',i.e, that xis solution of the new system. O

Comments.

« Toavoid misunderstanding, it isimportant not to confuse two somewhat similar
notions:

— our notion of separated parameters, and

— a sgmilar notion of a system in which the matrix A and the vector b are
independent in the following sense:
if
amatrix Aispossible (i.e.,, A= A(d) for somed' OD’),

and
avector b ispossible (i.e., b =b'(d") for somed” 0OD"),

then
the pair (A b) is also possible (i.e., A = A(d) and b = b'(d) for some
doD).

A system (D', A, b') with separated parameters is definitely independent (inthis
sense) if the corresponding set D' O R! x R! can be represented as a Cartesian
product D' = D1 x Dy, where D; O R! and D, O R!; otherwise, the matrix A
and the vector b are dependent, and their dependence is described by the set D'.

e Our Main Lemmaresult is not mathematically complicated, and we believe that
it may have been known before; however, sincewedid not find it inthe literature
and since we believe it to be important, we included this result (with a detailed
proof) in our paper.

5. Classes of Linear Systems That Describe Boolean Vectors

Due to Proposition 4.1, we can (without loss of generality) consider only systems
with separated parameters. Therefore, in this section, wewill only consider systems
of type (4.1). To describe the classes, we will need the following denotations:

DENOTATIONS. Let integers m and n be given.

- By e, wewill denote an m-dimensional vector whosej-th element is 1 and all
other elements are 0. Vectors €X) will be called vector units.

- By E(), we will denote an (m x n)-matrix whose (i, j)-th element is 1, and all
other elements are zeros. Matrices E(:)) will be called matrix units.
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 For every r O[1,+00] = [1,+00) O {oo}, we define I.-norm ||p||; of a vector
p OR" asfollows:

n 1/r
Pl = () it r<oo [ple = maxppl.
i=1

« Let us now define the following three sets (we will call them sets of indices):
A1 ={(r,r1,r2) | r O(1,+00), r1 O[r, +0o0], rp O[a(r), +oo] },
where

a(r)

r

r—1'
Ny = {(r,1)|r,TO[1 +o0]},
A =N 0N

« For each A OA and for esch n O N, we definetheset D, , O R" x R" as
follows:

—IfA= (r,rl, rz) OAq, then
Dnx = {(p,q) OR"xR"|

1 ) r 1
“n'n + ——n~o0r2 on) < 1}.

- IfA = (I’,T) D/\z, thm Dn,A = Pn’r X Qn’T,Where
Por = {POR"[[Iplr <™}, Qur={qOR"[ gl <n''"}.

Now, we can introduce the following classes S,, A OA, of linear systems:

DEFINITION 5.1. Let A OA be given. We say that a system Q = (D, A, b) of the
form (4.1) with m equations of n variables belongs to the class S, if s=1 = n,
D = Dy, 2, and the mappings A and b are of the form

n n
Ap) =A9+ 3 pigA?,  bg) =b?+ Y gab?, (5.1)
i=1 i=1

where:
« AQ 0Z™N and b@ 0Z™ (i.e., the matrix A© and the vector b© have integer
components);
. foreveryi=1,....,n, A isamatrix unit and b®) is avector unit;
- &,6 0{01};
s ifg=g=1andi #], then AD £ AD; if 5 = & = 1, then b # b0,

Comment. When A O/, thismeans, crudely speaking, that the vector formed by
the differences between the nominal AQ, b@ and actual values of the coefficients A
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andbisbounded inthelP sense. When A O/, thismeans, crudely speaking, that the
difference vector that corresponds to A and the difference vector that corresponds
to b are bounded. In particular, forry = r, =r = 1 = 00, I"-norm turns into max,
and our definitions turn into a definition of a usual interval linear system. The
possibility &, & = 0 enables us to consider linear systems that depend ons < nand
| < nparameters.

We will prove that for every A OA, the class FS, (of those systems for which
the solution set isfinite) describes Boolean vectors.

PROPOSITION 5.1. For every A OA, theclass FS, describes Boolean vectors.

Proof. To prove this result, we will consider, for each n > 0 and for each
p,g ORM, the following system Q™* = (D, ,, A", b") of the type (5.1): m= 2n,

n n n n
An(p) — Z E(n+i,i) + Z pi E(i’i), bn(q) — Z e(i) + Z qie(n+i). (52)

i=1 i=1 i=1 i=1

The corresponding system of 2n equations with n unknowns A"(p)x = b"(q) is
asfollows:

{plxl 1,
Xl qI!

!“!

(5.3)

'_\

n.

LEMMA 5.1. For every A DA andn> 0, Z(Q"*) = {-1,1}".

To prove this lemma, we will use two inequalities. a well-known inegquality
(which is a particular case of Young's inequality [1]) and the inequality between
[-norms, which can be easily proven (either from the general statement of mono-
tonicity of weighted sums [1], or directly).

LEMMA 5.2 (Young's inequality [1]). Let 1,6 O0(1,00), 1/ 1+ 1/ 6 = 1. Then, for
arbitrary a,c > 0,

this inequality turns into an equality iff a¥ = c®.
LEMMA 53. For every T and 6 such that 1 < 6 < 1t < +00, and for every
pOR",

IPlle < n*'®= 4" pll; (54)
this ineguality becomes an equality iff all the values|pi|, 1 <i < n, areequal.

Proof of Lemma5.1. Letn DN, and A OA. Theinclusion {—1,1}" 0 £(Q"*)
is obvious, since any vector x O {—1,1}" is a solution of the system (5.3) for
p=g=xand{—1,1}" x{—1,1}" O Dy ,.
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Let us prove the converse inclusion £(Q™*) O {—1,1}". Select some x O
Z(Q"*). By definition, this means that there exist such (p, g) 0Dy, » for which the
equations (5.3) are satisfied, i.e., for whichx = gand pig; = 1 foral i =1, n.

Since A OA = /A1 O Ny, we have two possibilities:

« A OAq,and
o A OAs.
Let us prove the desired inclusion for both cases.

1) First, wewill consider thecased when A OA1,i.e, whenA = (r,rq,r2), where
r 0(1,+00), ry O[r, +00], ro O[0, +oo],and o = r / (r — 1). Using Lemmas 5.2, 5.3,
and the relations pig; = 1, and taking into account that (p, g) 0Dy » we obtain the
following chain of equalities and inequalities:

1 _ 1
12 Fn r/rq (||p||r1)r +En alry (Hquz)a

(since (p, ) ODn,»)

1 11 1 11
> —n s pll,)' + Sneele(n e )

(due to Lemma5.3)

171, o1 .
HHEDEE R
_ 12”: L+ Ll
- ﬁ__ (Fpl‘ E‘q >
i=1
1 n
> = Ipil Oail
ni=l

(dueto Lemma5.2)
=1

(since p; Ogi = 1). Since this chain of inequalities starts and ends with 1, al
inequalities in this chain are equalities. In particular, we have

n

1 r.,_l 0\ = . Mo
> (I + 5lal%) = 3ol ol

i=1

Dueto Lemma5.2, for each i, we have the inequality
1 r 1 o
<r|p|| U|Ql‘ ) > |pi| Ol

Therefore, the only case when the sum of the left-hand sides is equal to the sum
of the right-hand sides is when each left-hand side is equal to the corresponding
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right-hand side. According to Lemma 5.2, this is possible only when |pi|" = |q;|°
for al i. We adready know that p; = 1/ q;. Therefore, we have |gi|~" = |q;|?, and
|gi| = 1. Therefore, g = +1, andx=q 0{-1,1}".

2) Let us now consider the case when A O A, i.e, when A = (r, 1) for some
r,7 O[1, +oo].

In this case, from the inequality (5.4) it follows that if 1 < 6 < 1, then P, o O
Pn, . Therefore, Ppr O P 1, Qn ¢ O Qn, 1, and consequently, Dy, O Dy, »,, Where
by Ao, we denoted Ap = (1,1) OA,. Since in this case Z(Q"*) O Z(Q™%), it is
sufficient to prove that Z(Q™%) O {—1,1}".

So, let usassumethatr =7 = 1.

In this case, the condition q 0Q,, 1 may be written in the form

L
HZM‘SL
i=1

and the condition p OPp, 1 inthe form

1 n
ﬁZ|pi\ <1l
i=1

Sincep; = 1/ q;, we can rewrite the second condition as follows:
n
} Z i <1
n i=1 |ql‘

Thisineguality, in itsturn, can be rewritten as

n -1
ni:l‘qi‘

Using the well-known inequality between the arithmetic and harmonic averages
[1], we arrive at the following chain of inequalities:

1L 1\ 1y
1< | = — <= i <1
_<n|z::1|ql‘> —nlz::l|ql‘—

Hence, al the inequalities in this chain are actually equalities. In particular, the
arithmetic average of the values |g;| is equa to the harmonic average of these
values. It is known [1] that this equality is possible only in one case: when all the
values |q;| are equal, i.e., when there exists aA such that |gi| = A for al i. Then,
from the equality

1 n
= lal=1,
ni=l
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we conclude that A = 1. Hence, |gi| =1, g =+1,% =g =+1, andx O{-1,1}".
Thelemmais proven. a

Proof of Proposition 5.1. Clearly, if Q7 0S,, then Q4 0S, (the only coefficients
that we have added when going from Q" to Q3 are added to the “nominal” part,
the part depending on p; and ¢ is unchanged). Therefore, the proof of Lemma5.1
proves Proposition 5.1. a

THEOREM 5.1. For every A O A, the problems N(FS,) and M(DS,) are NP-
hard.

Proof. This proof follows from the Main Lemma, Proposition 5.1, and from the
fact that NFS, = DS,. O

Comment. We have actually proved that not only the class FS, itself describes
Boolean vectors, but also that its certain proper subclass is aone:

DENOTATION. Let us denote

S — U §n+1,n_

n>0

COROLLARY. For every A OA, theclass FS\ describes Boolean vectors.

Proof. Indeed, in the above construction, the number of equations of the systems
Q"7 istwice as large as the number of the variables.

THEOREM 5.2. For every A O A, the problems N(FS,) and M(DS,) are NP-
hard.

Comment. Theorem 5.2 says that if we restrict ourselves to linear systems with
finite number of solutions, in which the number of equations is ho more than
twice larger than the number of variables, then even for such systems, the solution
problem N(S) is NP-hard. A natural question is. what if we impose a stronger
restriction on the number of equations, i.e., what if we require that for some given
k > 0, the number of equations does not exceed the number of unknowns plusk; will
this problem still be NP-hard? We already have a denotation for this restriction:
we have denoted the corresponding class of linear equations by S¥. Using this
denotation, we can reformulate the problem as follows: is the problem N(F$k>)
NP-hard for al A OA? The answer to this question is currently (1996) unknown.
However, if we do not require finiteness (i.e., go from FS® to S), then the answer
is“yes”

PROPOSITION 5.2. For every A A and for every k 0 Z, the class S describes
Boolean vectors.

Proof. To prove this proposition, we will show how to equalize the numbers of
equations and unknowns by introducing “fictitious’ variables.
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DENOTATIONS.
+ For agiven matrix M OR™*", we will use the following denotations:

— By V(M), we denote an m x (n + 1)-matrix obtained from M by adding
(n+ 1)-st zero column.

— By E(M), we denote an (m+ 1) x n-matrix obtained from M by adding
(m+ 1)-st zero row.

« Corresponding changes in the linear equations will be denoted as follows:
— Anoperator V : S, — S, (caled adding a variable) transforms a system
Q =(Dp,, Ab)OSH"
of theform (5.3) into asystem
V(Q) = (Dn+1.2, V(A), V(b)) OSM™,
where for p,q DR
n
V(AO) + Z pi SiV(A(I)) + pn+15n+1E(1' b, &n+1 =0,
i=1
n
b© + Z Qidb(i) + Qn+15n+1e(l), on+1 = 0.
i=1
— Anoperator E : S, — S, (called adding an equation) transforms a system
Q =(Dn,Ab)OSH"
of the form (5.3) into a system
E(Q) = (Dn,», E(A), E(b)) OS™*",
where for p,g OR™:

[V(AI(P)

[V(b)I(a)

E(AQ) + Z paEAY),
i=1

E60) + 3" GaE®)

i=1

[EA)](P)

[E(b)](a)

LEMMA 5.4. For an arbitrary system Q 0OS,, we have:
S(V(Q) = (Q) xRY; (5.5)
Z(E(Q)) = Z(Q). (5.6)

Proof isevident.

Proof of Proposition 5.2. Let A OA, k OZ be fixed. Select some n ON.,. We
need to construct a system Q" for which g, n(£(Q")) = {—1,1}" and Q2 Dﬁk) for
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al a ON x NY. To construct such asystem, wewill use two different constructions,
depending on whethern <k —1orn>k— 1.

If n < k — 1, then take n = n and consider the system Q" = Ek-1-1(Q"4).
Since Q™4 O0S", we have Q" 0™ 1 and consequently, for every a ON"*L,
for the extended system, we have Q) 0S]™ . From (5.6), it follows that £(Q") =
QM) ={-1,1}".

Ifn>k-1 thentaken = 2n — k+1 > n, and consider a system Q" =
VIKL(QnA) Then, Q7 012171 = k=10 and hence, QF 0 S**". From
(5.5), it follows that Z(Q") = Z(Q"*) x R = {-1,1}7 x R""; hence,
m.n(Z(Q7) = {-1,1}".

It is obvious that the computations that lead from n to the coefficients of Q"
take polynomial time; therefore, by Definition 3.1, the cIassﬁ'o describes Boolean
vectors. O

THEOREM 5.3. For every A O A, the problems N($k>) and M(N$k>) are NP-
hard.

Proof directly follows from the Main Lemma and from Proposition 5.2.

Comment. Let us show that the systems constructed in this proof do not, in gen-
eral, have finitely many solutions (moreover, for these systems, the set of solutions
isnot even aways bounded). Indeed, if n > max{1,k — 1}, and if for some vector
v ONNY, the set Zr(v), constructed in the process of proving the Main Lemma, is
nonempty, then for a = (0, vy, ..., v,) ON x N and for the system Q7, we obtain
2(Q2) = Zr(v) x R1K1 This set is not bounded; hence, Q2 WBﬁk). Hence, the
above arguments do not prove that the classes Bﬁk) and Fﬁk) describes Boolean
vectors for all k and A. We will, however, be able to prove that these classes do
describes Boolean vectors for some k and A.

DENOTATION. By Ag O A2, we will denote the following set:

No = {(r,r) | r, 7 O(1, +00], %+ % < 1}.

PROPOSITION 5.3. For every A 0/Ag, and for everyk > 2, theclassFS describes
Boolean vectors.

Proof. To prove this progosi:[ion, for ~each nandm=n+1, we will consider a
linear system A™* = (D, ,, A", B" with A" : R" — R™D >N and b : R" — R"™1
defined as follows:

n n n
An(p) — Z E(i+1, i) + Z piE(l’i), Bn(q) — ne(l) + Z qie(i+1)- (57)

i=1 i=1 i=1
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This system of n + 1 equations with n unknowns has the form:

n
p. . : n!
le i (5.8)
X = Gi, i=1n

LEMMA 5.5. For every A OAgandn> 0, $(A™) = {-1,1}".

Proof of Lemma 5.5. Let A O Ag and n > 0. The fact that A O Ay means
that A = (r, 1) for somer,t O(1,+oo] for which1/r +1/1 < 1. The inclusion
{-1,1}" O £(A"*) is obvious, since any vector x [0 {—1,1}" is the solution of
(6.8)forp=qg=x,and {—1,1}" x {—1,1}" O Dp,,.

To complete the proof of the lemma, it is thus sufficient to prove the converse
inclusion Z(A™*) O {—1,1}". Indeed, let x O Z(A™*). This means that for some
p 0Py, and g OQp 1, the equations (5.8) hold, i.e., x = qand 3= ; pig = n.

Letusdenoteo =r/(r — 1) (if r = oo, wetakeo =1). Then,1/r+1/0 =1
Sincet O(1,+0],1/r+1/7< 1l,and1l/r+1/0 =1, wehave o < 1. Using
Hoelder’s inequality ([1], Lemma 3) and the fact that (p,g) 0Dy, ,, we obtain the
following sequence of equalities and inequalities:

n n
1_1
n=> "pg < > Ipldal < [pllrllalls < lIpllrne=7all;
i=1

= 1l

1_1
N

EIS

1
< nins TNt =n.

Sincethefirst and thelast expressionsin thissequencecoincide, al theseinequalities
1_1

are actualy equalities. In particular, ||g|| = ne~ 7 ||q||. Hence, from Lemma 5.3,
we conclude that al the values |qj| are equal, i.e., that |gj| =A > Oforal i =1,n.
Let usshow that A = 1. Indeed:

« From the equality ||p||;||al|s = n, and from the condition p 0Py, we conclude
that

1 1 1
n= ||p||l'||q||a = HpHr)\nn < NntAne = An,

e, A >1.
 From the condition q OQp, ;, we (similarly) conclude that A < 1.
So,A =|g| =1, =%1, andx=q0{-1,1}". 0

Proof of Proposition 5.3. From the above lemma, it follows that for A O A,
A OFS™M: for any a ON™1 the extended system AD* OFS>": hence, the
class Fiz) describes Boolean vectors.

For k> 2, take Q" = EX—2(A"*). From the above lemma and from the propert)g
(5.6), we can conclude that Q" represents {—1, 1}", and hence, that the class F$k
indeed describes Boolean vectors. O
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Comment. We have proved Proposition 5.3 for al A from asubclass of the class
2. The proof itself cannot be generalized toall A OA,: For example, if A = (r, 1)
forr,r O(1,+c0)and 1/r +1/1 =1, then

2(8™) = 0Qns = {X OR" | [X|o =n¥} #{~L 1}".

THEOREM 5.4. For every A O/\g and for every k > 2, the problems N(ng)) and
M(DS) are NP-hard.

6. Classesof nx nLinear Systems That Do Not Describe Boolean Vectors

DEFINITION 6.1. We say that a linear system Q = (D, A, b) of the form (2.1)
belongs to the class C if the following two conditions hold:

+ theset D O RS iscompact and connected; and

« the mappings A and b are continuous on D.

Comment. In accordance with the denotations introduced in Section 1, we will
also consider classes C¥, k 0 Z, and their subclasses NC®, BCW, RC®, FCc®,
and DC®.

Similarly to the definition of aregular interval matrix (see, e.g., [12]), we can
introduce the following notion:

DEFINITION 6.2. Let D O R5. A mapping A : R® — R""iscaled regular on D
if for every p OD, the matrix A(p) is non-singular.

Comments.

 In[12], an interval matrix A is called regular if all matrices A O A are non-
singular. One can easily see that an interval matrix is regular in the sense of
Definition 6.2 iff it is regular in the sense of [12].

« Thenotion of regularity introduced in this definition isrelated to the classRC©)
(and this relationship is the reason why we called the classRSregular):

PROPOSITION 6.1. Let D 0O R® be a compact connected set, and let A : R® —
R"*" be a mapping whose restriction to D is continuous. Then, the following two
statements hold:

1) if for some b : D — R", the system Q = (D, A, b) belongs to RC©, then A is
regular on D;

2) if Aisregular on D, then for every continuous mapping b: D — R", the system
Q = (D, A b) belongs to RC©.
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Proof.

1) Let Q = (D, A b) ORCO. Thismeans, that the solution set (Q) is nonempty
and bounded. That thisset isnon-empty meansthat thereexistp©@ 0D andx® OR"
for which A(p@)x© = b(p©@). Let us prove (by reduction to a contradiction) that
this matrix A(p©) is nonsingular. Indeed, if the matrix A(p©) is singular, then we
can find avector v OR", v # 0, for which A(p©@)v = 0. But then, for every A OR,
we have A(p@)(xX© — Av) = b(p) and therefore, xX© — Av O0Z(Q). This conclusion
contradicts to the fact that the solution set 2(Q) is bounded. Hence, the matrix
A(P©) is nonsingular.

Let us now show (also by reduction to a contradiction) that the matrix A(p)
is non-singular for all p (i.e, that A is a regular mapping). Indeed, assume that
there exists p 0 D for which the matrix A(p\Y) is singular. Since the set D is
connected, we can find a continuous function ¢ : [0, 1] — D such that ¢(0) = p©@
and ¢(1) = pD. Then, the function @ : [0,1] — R"*" defined as ®(t) = A($(t))
is continuous. For t = 0, the matrix ®(0) = A(p©) is nonsingular; for t = 1,
d(1) = A(p) is singular. Let us denote by to the infimum of the set of all t for
which @(t) issingular:

to = inf{t O[O0, 1] | @(7) issingular}.

Then, ®(t) isnon-singular for t < to.

A matrix Ais singular iff det(A) = 0. Since tp is an infimum of the valuest for
which det(®(t)) = 0, and P is continuous, we can conclude that det(d(tp)) = 0, and
hence, the matrix ®(tp) is singular. Since we aready know that the matrix ®(0) is
non-singular, we can thus conclude that to > 0.

Let us now define asequencety =to(1 — 1/Kk) O[0,t9), k=1,2, ... For each k,
tx < to, and therefore, the matrix ®(ty) is nonsingular. Hence,

X% = [D(6)] b (%) = [AWG )] be (%)) DE(Q).

Since the set (Q) is bounded, from the sequence x¥, k O N, it is possible to
choose a convergent subsequence x| ON,:

lim X = X".

| — o0
Because of our definition of X", we have A(¢(ty ))x*) = b(¢(ty)). Because of our
choice of t,, we have tx — to and therefore, ty, — tp. Since the functions A, b,
and ¢ are continuous, we can tend | to co and arrive at the following equation:
A(p(t))x* = b(¢(tp)). If we denote p* = ¢(tp), we conclude that A(p*)x* = b(p*).
In the first part of this proof, we have aready shown that the existence of such
a solution leads to a conclusion that the matrix A(p*) is non-singular. However,
we already proven that for p* = ¢(tp), the matrix A(p*) = P(to) is singular. This
contradiction showsthat our assumption (that A isnot aregular mapping) wasfalse,
and A isaregular mapping.
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2) Let us now show that if A and b are continuous on D, and if A isregular on
D, then Q = (D, A b) ORC©,

Indeed, sinceAisregular, for every p 0D, thereexistsaninversematrix (A(p)) 2,
and for any fixed p 0D the equation (2.1) has a unique solution x = (A(p)) ~b(p).
So,

(@) = {(A(M®)'b(p) | p OD}. (6.1)
From this equality, we can immediately conclude that Z(Q) # 0.

L et usnow provethat 2(Q) isbounded. Indeed, itiswell known (see, for example,
[5]) that the mapping from R"*" into R"*" that transforms amatrix M OR"*" into
itsinverse M~ is continuous on its domain of definition. Therefore, the function
c(p) = (A(p))~tb(p) is continuous on D, and therefore, the set Z(Q) = ¢(D) is
bounded (as an image of the compact set under a continuous mapping). O

Comment. From the representation of the solution set 2(Q) in the form (6.1),
from the continuity of the function ¢, and from the fact that the image of the
connected set under a continuous function is connected, we obtain the following
proposition:

PROPOSITION 6.2.
1) For every system Q ORC(, the solution set 5(Q) is connected.

2) If Q 0 DCO, then the mappings A and b are constant on D, and Z(Q) is a
one-element set.

Comment. The classes RC( with k > 0 are easy to describe, because it turns
out that for Q OC(X, the solution set Z(Q) is either empty or unbounded.

PROPOSITION 6.3. For every k > 0, RC(-X = .

Proof. We will prove this result by reduction to a contradiction. Let us assume
that thereexists Q = (D, A, b) DRC(X. Above, we have defined an operator E; this
definition can be easily extended to the class C. By applying this extended operator
E to the system Q k times, and using (5.6), we conclude that EX(Q) 0 RC©.
But for every p, the matrix EX(A)(p) has k zero rows, and is, therefore, singular.
Helzc% our conclusion contradicts Proposition 6.1. This contradiction proves that
RC(X = (). O

Let us now prove the main proposition of this section.
PROPOSITION 6.4. The class BC(© does not describe Boolean vectors.

Proof. We will prove (by reduction to a contradiction) that the representation
from Definition 3.1 isimpossible for n > 2. Indeed, let us assume that for some
system Q, we have 1, n(Z(Q") = {—1,1}", and Q] OBCO for all a ON x NI.
L et us choose avector v 0N for which the set

n
SR(V) = {x 0{-11}"| ) xvi = 0}

i=1
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(introduced in the proof of the Main Lemma) is nonempty. For example, we can
tkevy =vo =---=v,_1=1,d,=n—1then,x = (1,...,1, —1)T O03r(v) and
therefore, Zr(v) # 0. If x 0 Zgr(V), then —x OZg(V), and hence, the set Zr(V) is not
connected.

On the other hand, as we have noticed in the proof of the Main Lemma, Zr(V) =
1, n(Z(Q2)), wherea = (0, vy, ..., v;)T ON x NJ. Dueto our assumption that BC(®
describes Boolean vectors, we have Q1 0 BC©. Then, due to Proposition 6.2,
the solution set Z(Q3), and therefore, its projection Zr(v) = 1, n(£(Q3)) is aso
connected. The resulting contradiction shows that our assumption is false and
thence, the class BC© does not describe Boolean vectors. O

Comment. A word of warning: In our proof of this proposition, we refer several
times to auxiliary algebraic statements proved while proving the Main Lemma.
To avoid confusion, we must notice that there is an important difference in our
use of these statements in the proof of the Main Lemma and in the proof of
Proposition 6.4:

« In the proof of the Main Lemma, we used these auxiliary algebraic statements
to show that the problem Partition (that is known to be NP-hard) can be reduced
to the problems N(S) and M(S), and that therefore, the problems N(S) and M(S)
are also NP-hard.

« In the proof of Proposition 6.4, we simply use these statements as algebraic
statements, without any reference to the Partition problem (the proof of these
statements did not use the Partition problem).

Proposition 6.4 leads to the following result:
PROPOSITION 6.5.

« For k > 2, the class FC® describes Boolean vectors.
« For k < 0, the class FC® does not describe Boolean vectors.

Proof. For k = 0, this result follows from Proposition 6.4: since FC@ is a
subclass of BC©, and BC© does not describe Boolean vectors, a subclass FC©
does not describe Boolean vectors either.

Let usconsider the casek < 0. Inthiscase, dueto Proposition 6.3, for each linear
system from C®), every solution set iseither unbounded or empty. By definition, for
every system Q O0BC® 0 C®, the solution set is bounded; therefore, it is empty.
Hence, a projection of this solution set is also empty, and therefore, this class does
not describe Boolean vectors.

For k > 2, the class FC® contains the class FS\¥ for every A 0 A, and the
class Fﬁk) describes Boolean vectors according to Proposition 5.3. Hence, the class
FC® also describes Boolean vectors. O
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Comments.

« For k = 1, we do not know whether the class FC® describes Boolean vectors
or not.

« Sincethe class BC does not describe Boolean vectors, it is natural to assume
that the problem N(BC©) is not difficult (i.e., not NP-hard), but easy (i.e.,
solvable in polynomial time). Basically, this assumption turns out to be correct.
However, literally speaking, it is not true for all BC© because first, we must
compute A(p) and b(qg) at least for some p and g; since in our definition of
this class, we did not restrict the computational complexity of computing these
values, it could happen that the corresponding instance of the problem N(BC©)
requires a lot of computation time simply because computing A(p) and b(q)
takes too long. If we prohibit such situations, we arrive at the following result:

DEFINITION 6.3. We say that aclass Sof linear systemsisalgorithmically inhab-
ited (or inhabited, for short) if there exists a polynomial time algorithm that for
every system (D, A, b) OS, computes the following two things:

« thevalues p©@ OD of the parameters for which al the components of the matrix
A(p©) arerational numbers (i.e., A(p©@) oQ"*"), and

« the components of the corresponding matrix A(p©).

THEOREM 6.1. If Sis an inhabited subclass of BC(9, then the problem N(S) is
solvable in polynomial time.

Comment. If a system belongs to the class BC(©, then (by definition of BS) its
solution set is bounded. This does not automatically mean that this solution set is
non-empty, because an empty set is also bounded. For example, if D is a one-point
set, A = A(p) isasingular matrix, and the equation Ax = b has no solutions, then
this system belongs to BC© and at the same time does not have a solution.

Proof. The corresponding agorithm is as follows. Let Q = (D, A ,b) 0S™" be
given.

 Since Sisinhabited, we can (in time, bounded by a polynomia of n) compute
the parameters p©@ and the matrix A(p©@) oQ"*".

« Next, we check whether this matrix A(p©) is singular or not. This can be
done by computing its determinant det(A(p®)) and comparing it with 0. It is
known that computing a determinant takes the same asymptotic time as matrix
multiplication, so this computation can be done in timeO(n? 37%) (see, e.g., [2],
Chapter 31).

« If the matrix A(p©@) is nonsingular, then we claim that Z(Q)#0, ese, that
7(Q) = 0.

This algorithm clearly requires polynomia time. Let us show that this agorithm is
correct.
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o If the matrix A(p©@) is nonsingular, then x = [A(P©)]~1b(p©@) O Z(Q), and
therefore, Z(Q) # 0.

o If the matrix A(p©) is singular, then Z(Q) = §, since otherwise, as we have
proved in the proof of Proposition 6.1, the solution set 2(Q) is unbounded,
which isin contradiction with Q 0BC©. O

Thefollowing isasimple corollary of Theorem 6.1.
THEOREM 6.2. For every A OA, the problem N(BS/(\O)) is solvable in polynomial
time.

Proof. Clearly, BS” 0 BC©; so, to apply Theorem 6.1, we must show that
the class BS is inhabited. Indeed, we can take p@ = (0, ...,0)" O D,; then,
AP@) oz o QMn. O

7. Interval Systems

We have dready remarked that as a particular case of linear system (as defined
by Definition 2.1), we get standard interval linear systems; such systems will be
analyzed in this section.

DENOTATIONS.

« |n this section, we will use a standard denotation IR for the set of al intervals
« By IR", we will denote the set of n-dimensional interval vectors, i.e., n-
dimensional vectors (columns) with coordinates fromIR.

« ByIR™", wedenotetheset of all m x ninterval matrices, i.e., (m x n)-matrices
with elements from IR.

DEFINITION 7.1. By aniinterval linear system, we mean a system of the type
Ax=b, (7.1)

where:
« A=[AA] OIR™"isaninterva (m x n)-matrix, and
« b =[b,b] OIR™ isan interval m-vector.

Comment. We have already shown that interval linear systems can be reformu-
lated as a particular case of linear systems in the sense of Definition 2.1. Another
reformulation is described in [11]. In this section, we will use the third reformula-
tion:

DEFINITION 7.2. Let aninterval linear system (7.1) begiven. By itsreformulation,
we mean alinear system Q = (D, A, b), where:
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« t=mm,and A: R™™" — R™" isdefined as
1 &1 .
AP) = SA+A)+> > Spna-n(@) —ay)EY, (72)
i=1j=1

where 3, &; are coefficients of matrices A and A, respectively (matrices E(+)
were defined in Section 5);

e l=m,andb: R™ — RMisdefined as
1 LU .
b(g) = 5(0+B) + > S — b)e, (7.3)
i=1

where by, b; are coordinates of the vectorsb and b, respectively (vectorsel) were
defined in Section 5);

« D=PxQOR™ xR™ where
P={pOR™||pllo <1}, and Q={qOR"™|[glo <1}. (7.4)

PROPOSITION 7.1. If Q = (D, A, b) if areformulation of the interval linear system
(7.1), then Z(Q) = A, b) and

A ={A(p)[pOD}, b={b(g)|qOG}. (7.5)

Proof isevident.
Let us now define the classes of interval linear systems.
DENOTATION.

« By J, wewill denote the class of dl interval linear systems.

« By I, wewill denote the class of dl interval linear systems with integer coeffi-
cients (i.e., for which A, AOZ™ " and b, b OZ™).

Comment. Using denotations introduced in Section 1, we can define classesNI,
BI, RI, FI, DI, 1®, etc. (similarly, NJ, ...). In particular:

« 1® jsthe class of al interval linear system with integer-valued matrices A and
right-hand side b that consist of n + k equations with n unknowns;

« FI® jstheclass of al systems from | ® that have finitely many solutions.

PROPOSITION 7.2.

« For every integer k, the class 1% describes Boolean vectors.
« For every k > 2, the class FI ¥ describes Boolean vectors.

Proof. Since the map of the form (5.1) is a particular case of maps (7.2)—7.3),
we can conclude that for Ag = (00, 00) O/, theclass S, defined by Definition5.1is
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contained in |; as aresult, 3';) 01®, and F$';) 0 F1® for every k OZ. According
to Propositions 5.2 and 5.3, the classes S{Y (for all k) and FS9 (for dl k > 2)
describes Boolean vectors; hence, the classes | % and FI ) also describe Boolean
vectors. O
THEOREM 7.1.

« For every integer k, the problems N(I ®) and M(NI ®) are NP-hard.

« For every k > 2, the problems N(FI ) and M(DI®) are NP-hard.

Comment. The definition of NP-hardness given above is based on the definition
of the class NP of problems for which checking a candidate solution is easy (i.e.,
can be done in polynomia time). For problems from the class NP, if we guessed
correctly, wewill check the guess and get a solution. Some NP-hard problems have
this property (they are called NP-complete), other do not. It isinteresting to know
whether our NP-hard problems are NP-complete or not. The answer to this question
follows from the following proposition:

PROPOSITION 7.3. Problems N(I) and M(NI) belong to the class NP (consequent-
ly, thisistrue for every subclass of the class 1).

Proof. Let an interval system (A,b) O 1™" be given, with A = [A,A] and
b = [b, b]. For every vector y 0 {—1,1}", let us denote by Ry the orthant of R"
corresponding to the sequence of signsy, i.e., the set

R} ={xOR"|y O >0, i=1n}
According to Oettli-Prager’s theorem [10], the set of solutions for the system (7.1)
can be rewritten as

(A, b) = {x OR" | |Acx — be| < AlX| + 5},
where

1 1 1. 1.
Ac=sA+A)., A=SA-A), b=5b+b). 5=5(b-Db),

and the absolute value |.| of the vector and the relation < for the vectors are
understood coordinate-wise.

For x DRy, wehave |x| = Ayx, where D(y) = diag(y1, .., yn) isadiagonal matrix
with elements y;. So, the intersection of ZA,b) and R{,‘ can be expressed as
follows:

S1(A,b) n R]
={xOR"| — ADy)x— & < Ax— b, < AID(y)x+ d, D(y)x > 0}
= {X OR"|(Ac + A D)X > b — 5, (Ac — AIDH))X < b+ 5, D(y)x > 0}.

In other words, this intersection is the set of solutions for the system of (2m+ n)
linear inequalities in n unknowns.
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There exist polynomial time algorithms that check whether such a system has a
solution (see, e.g., [4]). Therefore, to check whether a given interval system has a
solution, we can do the following:

- first, we guess the orthant;
» second, we check if the intersection of the solution set with this orthant isindeed
non-empty.
Hence, the problem N(I) belongs to the class NP.
Similarly, to solve the problem M(NI), we can do the following:
« first, guess an orthant in which the given linear form > ¢jx; attains its maximum;

« for the guessed orthant, the problem of maximizing > ¢ under given con-
straintsisalinear programming problem; so, we apply a polynomial time ago-
rithm from [4], and compare the result of this application with .

Hence, the problem M(NI) aso belongs to the class NP. a
Asacorollary, we get the following result:
THEOREM 7.2.

« For every integer k, the problems N(I %) and M(NI ®) are NP-complete.

« For every k > 2, the problems N(FI ®) and M(DI1 ) are NP-complete.

For some other classes, we will describe polynomial time agorithms. For that,

wewill need the following auxiliary results:
PROPOSITION 7.4. Let A OIR"™", Then:

1) if for someinterval vector b OIR", the solution set (A, b) is honempty and
bounded, then the interval matrix A isregular;

2) if an interval matrix A isregular, then for every interval vector b O IR", the
solution set 2 (A, b) is nonempty and bounded.

Proof directly follows from Proposition 6.1.

Comment. In other words, Proposition 7.4 says that the class RJ© is the class
of al interval linear systems systems with aregular interval (n x n)-matrix A.

PROPOSITION 7.5. For every interval linear system (A, b) ORJ©), the solution
set (A, b) is connected.

Proof directly follows from Proposition 6.2.
THEOREM 7.3. The problem N(BI ©) is solvable in polynomial time.

Proof. To prove this result, we will use Theorem 6.1 according to which the
problem N(S) is solvable in polynomial time for every inhabited subclass of BC©.
The class BI @ is a subclass of the class BC©, and it is inhabited: we can take
p©@ =(0,...,0)" OD and, correspondingly, A(p®) = (1/2) A+ A) 0Qnn. O
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Comments.

« Due to Theorem 7.2, the problem N(FI®) is NP-hard for k > 2; from Theo-
rem 7.3, it follows that for k = 0, this problem is solvable in polynomial time.
We do not know whether the problem N(FI ®) is NP-hard or not.

« For asimilar question for interval linear systems with bounded sets of solutions
instead of finite ones, the answer is known:

THEOREM 7.4. For every k > 0, the problem M(RI ) is NP-hard.

Proof. The proof of this theorem uses the following result proven by Rohn and
Kreinovich in [13]. To describe this result, let us denote, for every interval linear
system (7.1) and for every i = 1,n,

¥ =max{x | x 0Z(A, b)}.

In[13], the following theorem was proved:
THEOREM R [13]. The following problem is NP-hard:
Given:

+ (nx n)-matricesA, A OZ"*"suchthat A < Aandtheinterval matrix A = [A, A]

isregular;

« vectors b, b OZ" for which b < b;

« anumber c OZ,
To check: whether X; > c.

The statement of our theorem for k = O follows directly from Theorem R and
Proposition 7.4. For k > 1, itissufficient to note that we can transform the problem
M(RI ©) into particular cases of the problem M(RI ) if we apply the operator E k
times (i.e., if we add k zero equations). a

Comment. For bounded sets of solutions, the situation is slightly different:
THEOREM 7.5.
« For every k > 1, the problem N(BI ) is NP-hard.
« The problem N(BI @) is solvable in polynomial time.

Proof. The second part has aready been proven (in Theorem 7.3), so it is
sufficient to prove the first part. To prove the first part, we will show how to
transform each instance of the problem M(RI ) into an instance of the problem
N(BI&*D); since M(RI¥) is NP-hard, this reduction will prove that the problem
N(BI ®*Dy is NP-hard for all k > 0.

To describe an instance of the problem M(RI®¥), we must define an interval
system (A, b) ORI " and a vector

c=(co,C1,...,cn)" OZOD,
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Let us denote by (A, b) the following system of (n + k + 2) equations with (n + 1)
unknowns:

AX=b,

n
> GXi — X1 =Co— 1, (7.6)
i=1

[0, 1 xn+1 = [1,1].

If <XX1) 0%(A, b) then, obviously, x 15(A, b) and
n+

n
X1 = GX —Co+ 1.

i=1
So, boundedness of the solution set of the original system 2 (A, b) implies that
the solution set of the new system Z (A, b) isaso bounded (or empty). Therefore,

(A,b) OBI KD,
One can easily see that the last equation of the system (7.6) is equivalent to the
inequality X,+1 > 1; hence, the last two equations of the system (7.6) are equivalent

to the inequality

n
> GiXi > co.
i=1
Hence, the solvability of the system (7.6) is equivalent to existence of a vector
X OZ(A, b) for which

n
> GiXi > co,
i=1

i.e., to the solvability of the original instance of the problem M(BI ®)).

The agorithm that constructs the system (7.6) from the original system clearly
takes polynomial time; therefore, if we were able to solve all instances N(BI <)
in polynomial time, we would thus be able to solve al instance of M(BI®) in
polynomial time, and we already know that the problem M(BI®) is NP-hard.
Therefore, the problem N(BI &*D) is also NP-hard. O

8. Positive Interval Linear Systems

S. P. Shary attracted the authors' attention to interval systems with positive coef-
ficients. Severd interesting properties of such systems are presented in his paper
[16].

DEFINITION 8.1. We say that an interval linear system is strongly positive if the
lower bounds of dl coefficientsare> 1, i.e,, ifgij > 1ande > 1foraliandj.
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Comments.

« If we restrict ourselves to integer coefficients, then strongly positive means
simply that all coefficients are positive.

« It is convenient to describe these component-wise inequalities in matrix and
vector forms. For that, we will introduce the following denotations:

DENOTATIONS. Let n and m be positive integers.

« By €", we denote the vector € = (1, ..., 1)T OR".

« By E™", we denote the (m x n)-matrix E™" = &"(e")T whose al components
are equal to one.
Comment. In these terms, an interval linear system is strongly positive iff A >

E™Nandb > e™

DENOTATIONS.

« By PJ, we will denote the class of all strongly positive interval linear systems.
« ByPI,wewill denotetheclassof al strongly positiveinterval linear systemswith
integer coefficients (i.e., for which0< A< AOZ™"and0< b < b OZ™M).

We will show that the problems that are NP-hard for genera interval linear
systems remain NP-hard if we restrict ourselves to strongly positive systems only.
To prove that, we will show that solving a general interval linear system can be
reduced to solving a strongly positive one. For that, we will need the following
transformation:

DEFINITION 8.2. Let usdefine an operator P : J — J asfollows: it mapsasystem
(A,b), where A = [AA] OIR™" and b = [b,b] OIR™, into a new system
P(A,b) = (Ap,by), where Ay = [A,Ag] OIRM™D*™D and by = [by,by] O
IR™? are defined as follows:

v Gy ) we (B3 ©)

= b+ oem b+ oem
o= (). (),

where:
L=ye"Ee) =yE™", y=max{1,1— r?ijngij}, and
5=max{1,1—miint_3i}. '

Comment. For the transformed system, > (P(A, b)) O R"™?; for convenience,
we will describe vectors from R"™?! in the form (an > , where x 0 R" and
+1
Xn+1 OR.
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PROPOSITION 8.1. For every A 0IR™" and b 0 IR™, we have P(A,b) O
pJm+1in+land

5 (P(A, b)) = {( . e”)Tx> X DZED(A,b)} | 8.1)

Proof.
First, let us show that P(A, b) OPJ..
Indeed, for every i = 1,mand | = 1, n, the following inequalities hold:

gty > g,-j+1—rrklilngk, > 1

b+y > b+1—minb > 1,

y > 1,and & > 1. Hence, A, > E™ML b > ™1, and therefore, P(A,b) O
PJm+1’ n+l_

Let us now prove the equality (8.1). Note that the matrix M, belongs to A
(correspondingly, the vector ¢, belongs to by) if and only if there existsM O A
M+L € c+ 5em>)

(corr., ¢ Ob) such that Mp, = (y( T 1 > (correspondingly, ¢, = ( 5

Therefore, the equality My <an ) = Cp is equivalent to the following system of
+1

equations:

{ Mx + ye™(€") Tx + Xn.1€" = C + 5™, (8.2)

V(en)TX +Xn+1 = 0.
If we subtract from the first equation of the system (8.2) the second equation

multiplied by €", wewill concludethat the system (8.2) isequivalent to thefollowing
system:

Mx = ¢,
V(E) X+ Xn41 = 8.

Therefore, (an > O0Z(P(A,b)) if and only if x OZ(A,b) and Xp+1 = 0 —
+1
y(eMTx. O

Comment. In particular, from this proposition, it follows that the operator P does
not change the following properties of the system:

« nonemptiness, boundedness, and finiteness of the solution set;
- the difference between the number of equations and the number of unknowns;
« thefact that all coefficients are integers.
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Therefore, from the above NP-hardness results for general interval linear systems,
we can deduce the following conclusions about NP-hardness of the strongly positive
interval linear systems:

THEOREM 8.1.
« For every integer k, the problems N(PI ) and M(NPI ¥) are NP-complete.
« For every k > 2, the problems N(FPI ®) and M(DPI ¥ are NP-complete.
« For every k > 0, the problem M(RPI ¥) is NP-complete.
« For every k > 1, the problem N(BPI ) is NP-complete.

The problem N(BPI () is solvable in polynomial time.

Comment. The last statement follows from the fact that there is a polynomial
time algorithm that solves all problems from alarger classN(BI ©).
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