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Abstract. For a system of linear equations Ax = b, the following natural questions appear:

• does this system have a solution?

• if it does, what are the possible values of a given objective function ƒ(x1, …, xn) (e.g., of a linear
function ƒ(x) =

∑
cixi) over the system’s solution set?

We show that for several classes of linear equations with uncertainty (including interval linear
equations) these problems are NP-hard. In particular, we show that these problems are NP-hard even
if we consider only systems of n + 2 equations with n variables, that have integer positive coefficients
and finitely many solutions.

1. Brief Informal Introduction

It is known that algorithms for solving interval linear algebraic equations and linear
programming problems with interval uncertainties are often very time-consuming
(for the latest algorithms, see, e.g., [12], [14], [15]). This is partially explained by
the result (proven in [6]–[9]) that in general, the problem of solving interval linear
systems is NP-hard (as well as other related problems, such as finding the largest
possible value of a given linear function on a set of all solutions). In this paper, we
improve the results from [6], [7].

2. Formulation of the Problem. NP-Hard Problems

DENOTATIONS.

• In this paper, we will use standard denotations R, Q, Z, N, for the sets of real,
rational, integer, and natural numbers, respectively.

• N+ = N\{0} will denote the set of all positive integers.
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• By Rn (Qn, Zn, …), we will denote the set of n-dimensional vectors with coor-
dinates from R (correspondingly, from Q, Z, …). In matrix operations, these
vectors will be treated as columns.

• AT will denote a transposition of A.

• For every i ≤ j, πi, j : Rj → Ri will denote a projection, i.e., a function
that transforms a j-dimensional vector into the vector consisting of its first i
coordinates: πi, j(x1, …, xi, …, xj) = (x1, …, xi).

• By Rm × n (correspondingly, Qm × n, Zm × n, …), we denote the set of all (m × n)-
matrices with elements from R (correspondingly, from Q, from Z, …).

DEFINITION 2.1.

• Let m, n, and s be non-negative integers. By a system of m linear equations with n
unknowns and s-parametric uncertainty (or a linear system, for short), we mean
a triple Ω = (D, A, b), where D ⊆ Rs is a nonempty set, and A : D→ Rm × n and
b : D→ Rm are mappings from the set D into, correspondingly, the sets Rm × n

and Rm. This system will also be denoted by

A(d)x = b(d). (2.1)

• By a (united) solution set Σ(Ω) of a linear system Ω, we mean the set

Σ(Ω) = Σ(D, A, B) = {x ∈Rn | ∃d ∈D : A(d)x = b(d)}.

EXAMPLE. An interval m × n linear system Ax = b with an interval matrix
A and an interval vector b can be represented as a linear system in the sense of
Definition 2.1, if we take:

• s = m ⋅ n + m. For this s, Rs = Rm × n × Rm, so, every s-dimensional vector p
can be represented as a pair (A, b) of an (m × n)-matrix A and an m-dimensional
vector b.

• As D, we take the set of all vectors d = (A, b) for which A ∈A and b ∈b.

• As A(d), we take a first (matrix) component of d; as b(d), we take the second
(vector) component.

In this case, the solution set as defined by Definition 2.1 coincides with the united
solution set as defined, e.g., in [12], [14], [15]:

Σ(Ω) = Σ∃∃(A, b) = {x ∈Rn | ∃A ∈A ∃b ∈b : Ax = b}.

Comment. For a linear system A(d)x = b(d), the following problems naturally
appear:

• Does this system have a solution, i.e., is Σ(Ω) nonempty?

• If a linear system has solutions, what are the possible values of a given objective
function ƒ (e.g., of a linear function ƒ(x) =

∑
cixi)?
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In this paper, we will show that for several reasonable classes of linear systems,
these problems are in general computationally intractable, or NP-hard.

For exact definitions of this notion, see, e.g., [3]. Intuitively, a problem is NP-
hard if whenever we can solve this problem in polynomial time, we will be able
to solve a huge class of different real-life problems in polynomial time; this class
(called NP) is so huge that it is usually considered to be impossible to have an
algorithm that solves all problems from this class in polynomial time. Therefore,
we can conclude that no polynomial time algorithm can solve a given NP-hard
problem.

Let us give an intuitive idea of the class NP. This class contains problems with
the following property (that many real-life problems have): each of these problems
may be difficult to solve, but if we have a candidate for a solution, then it is easy to
check that this is indeed a solution. For example:

• if a problem consists of solving a system of equations, then it is easy to substitute
the candidate into all these equations and check;

• if a problem consists of proving a theorem, then it is easy to check the proof
step-by-step (if it is indeed a detailed proof, and not just an idea of the proof);

• if a problem consists of finding the dependency that explains the results of
the experiments, then we can simply substitute the data into the candidate
dependency and check whether all the data satisfy it;

• in design problems, we can usually easily check whether the given candidate
design satisfies all the requirements.

Such problems in which checking a candidate solution is easy (i.e., can be done in
polynomial time) are called problems from the class NP. For such problems, if we
guessed correctly, we will check the guess and get a solution. A problem is called
NP-hard if, whenever we can solve this problem in polynomial time, we can solve
all problems from the class NP in polynomial time.

DEFINITION 2.2. Let S be a class of linear systems. Then, the following problems
can be defined:

• Problem N(S):

Instance: a system Ω ∈S.

Question: Is it true that Σ(Ω) 6= ∅?
The set of all systems Ω ∈S for which this is true will be denoted by NS.

• Problem M(NS):

Instance: a system Ω ∈ NS (i.e., Ω ∈ S with Σ(Ω)6= ∅) with n unknowns
x1, …, xn, and n + 1 integers c0, c1, …, cn.

Question: Is it true that

max

{
n∑

i = 1

cixi | x = (x1, …, xn)T ∈Σ(Ω)

}
≥ c0?
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Sometimes, it is important to solve these problems not for all problems from the
class S, but only for problems that are in some sense “regular”: e.g., for which the
solution set is bounded, or finite, etc. Such “regular” problems form subclasses of
the class S. Let us introduce the denotations for the corresponding subsets:

DENOTATIONS.

• By BS, we denote the class of all problems Ω ∈ S for which the set Σ(Ω) is
bounded.

• By RS, we denote the class of all problems Ω ∈ S for which the set Σ(Ω) is
regular, i.e., non-empty and bounded.

• By FS, we denote the class of all problems Ω ∈S for which the set Σ(Ω) is finite.

• By DS, we denote the class of all problems Ω ∈ S for which the set Σ(Ω) is
discrete, i.e., nonempty and finite.

Comment. Due to this definition, the following relations hold:

RS = NS ∩ BS = NBS = BNS and DS = NS ∩ FS = NFS = FNS.

DENOTATIONS. Let S be a class of linear systems. Then:

• Sm, n, m, n > 0, denotes the class of all systems from S that consist of m equations
with n unknowns.

• For every natural number k ∈N, S(k) =
⋃

n > 0 Sn+k, n and S(−k) =
⋃

m > 0 Sm, m+k.

Comments.

• It is easy to see that S(k1) ∩ S(k2) = ∅ for k1 6= k2, and that S =
⋃

k ∈Z S(k).
• To solve a “maximization problem” M(NS), i.e., to find out whether there exists

a solution x ∈ Σ(Ω) for which
∑

cixi ≥ c0, it is often useful to first find out
whether there is a solution x ∈ Σ(Ω) for which the equality

∑
cixi = c0 holds.

This problem is equivalent to checking non-emptiness of the set of solutions for
the following auxiliary linear system:

DENOTATION. Let Ω = (D, A, b) be a linear system with n unknowns, and let
c = (c0, c1, …, cn)T ∈Rn+1 be a sequence of real numbers. By Ωc = (D, Ac, bc), we
will denote the following linear system:

n∑
i = 1

cixi = c0,

A(d)x = b(d), d ∈D.
(2.2)

This system can obviously be represented in the form (2.1) with naturally defined
maps Ac : D→ R(m+1) × n and bc : D→ Rm+1.
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3. Classes that Represent Boolean Vectors and the Main Lemma

NP-hard problems are usually formulated in terms of discrete systems, i.e., systems,
in which we have n variables x1, …, xn, each of which takes only two values. These
two values can be, e.g., interpreted as “true” and “false,” in which case, each
variable becomes Boolean, and the vector (x1, …, xn) becomes a Boolean vector. If,
e.g., these values are 1 and −1, then the set of possible values of x = (x1, …, xn) is
{−1, 1}n. Therefore, a natural way to prove that a problem is NP-hard for a class
S of linear systems is to prove that such Boolean vectors can be represented in S.
This leads us to the following definition:

DEFINITION 3.1. We say that a class S of linear systems describes Boolean vectors
if there exists a polynomial-time algorithmU that for every integer η > 0, constructs
a system Ωη ∈ S with n(η) ≥ η variables for which πη, n(Σ(Ωη)) = {−1, 1}η, and
Ωη

a ∈S for all a ∈N × Nη
+.

Comment. Obviously, if a class S describes Boolean vectors, and S ⊆ S′, then
S′ also describes Boolean vectors. Therefore, in the further results, we will try to
prove the property of “describing Boolean vectors” for classes that are as small as
possible.

MAIN LEMMA. If a class S describes Boolean vectors, then the problems N(S)
and M(NS) are NP-hard.

Proof.
1. We will prove this result by showing that for such classes S, we can reduce

the problem Partition (known to be NP-hard [3]) to each of the problems N(S) and
M(NS). Thus, if we could solve the problems N(S) or M(NS) in polynomial time,
we would be able to solve Partition in polynomial time, and therefore, we would
have P = NP.

Partition problem is defined as follows:
Problem Partition:

Instance: µ > 0 positive integers v1, …, vµ .

Question: Does there exist a sequence of signs x1, …, xµ ∈ {−1, 1} such that∑µ
i = 1 xivi = 0?

Let us show how to reduce every instance of this problem to N(S) and M(NS). Let
a vector v = (v1, …, vµ) be given. Then the question of Partition is to check whether
the set ΣR(v) = {x ∈{−1, 1}µ | ∑µ

i = 1 xivi = 0} is non-empty.
2. Reducing this problem to N(S) is easy: Let us take the system Ωµ , whose

existence is guaranteed by the property that the class S describes Boolean vectors,
and take Ωµ

a , where a0 = 0 and ai = vi for i = 1, …, µ. Then, Ωµ
a ∈ S, and clearly,

πµ, n(µ)(Σ(Ωµ
a)) = ΣR(v); therefore, ΣR(v) 6= ∅ iff Σ(Ωµ

a) 6= ∅. It is clear that if we know
v, then we can construct the system Ωµ

a ∈S in polynomial time.
3. Let us now show that Partition can be also reduced to M(NS). Take η = µ + 1.

Let Ωη be a system whose existence is guaranteed by Definition 3.1, and letai = 2vi



56 ANATOLY V. LAKEYEV AND VLADIK KREINOVICH

for 1 ≤ i ≤ µ, and a0 = aµ + 1 =
∑µ

i = 1 vi. Then, the first equation of the extended
system Ωη

a will have the following form:

2
( µ∑

i = 1

vixi

)
+
( µ∑

i = 1

vi

)
xµ + 1 =

µ∑
i = 1

vi. (3.1)

The vector (1, …, 1,−1)T ∈{−1, 1}η satisfies the equation (3.1). By the choice of
Ωη, this vector belongs to πη, n(Σ(Ωη)) and therefore, it can be extended to a vector
x∗ = (1, …, 1,−1, x∗η + 1, …, x∗n)T ∈ Σ(Ωη). Hence, x∗ ∈ Σ(Ωη

a), and consequently,
Ωη

a ∈NS.
Let us now take c0 = cµ+1 = 1 and ci = 0 for all other i ≤ n, and consider

the corresponding maximization problem. This problem is solvable iff there exists
a solution x ∈ Σ(Ωη

a) for which
∑

cixi ≥ c0. For our choice of coefficients, this
inequality is equivalent to xµ+1 ≥ 1. Since Ωη

a was obtained by adding an equation to
Ωη, every solution x of Ωη

a is also a solution of Ωη, i.e., Σ(Ωη
a) ⊆ Σ(Ωη). Therefore,

due to our choice of Ωη, the first η = µ + 1 components of each solution x are
equal to ± 1. In particular, xµ+1 ∈ {−1, 1}. So, the only case when xµ+1 ≥ 1 is
when xµ+1 = 1. In this case, the equation (3.1) is equivalent to

∑µ
i = 1 vixi = 0. Since

xi ∈{−1, 1} for i ≤ µ, if such a solution exists, then the Partition problem also has
a solution. Vice versa, if a Partition problem has a solution x1, …, xµ , then adding
xµ+1 = 1 and extending the resulting vector ∈{−1, 1}η leads to an element of Σ(Ωη)
that also satisfies the corresponding instance of the problem M(NS). So, Partition
is indeed reducible in polynomial time to M(NS) and therefore, the problem M(NS)
is NP-hard. 2

4. Auxiliary Result: Reduction to the Case When Different Parameters
Describe Uncertainty in A and in b

In general, one and the same parameter di can influence both the matrix A and the
right-hand side b. In the above interval example, some coordinates of the vector d
are responsible only for A and some only for b. A natural question is: if we impose
this restriction on linear systems, will we then restrict the class of linear systems?
The answer is “no”: every linear system can be thus reformulated.

DEFINITION 4.1. We say that a linear system has separated parameters if the
following three statements are true:

• s = t + l (so that D ⊆ Rs = Rt × Rl);

• A depends only on the first t parameters p of the vector d ∈D; and

• b depends only on the last l parameters q of d.

DENOTATION. We will denote a system with separated parameters by

A(p)x = b(q). (4.1)
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PROPOSITION 4.1. For every linear system Ω, there exists a linear system Ω′ with
separated parameters that is equivalent to Ω in the sense that Σ(Ω) = Σ(Ω′).

Proof. Before we start proving this result, let us remark that every (m × n)-matrix
A can be represented as a (m ⋅ n)-dimensional vector

(A11, A12, …, A1n, A21, …, A2n, …, Am1, …, Amn).

This is exactly how the matrix A is represented inside the computer in many
programming languages. An m-dimensional vector b can be described as (b1, …,
bm). If in the computer, the description of the matrix A is followed by the description
of a vector b, then we get the following sequence of real numbers (or, in more
mathematical terms, the following (m ⋅ n + m)-dimensional vector):

(A11, …, Amn, b1, …, bm).

In the remaining part of this proof, we will denote this vector by 〈A, b〉. Now, we
are ready for the proof itself.

Let us take Ω′ = (D′, A′, b′), where:

• m′ = m;

• n′ = m;

• S′ = m ⋅ n + m;

• the set D′ is the set of all possible S′-dimensional vectors d ′ = 〈A(d), b(d)〉 that
correspond to different values d ∈D (i.e., D′ = {〈A(d), b(d)〉 | d ∈D});

• the new mapping A′(d ′) is defined, for d ′ = (d′1, …, d′m ⋅ n+m), as

A′(d′1, …, d′m ⋅ n, d′m ⋅ n+1, …, d′m ⋅ n+m) = (d′1, …, d′m ⋅ n);

and

• the new mapping b′(d ′) is defined as

b′(d′1, …, d′m ⋅ n, d′m ⋅ n+1, …, d′m ⋅ n+m) = (d′m ⋅ n+1, …, d′m ⋅ n+m).

From this construction, it is clear that this new linear system has separated param-
eters: Indeed:

• the value A′(d ′) depends only on the first m ⋅ n parameters of the vector d ′, while

• the value b′(d ′) depends only on the last m parameters of the vector d ′.

Let us show that a vector x is a solution of the new linear system Ω′ iff x is a solution
of the original linear system Ω′:

• If x is a solution of the new linear system, this means that for some d ′ ∈D′, we
have A′(d ′)x = b′(d ′). By definition of the set D′ , every element of this set is of the
form 〈A(d), b(d)〉 for some d ∈D. So, d ′ = 〈A(d), b(d)〉 for some d ∈D. For this
d ′, we can apply the definitions of A′ and b′ given above, and get the following
formulas: A′(d ′) = A′(〈A(d), b(d)〉) = A(d) and b′(d ′) = b′(〈A(d), b(d)〉) = b(d).
Therefore, from A′(d ′)x = b′(d ′), we conclude that A(d)x = b(d) for some d ∈D,
i.e., that x is a solution of the original linear system Ω.
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• Vice versa, let x be a solution of the old linear system. This means that for
some d ∈ D, we have A(d)x = b(d). By definition of the set D′, the vector
d ′ = 〈A(d), b(d)〉 belongs to this set D′. By definition of the mappings A′ and
b′, for this vector d ′, we have A′(d ′) = A′(〈A(d), b(d)〉) = A(d) and b′(d ′) =
b′(〈A(d), b(d)〉) = b(d). Hence, from A(d)x = b(d), we conclude that A′(d ′)x =
b′(d ′) for some d ′ ∈Ω′, i.e., that x is solution of the new system. 2

Comments.

• To avoid misunderstanding, it is important not to confuse two somewhat similar
notions:

− our notion of separated parameters, and

− a similar notion of a system in which the matrix A and the vector b are
independent in the following sense:
if

a matrix A is possible (i.e., A = A′(d ′) for some d ′ ∈D′),

and

a vector b is possible (i.e., b = b′(d ′′) for some d ′′ ∈D′),

then

the pair (A, b) is also possible (i.e., A = A′(d̃) and b = b′(d̃) for some
d̃ ∈D′).

A system (D′, A′, b′) with separated parameters is definitely independent (in this
sense) if the corresponding set D′ ⊆ Rt × Rl can be represented as a Cartesian
product D′ = D1 × D2, where D1 ⊆ Rt and D2 ⊆ Rl; otherwise, the matrix A
and the vector b are dependent, and their dependence is described by the set D′.

• Our Main Lemma result is not mathematically complicated, and we believe that
it may have been known before; however, since we did not find it in the literature
and since we believe it to be important, we included this result (with a detailed
proof) in our paper.

5. Classes of Linear Systems That Describe Boolean Vectors

Due to Proposition 4.1, we can (without loss of generality) consider only systems
with separated parameters. Therefore, in this section, we will only consider systems
of type (4.1). To describe the classes, we will need the following denotations:

DENOTATIONS. Let integers m and n be given.

• By e(j), we will denote an m-dimensional vector whose j-th element is 1 and all
other elements are 0. Vectors e(j) will be called vector units.

• By E(i, j), we will denote an (m × n)-matrix whose (i, j)-th element is 1, and all
other elements are zeros. Matrices E(i, j) will be called matrix units.
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• For every r ∈ [1, +∞] = [1, +∞) ∪ {∞}, we define lr-norm ‖p‖r of a vector
p ∈Rn as follows:

‖p‖r =
( n∑

i = 1

|pi|r
)1 / r

if r < ∞, ‖p‖∞ = max |pi|.

• Let us now define the following three sets (we will call them sets of indices):

Λ1 = {(r, r1, r2) | r ∈ (1, +∞), r1 ∈ [r, +∞], r2 ∈ [σ(r), +∞]},
where

σ(r) =
r

r − 1
,

Λ2 = {(r, τ) | r, τ ∈ [1, +∞]},
Λ = Λ1 ∪ Λ2.

• For each λ ∈ Λ and for each n ∈ N+, we define the set Dn, λ ⊆ Rn × Rn as
follows:

− If λ = (r, r1, r2) ∈Λ1, then

Dn, λ =
{

(p, q) ∈Rn × Rn |

1
r

n−r / r1(‖p‖r1 )r +
1

σ(r)
n−σ(r) / r2(‖q‖r2 )σ(r) ≤ 1

}
.

− If λ = (r, τ) ∈Λ2, then Dn, λ = Pn, r × Qn, τ , where

Pn, r = {p ∈Rn | ‖p‖r ≤ n1 / r}, Qn, τ = {q ∈Rn | ‖q‖τ ≤ n1 / τ}.

Now, we can introduce the following classes Sλ , λ ∈Λ, of linear systems:

DEFINITION 5.1. Let λ ∈ Λ be given. We say that a system Ω = (D, A, b) of the
form (4.1) with m equations of n variables belongs to the class Sλ if s = l = n,
D = Dn, λ , and the mappings A and b are of the form

A(p) = A(0) +
n∑

i = 1

piεiA
(i), b(q) = b(0) +

n∑
i = 1

qiδib
(i), (5.1)

where:

• A(0) ∈Zm × n and b(0) ∈Zm (i.e., the matrix A(0) and the vector b(0) have integer
components);

• for every i = 1, …, n, A(i) is a matrix unit and b(i) is a vector unit;

• εi, δi ∈{0, 1};
• if εi = εj = 1 and i 6= j, then A(i) 6= A(j); if δi = δj = 1, then b(i) 6= b(j).

Comment. When λ ∈Λ1, this means, crudely speaking, that the vector formed by
the differences between the nominal A(0), b(0) and actual values of the coefficients A
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and b is bounded in the lp sense. When λ ∈Λ2, this means, crudely speaking, that the
difference vector that corresponds to A and the difference vector that corresponds
to b are bounded. In particular, for r1 = r2 = r = τ = ∞, lr-norm turns into max,
and our definitions turn into a definition of a usual interval linear system. The
possibility εi, δi = 0 enables us to consider linear systems that depend on s < n and
l < n parameters.

We will prove that for every λ ∈ Λ, the class FSλ (of those systems for which
the solution set is finite) describes Boolean vectors.

PROPOSITION 5.1. For every λ ∈Λ, the class FSλ describes Boolean vectors.

Proof. To prove this result, we will consider, for each n > 0 and for each
p, q ∈Rn, the following system Ωn, λ = (Dn, λ , An, bn) of the type (5.1): m = 2n,

An(p) =
n∑

i = 1

E(n+i, i) +
n∑

i = 1

piE
(i, i), bn(q) =

n∑
i = 1

e(i) +
n∑

i = 1

qie
(n+i). (5.2)

The corresponding system of 2n equations with n unknowns An(p)x = bn(q) is
as follows:{

pixi = 1, i = 1, n,
xi = qi, i = 1, n.

(5.3)

LEMMA 5.1. For every λ ∈Λ and n > 0, Σ(Ωn, λ ) = {−1, 1}n.

To prove this lemma, we will use two inequalities: a well-known inequality
(which is a particular case of Young’s inequality [1]) and the inequality between
lr-norms, which can be easily proven (either from the general statement of mono-
tonicity of weighted sums [1], or directly).

LEMMA 5.2 (Young’s inequality [1]). Let τ, θ ∈ (1, ∞), 1 / τ + 1 / θ = 1. Then, for
arbitrary a, c ≥ 0,

ac ≤ 1
τ

aτ +
1
θ

cθ ;

this inequality turns into an equality iff aτ = cθ .

LEMMA 5.3. For every τ and θ such that 1 ≤ θ ≤ τ ≤ +∞, and for every
p ∈Rn,

‖p‖θ ≤ n1 / θ−1 / τ‖p‖τ ; (5.4)

this inequality becomes an equality iff all the values |pi|, 1 ≤ i ≤ n, are equal.

Proof of Lemma 5.1. Let n ∈N+ and λ ∈ Λ. The inclusion {−1, 1}n ⊆ Σ(Ωn, λ )
is obvious, since any vector x ∈ {−1, 1}n is a solution of the system (5.3) for
p = q = x, and {−1, 1}n × {−1, 1}n ⊆ Dn, λ .
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Let us prove the converse inclusion Σ(Ωn, λ ) ⊆ {−1, 1}n. Select some x ∈
Σ(Ωn, λ ). By definition, this means that there exist such (p, q) ∈ Dn, λ for which the
equations (5.3) are satisfied, i.e., for which x = q and piqi = 1 for all i = 1, n.

Since λ ∈Λ = Λ1 ∪ Λ2, we have two possibilities:

• λ ∈Λ1, and

• λ ∈Λ2.

Let us prove the desired inclusion for both cases.

1) First, we will consider the cased when λ ∈Λ1, i.e., when λ = (r, r1, r2), where
r ∈ (1, +∞), r1 ∈ [r, +∞], r2 ∈ [σ, +∞], and σ = r / (r− 1). Using Lemmas 5.2, 5.3,
and the relations piqi = 1, and taking into account that (p, q) ∈ Dn, λ we obtain the
following chain of equalities and inequalities:

1 ≥ 1
r

n−r / r1
(
‖p‖r1

)r
+

1
σ

n−σ / r2
(
‖q‖r2

)σ

(since (p, q) ∈Dn, λ )

≥ 1
r

n−r / r1 ⋅ (n
1
r1
− 1

r ‖p‖r)
r +

1
σ

n−σ / r2(n
1
r2
− 1

σ ‖q‖σ)σ

(due to Lemma 5.3)

=
1
n

[
1
r

(‖p‖r)r +
1
σ

(‖q‖σ )σ
]

=
1
n

n∑
i = 1

(
1
r
|pi|r +

1
σ
|qi|σ

)

≥ 1
n

n∑
i = 1

|pi| ⋅ |qi|

(due to Lemma 5.2)

= 1

(since pi ⋅ qi = 1). Since this chain of inequalities starts and ends with 1, all
inequalities in this chain are equalities. In particular, we have

n∑
i = 1

(
1
r
|pi|r +

1
σ
|qi|σ

)
=

n∑
i = 1

|pi| ⋅ |qi|.

Due to Lemma 5.2, for each i, we have the inequality(
1
r
|pi|r +

1
σ
|qi|σ

)
≥ |pi| ⋅ |qi|.

Therefore, the only case when the sum of the left-hand sides is equal to the sum
of the right-hand sides is when each left-hand side is equal to the corresponding
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right-hand side. According to Lemma 5.2, this is possible only when |pi|r = |qi|σ
for all i. We already know that pi = 1 / qi. Therefore, we have |qi|−r = |qi|σ , and
|qi| = 1. Therefore, qi = ±1, and x = q ∈{−1, 1}n.

2) Let us now consider the case when λ ∈ Λ2, i.e., when λ = (r, τ) for some
r, τ ∈ [1, +∞].

In this case, from the inequality (5.4) it follows that if 1 ≤ θ < τ, then Pn, θ ⊇
Pn, τ . Therefore, Pn, r ⊇ Pn, 1, Qn, τ ⊇ Qn, 1, and consequently, Dn, λ ⊇ Dn, λ0 , where
by λ0, we denoted λ0 = (1, 1) ∈ Λ2. Since in this case Σ(Ωn, λ ) ⊆ Σ(Ωn, λ0), it is
sufficient to prove that Σ(Ωn, λ0 ) ⊆ {−1, 1}n.

So, let us assume that r = τ = 1.
In this case, the condition q ∈Qn, 1 may be written in the form

1
n

n∑
i = 1

|qi| ≤ 1,

and the condition p ∈Pn, 1 in the form

1
n

n∑
i = 1

|pi| ≤ 1.

Since pi = 1 / qi, we can rewrite the second condition as follows:

1
n

n∑
i = 1

1
|qi|
≤ 1.

This inequality, in its turn, can be rewritten as(
1
n

n∑
i = 1

1
|qi|

)−1

≥ 1.

Using the well-known inequality between the arithmetic and harmonic averages
[1], we arrive at the following chain of inequalities:

1 ≤
(

1
n

n∑
i = 1

1
|qi|

)−1

≤ 1
n

n∑
i = 1

|qi| ≤ 1.

Hence, all the inequalities in this chain are actually equalities. In particular, the
arithmetic average of the values |qi| is equal to the harmonic average of these
values. It is known [1] that this equality is possible only in one case: when all the
values |qi| are equal, i.e., when there exists a λ such that |qi| = λ for all i. Then,
from the equality

1
n

n∑
i = 1

|qi| = 1,



NP-HARD CLASSES OF LINEAR ALGEBRAIC SYSTEMS WITH UNCERTAINTIES 63

we conclude that λ = 1. Hence, |qi| = 1, qi = ±1, xi = qi = ±1, and x ∈ {−1, 1}n.
The lemma is proven. 2

Proof of Proposition 5.1. Clearly, if Ωη ∈Sλ , then Ωη
a ∈Sλ (the only coefficients

that we have added when going from Ωη to Ωη
a are added to the “nominal” part,

the part depending on pi and qj is unchanged). Therefore, the proof of Lemma 5.1
proves Proposition 5.1. 2

THEOREM 5.1. For every λ ∈ Λ, the problems N(FSλ ) and M(DSλ ) are NP-
hard.

Proof. This proof follows from the Main Lemma, Proposition 5.1, and from the
fact that NFSλ = DSλ . 2

Comment. We have actually proved that not only the class FSλ itself describes
Boolean vectors, but also that its certain proper subclass is a one:

DENOTATION. Let us denote

S̃λ =
⋃

n > 0

S2n+1, n
λ .

COROLLARY. For every λ ∈Λ, the class FS̃λ describes Boolean vectors.

Proof. Indeed, in the above construction, the number of equations of the systems
Ωn, λ is twice as large as the number of the variables.

THEOREM 5.2. For every λ ∈ Λ, the problems N(FS̃λ ) and M(DS̃λ ) are NP-
hard.

Comment. Theorem 5.2 says that if we restrict ourselves to linear systems with
finite number of solutions, in which the number of equations is no more than
twice larger than the number of variables, then even for such systems, the solution
problem N(S) is NP-hard. A natural question is: what if we impose a stronger
restriction on the number of equations, i.e., what if we require that for some given
k > 0, the number of equations does not exceed the number of unknowns plusk; will
this problem still be NP-hard? We already have a denotation for this restriction:
we have denoted the corresponding class of linear equations by S(k). Using this
denotation, we can reformulate the problem as follows: is the problem N(FS(k)

λ )
NP-hard for all λ ∈ Λ? The answer to this question is currently (1996) unknown.
However, if we do not require finiteness (i.e., go from FS(k) to S(k)), then the answer
is “yes.”

PROPOSITION 5.2. For every λ ∈ Λ and for every k ∈ Z, the class S(k)
λ describes

Boolean vectors.

Proof. To prove this proposition, we will show how to equalize the numbers of
equations and unknowns by introducing “fictitious” variables.
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DENOTATIONS.

• For a given matrix M ∈Rm × n, we will use the following denotations:

− By V(M), we denote an m × (n + 1)-matrix obtained from M by adding
(n + 1)-st zero column.

− By E(M), we denote an (m + 1) × n-matrix obtained from M by adding
(m + 1)-st zero row.

• Corresponding changes in the linear equations will be denoted as follows:

− An operator V : Sλ → Sλ (called adding a variable) transforms a system

Ω = (Dn, λ , A, b) ∈Sm, n
λ

of the form (5.3) into a system

V(Ω) =
(
Dn+1, λ , V(A), V(b)

)
∈Sm, n+1

λ ,

where for p, q ∈Rn+1:

[V(A)](p) = V(A(0)) +
n∑

i = 1

piεiV(A(i)) + pn+1εn+1E(1, 1), εn+1 = 0,

[V(b)](q) = b(0) +
n∑

i = 1

qiδib
(i) + qn+1δn+1e(1), δn+1 = 0.

− An operator E : Sλ → Sλ (called adding an equation) transforms a system

Ω = (Dn, λ , A, b) ∈Sm, n
λ

of the form (5.3) into a system

E(Ω) =
(
Dn, λ , E(A), E(b)

)
∈Sm+1, n

λ ,

where for p, q ∈Rn:

[E(A)](p) = E(A(0)) +
n∑

i = 1

piεiE(A(i)),

[E(b)](q) = E(b(0)) +
n∑

i = 1

qiδiE(b(i)).

LEMMA 5.4. For an arbitrary system Ω ∈Sλ , we have:

Σ(V(Ω)) = Σ(Ω) × R1; (5.5)

Σ(E(Ω)) = Σ(Ω). (5.6)

Proof is evident.

Proof of Proposition 5.2. Let λ ∈ Λ, k ∈ Z be fixed. Select some η ∈ N+. We
need to construct a system Ωη for which πη, n(Σ(Ωη)) = {−1, 1}η and Ωη

a ∈S(k)
λ for
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all a ∈N × Nη
+. To construct such a system, we will use two different constructions,

depending on whether η ≤ k − 1 or η > k − 1.
If η ≤ k − 1, then take n = η and consider the system Ωη = Ek−η−1(Ωη, λ ).

Since Ωη, λ ∈S2η, η
λ , we have Ωη ∈Sη+k−1, η

λ , and consequently, for every a ∈Nη+1,
for the extended system, we have Ωη

a ∈ Sη+k, η
λ . From (5.6), it follows that Σ(Ωη) =

Σ(Ωη, λ ) = {−1, 1}η.
If η > k − 1, then take n = 2η − k + 1 ≥ η, and consider a system Ωη =

Vη−k+1(Ωη, λ ). Then, Ωη ∈ S2η, 2η−k+1
λ = Sn+k−1, n

a , and hence, Ωη
a ∈ Sn+k, n

λ . From
(5.5), it follows that Σ(Ωη) = Σ(Ωη, λ ) × Rn−η = {−1, 1}η × Rn−η; hence,
πη, n(Σ(Ωη)) = {−1, 1}η.

It is obvious that the computations that lead from η to the coefficients of Ωη

take polynomial time; therefore, by Definition 3.1, the class S(k)
λ describes Boolean

vectors. 2

THEOREM 5.3. For every λ ∈ Λ, the problems N(S(k)
λ ) and M(NS(k)

λ ) are NP-
hard.

Proof directly follows from the Main Lemma and from Proposition 5.2.

Comment. Let us show that the systems constructed in this proof do not, in gen-
eral, have finitely many solutions (moreover, for these systems, the set of solutions
is not even always bounded). Indeed, if η > max{1, k − 1}, and if for some vector
v ∈ Nη

+, the set ΣR(v), constructed in the process of proving the Main Lemma, is
nonempty, then for a = (0, v1, …, vη) ∈ N × Nη

+ and for the system Ωη, we obtain
Σ(Ωη

a) = ΣR(v) × Rη−k+1. This set is not bounded; hence, Ωη
a 6∈BS(k)

λ . Hence, the
above arguments do not prove that the classes BS(k)

λ and FS(k)
λ describes Boolean

vectors for all k and λ . We will, however, be able to prove that these classes do
describes Boolean vectors for some k and λ .

DENOTATION. By Λ0 ⊆ Λ2, we will denote the following set:

Λ0 =
{

(r, τ) | r, τ ∈ (1, +∞],
1
r

+
1
τ

< 1
}

.

PROPOSITION 5.3. For every λ ∈Λ0, and for every k ≥ 2, the class FS(k)
λ describes

Boolean vectors.

Proof. To prove this proposition, for each n and m = n + 1, we will consider a
linear system ∆n, λ = (Dn, λ , Ã

n, b̃n) with Ã
n

: Rn → R(n+1) × n and b̃n : Rn → Rn+1

defined as follows:

Ã
n
(p) =

n∑
i = 1

E(i+1, i) +
n∑

i = 1

piE
(1, i), b̃n(q) = ne(1) +

n∑
i = 1

qie
(i+1). (5.7)
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This system of n + 1 equations with n unknowns has the form:
n∑

j = 1

pjxj = n,

xi = qi, i = 1, n.
(5.8)

LEMMA 5.5. For every λ ∈Λ0 and n > 0, Σ(∆n, λ ) = {−1, 1}n.

Proof of Lemma 5.5. Let λ ∈ Λ0 and n > 0. The fact that λ ∈ Λ0 means
that λ = (r, τ) for some r, τ ∈ (1, +∞] for which 1 / r + 1 / τ < 1. The inclusion
{−1, 1}n ⊆ Σ(∆n, λ ) is obvious, since any vector x ∈ {−1, 1}n is the solution of
(5.8) for p = q = x, and {−1, 1}n × {−1, 1}n ⊆ Dn, λ .

To complete the proof of the lemma, it is thus sufficient to prove the converse
inclusion Σ(∆n, λ ) ⊆ {−1, 1}n. Indeed, let x ∈ Σ(∆n, λ ). This means that for some
p ∈Pn, r and q ∈Qn, τ , the equations (5.8) hold, i.e., x = q and

∑n
i = 1 piqi = n.

Let us denote σ = r / (r − 1) (if r = ∞, we take σ = 1). Then, 1 / r + 1 / σ = 1.
Since τ ∈ (1, +∞], 1 / r + 1 / τ < 1, and 1 / r + 1 / σ = 1, we have σ < τ. Using
Hoelder’s inequality ([1], Lemma 3) and the fact that (p, q) ∈ Dn, λ , we obtain the
following sequence of equalities and inequalities:

n =
n∑

i = 1

piqi ≤
n∑

i = 1

|pi| ⋅ |qi| ≤ ‖p‖r‖q‖σ ≤ ‖p‖rn
1
σ−

1
τ ‖q‖τ

≤ n
1
r n

1
σ−

1
τ n

1
τ = n.

Since the first and the last expressions in this sequence coincide, all these inequalities
are actually equalities. In particular, ‖q‖σ = n

1
σ−

1
τ ‖q‖τ . Hence, from Lemma 5.3,

we conclude that all the values |qi| are equal, i.e., that |qi| = λ > 0 for all i = 1, n.
Let us show that λ = 1. Indeed:

• From the equality ‖p‖r‖q‖σ = n, and from the condition p ∈ Pn, r, we conclude
that

n = ‖p‖r‖q‖σ = ‖p‖rλn
1
σ ≤ n

1
r λn

1
σ = λn,

i.e., λ ≥ 1.

• From the condition q ∈Qn, τ , we (similarly) conclude that λ ≤ 1.

So, λ = |qi| = 1, qi = ±1, and x = q ∈{−1, 1}n. 2

Proof of Proposition 5.3. From the above lemma, it follows that for λ ∈ Λ0,
∆n, λ ∈ FSn+1, n

λ ; for any a ∈ Nn+1 the extended system ∆n, λ
a ∈ FSn+2, n

λ ; hence, the
class FS(2)

λ describes Boolean vectors.
For k > 2, take Ωη = Ek−2(∆η, λ ). From the above lemma and from the property

(5.6), we can conclude that Ωη represents {−1, 1}n, and hence, that the class FS(k)
λ

indeed describes Boolean vectors. 2
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Comment. We have proved Proposition 5.3 for all λ from a subclass of the class
Λ2. The proof itself cannot be generalized to all λ ∈ Λ2: For example, if λ = (r, τ)
for r, τ ∈ (1, +∞) and 1 / r + 1 / τ = 1, then

Σ(∆n, λ ) = ∂Qn, s = {x ∈Rn | ‖x‖σ = n
1
σ } 6= {−1, 1}n.

THEOREM 5.4. For every λ ∈Λ0 and for every k ≥ 2, the problems N(FS(k)
λ ) and

M(DS(k)
λ ) are NP-hard.

6. Classes of n × n Linear Systems That Do Not Describe Boolean Vectors

DEFINITION 6.1. We say that a linear system Ω = (D, A, b) of the form (2.1)
belongs to the class C if the following two conditions hold:

• the set D ⊆ Rs is compact and connected; and

• the mappings A and b are continuous on D.

Comment. In accordance with the denotations introduced in Section 1, we will
also consider classes C(k), k ∈ Z, and their subclasses NC(k), BC(k), RC(k), FC(k),
and DC(k).

Similarly to the definition of a regular interval matrix (see, e.g., [12]), we can
introduce the following notion:

DEFINITION 6.2. Let D ⊆ Rs. A mapping A : Rs → Rn × n is called regular on D
if for every p ∈D, the matrix A(p) is non-singular.

Comments.

• In [12], an interval matrix A is called regular if all matrices A ∈ A are non-
singular. One can easily see that an interval matrix is regular in the sense of
Definition 6.2 iff it is regular in the sense of [12].

• The notion of regularity introduced in this definition is related to the class RC(0)

(and this relationship is the reason why we called the class RS regular):

PROPOSITION 6.1. Let D ⊆ Rs be a compact connected set, and let A : Rs →
Rn × n be a mapping whose restriction to D is continuous. Then, the following two
statements hold:

1) if for some b : D → Rn, the system Ω = (D, A, b) belongs to RC(0), then A is
regular on D;

2) if A is regular on D, then for every continuous mapping b : D→ Rn, the system
Ω = (D, A, b) belongs to RC(0).
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Proof.
1) Let Ω = (D, A, b) ∈RC(0). This means, that the solution set Σ(Ω) is nonempty

and bounded. That this set is non-empty means that there existp(0) ∈D and x(0) ∈Rn

for which A(p(0))x(0) = b(p(0)). Let us prove (by reduction to a contradiction) that
this matrix A(p(0)) is nonsingular. Indeed, if the matrix A(p(0)) is singular, then we
can find a vector v ∈Rn, v 6= 0, for which A(p(0))v = 0. But then, for every λ ∈R,
we have A(p(0))(x(0) − λv) = b(p) and therefore, x(0) − λv ∈Σ(Ω). This conclusion
contradicts to the fact that the solution set Σ(Ω) is bounded. Hence, the matrix
A(p(0)) is nonsingular.

Let us now show (also by reduction to a contradiction) that the matrix A(p)
is non-singular for all p (i.e., that A is a regular mapping). Indeed, assume that
there exists p(1) ∈ D for which the matrix A(p(1)) is singular. Since the set D is
connected, we can find a continuous function ϕ : [0, 1] → D such that ϕ(0) = p(0)

and ϕ(1) = p(1). Then, the function Φ : [0, 1] → Rn × n defined as Φ(t) = A(ϕ(t))
is continuous. For t = 0, the matrix Φ(0) = A(p(0)) is nonsingular; for t = 1,
Φ(1) = A(p(1)) is singular. Let us denote by t0 the infimum of the set of all t for
which Φ(t) is singular:

t0 = inf{τ ∈ [0, 1] |Φ(τ) is singular}.

Then, Φ(t) is non-singular for t < t0.
A matrix A is singular iff det(A) = 0. Since t0 is an infimum of the values t for

which det(Φ(t)) = 0, and Φ is continuous, we can conclude that det(Φ(t0)) = 0, and
hence, the matrix Φ(t0) is singular. Since we already know that the matrix Φ(0) is
non-singular, we can thus conclude that t0 > 0.

Let us now define a sequence tk = t0(1− 1 / k) ∈ [0, t0), k = 1, 2, … For each k,
tk < t0, and therefore, the matrix Φ(tk) is nonsingular. Hence,

x(k) = [Φ(tk)]−1b(ϕ(tk)) = [A(ϕ(tk))]−1b(ϕ(tk)) ∈Σ(Ω).

Since the set Σ(Ω) is bounded, from the sequence x(k), k ∈ N+ it is possible to
choose a convergent subsequence x(kl), l ∈N+:

lim
l→ ∞

xkl = x∗.

Because of our definition of x(n), we have A(ϕ(tkl ))x
(kl) = b(ϕ(tkl )). Because of our

choice of tk, we have tk → t0 and therefore, tkl → t0. Since the functions A, b,
and ϕ are continuous, we can tend l to ∞ and arrive at the following equation:
A(ϕ(t0))x∗ = b(ϕ(t0)). If we denote p∗ = ϕ(t0), we conclude that A(p∗)x∗ = b(p∗).
In the first part of this proof, we have already shown that the existence of such
a solution leads to a conclusion that the matrix A(p∗) is non-singular. However,
we already proven that for p∗ = ϕ(t0), the matrix A(p∗) = Φ(t0) is singular. This
contradiction shows that our assumption (that A is not a regular mapping) was false,
and A is a regular mapping.
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2) Let us now show that if A and b are continuous on D, and if A is regular on
D, then Ω = (D, A, b) ∈RC(0).

Indeed, since A is regular, for every p ∈D, there exists an inverse matrix (A(p))−1 ,
and for any fixed p ∈ D the equation (2.1) has a unique solution x = (A(p))−1b(p).
So,

Σ(Ω) = {(A(p))−1b(p) | p ∈D}. (6.1)

From this equality, we can immediately conclude that Σ(Ω) 6= ∅.
Let us now prove that Σ(Ω) is bounded. Indeed, it is well known (see, for example,

[5]) that the mapping from Rn × n into Rn × n that transforms a matrix M ∈Rn × n into
its inverse M−1 is continuous on its domain of definition. Therefore, the function
c(p) = (A(p))−1b(p) is continuous on D, and therefore, the set Σ(Ω) = c(D) is
bounded (as an image of the compact set under a continuous mapping). 2

Comment. From the representation of the solution set Σ(Ω) in the form (6.1),
from the continuity of the function c, and from the fact that the image of the
connected set under a continuous function is connected, we obtain the following
proposition:

PROPOSITION 6.2.

1) For every system Ω ∈RC(0), the solution set Σ(Ω) is connected.

2) If Ω ∈ DC(0), then the mappings A and b are constant on D, and Σ(Ω) is a
one-element set.

Comment. The classes RC(−k) with k > 0 are easy to describe, because it turns
out that for Ω ∈C(−k), the solution set Σ(Ω) is either empty or unbounded.

PROPOSITION 6.3. For every k > 0, RC(−k) = ∅.
Proof. We will prove this result by reduction to a contradiction. Let us assume

that there exists Ω = (D, A, b) ∈RC(−k). Above, we have defined an operator E; this
definition can be easily extended to the class C. By applying this extended operator
E to the system Ω k times, and using (5.6), we conclude that Ek(Ω) ∈ RC(0).
But for every p, the matrix Ek(A)(p) has k zero rows, and is, therefore, singular.
Hence, our conclusion contradicts Proposition 6.1. This contradiction proves that
RC(−k) = ∅. 2

Let us now prove the main proposition of this section.

PROPOSITION 6.4. The class BC(0) does not describe Boolean vectors.

Proof. We will prove (by reduction to a contradiction) that the representation
from Definition 3.1 is impossible for η ≥ 2. Indeed, let us assume that for some
system Ωη, we have πη, n(Σ(Ωη)) = {−1, 1}η, and Ωη

a ∈ BC(0) for all a ∈ N × Nη
+.

Let us choose a vector v ∈Nη
+ for which the set

ΣR(v) =
{

x ∈{−1, 1}η |
η∑

i = 1

xivi = 0
}
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(introduced in the proof of the Main Lemma) is nonempty. For example, we can
take v1 = v2 = · · · = vη − 1 = 1, dη = η − 1; then, x = (1, …, 1,−1)T ∈ ΣR(v) and
therefore, ΣR(v) 6= ∅. If x ∈ ΣR(v), then −x ∈ ΣR(v), and hence, the set ΣR(v) is not
connected.

On the other hand, as we have noticed in the proof of the Main Lemma, ΣR(v) =
πη, n(Σ(Ωη

a)), where a = (0, v1, …, vη)T ∈N × Nη
+. Due to our assumption that BC(0)

describes Boolean vectors, we have Ωη
a ∈ BC(0). Then, due to Proposition 6.2,

the solution set Σ(Ωη
a), and therefore, its projection ΣR(v) = πη, n(Σ(Ωη

a)) is also
connected. The resulting contradiction shows that our assumption is false and
thence, the class BC(0) does not describe Boolean vectors. 2

Comment. A word of warning: In our proof of this proposition, we refer several
times to auxiliary algebraic statements proved while proving the Main Lemma.
To avoid confusion, we must notice that there is an important difference in our
use of these statements in the proof of the Main Lemma and in the proof of
Proposition 6.4:

• In the proof of the Main Lemma, we used these auxiliary algebraic statements
to show that the problem Partition (that is known to be NP-hard) can be reduced
to the problems N(S) and M(S), and that therefore, the problems N(S) and M(S)
are also NP-hard.

• In the proof of Proposition 6.4, we simply use these statements as algebraic
statements, without any reference to the Partition problem (the proof of these
statements did not use the Partition problem).

Proposition 6.4 leads to the following result:

PROPOSITION 6.5.

• For k ≥ 2, the class FC(k) describes Boolean vectors.

• For k ≤ 0, the class FC(k) does not describe Boolean vectors.

Proof. For k = 0, this result follows from Proposition 6.4: since FC(0) is a
subclass of BC(0), and BC(0) does not describe Boolean vectors, a subclass FC(0)

does not describe Boolean vectors either.
Let us consider the case k < 0. In this case, due to Proposition 6.3, for each linear

system from C(k), every solution set is either unbounded or empty. By definition, for
every system Ω ∈ BC(k) ⊆ C(k), the solution set is bounded; therefore, it is empty.
Hence, a projection of this solution set is also empty, and therefore, this class does
not describe Boolean vectors.

For k ≥ 2, the class FC(k) contains the class FS(k)
λ for every λ ∈ Λ0, and the

class FS(k)
λ describes Boolean vectors according to Proposition 5.3. Hence, the class

FC(k) also describes Boolean vectors. 2
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Comments.

• For k = 1, we do not know whether the class FC(1) describes Boolean vectors
or not.

• Since the class BC(0) does not describe Boolean vectors, it is natural to assume
that the problem N(BC(0)) is not difficult (i.e., not NP-hard), but easy (i.e.,
solvable in polynomial time). Basically, this assumption turns out to be correct.
However, literally speaking, it is not true for all BC(0) because first, we must
compute A(p) and b(q) at least for some p and q; since in our definition of
this class, we did not restrict the computational complexity of computing these
values, it could happen that the corresponding instance of the problem N(BC(0))
requires a lot of computation time simply because computing A(p) and b(q)
takes too long. If we prohibit such situations, we arrive at the following result:

DEFINITION 6.3. We say that a class S of linear systems is algorithmically inhab-
ited (or inhabited, for short) if there exists a polynomial time algorithm that for
every system (D, A, b) ∈S, computes the following two things:

• the values p(0) ∈D of the parameters for which all the components of the matrix
A(p(0)) are rational numbers (i.e., A(p(0)) ∈Qn × n), and

• the components of the corresponding matrix A(p(0)).

THEOREM 6.1. If S is an inhabited subclass of BC(0), then the problem N(S) is
solvable in polynomial time.

Comment. If a system belongs to the class BC(0), then (by definition of BS) its
solution set is bounded. This does not automatically mean that this solution set is
non-empty, because an empty set is also bounded. For example, if D is a one-point
set, A = A(p) is a singular matrix, and the equation Ax = b has no solutions, then
this system belongs to BC(0) and at the same time does not have a solution.

Proof. The corresponding algorithm is as follows. Let Ω = (D, A, b) ∈ Sn × n be
given.

• Since S is inhabited, we can (in time, bounded by a polynomial of n) compute
the parameters p(0) and the matrix A(p(0)) ∈Qn × n.

• Next, we check whether this matrix A(p(0)) is singular or not. This can be
done by computing its determinant det(A(p(0))) and comparing it with 0. It is
known that computing a determinant takes the same asymptotic time as matrix
multiplication, so this computation can be done in time O(n2. 376) (see, e.g., [2],
Chapter 31).

• If the matrix A(p(0)) is nonsingular, then we claim that Σ(Ω)6= ∅, else, that
Σ(Ω) = ∅.

This algorithm clearly requires polynomial time. Let us show that this algorithm is
correct.
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• If the matrix A(p(0)) is nonsingular, then x = [A(p(0))]−1b(p(0)) ∈ Σ(Ω), and
therefore, Σ(Ω) 6= ∅.

• If the matrix A(p(0)) is singular, then Σ(Ω) = ∅, since otherwise, as we have
proved in the proof of Proposition 6.1, the solution set Σ(Ω) is unbounded,
which is in contradiction with Ω ∈BC(0). 2

The following is a simple corollary of Theorem 6.1:

THEOREM 6.2. For every λ ∈ Λ, the problem N(BS(0)
λ ) is solvable in polynomial

time.

Proof. Clearly, BS(0)
λ ∈ BC(0); so, to apply Theorem 6.1, we must show that

the class BS(0)
λ is inhabited. Indeed, we can take p(0) = (0, …, 0)T ∈ Dλ ; then,

A(p(0)) ∈Zn × n ⊂ Qn × n. 2

7. Interval Systems

We have already remarked that as a particular case of linear system (as defined
by Definition 2.1), we get standard interval linear systems; such systems will be
analyzed in this section.

DENOTATIONS.

• In this section, we will use a standard denotation IR for the set of all intervals
[a, a].

• By IRn, we will denote the set of n-dimensional interval vectors, i.e., n-
dimensional vectors (columns) with coordinates from IR.

• By IRm × n, we denote the set of all m × n interval matrices, i.e., (m × n)-matrices
with elements from IR.

DEFINITION 7.1. By an interval linear system, we mean a system of the type

Ax = b, (7.1)

where:

• A = [A, A] ∈IRm × n is an interval (m × n)-matrix, and

• b = [b, b] ∈IRm is an interval m-vector.

Comment. We have already shown that interval linear systems can be reformu-
lated as a particular case of linear systems in the sense of Definition 2.1. Another
reformulation is described in [11]. In this section, we will use the third reformula-
tion:

DEFINITION 7.2. Let an interval linear system (7.1) be given. By its reformulation,
we mean a linear system Ω = (D, A, b), where:
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• t = m ⋅ n, and A : Rm ⋅ n → Rm × n is defined as

A(p) =
1
2

(A + A) +
m∑

i = 1

n∑
j = 1

1
2

pn(i−1)+j(aij − aij)E
(i, j), (7.2)

where aij, aij are coefficients of matrices A and A, respectively (matrices E(i, j)

were defined in Section 5);

• l = m, and b : Rm → Rm is defined as

b(q) =
1
2

(b + b) +
m∑

i = 1

1
2

qi(bi − bi)e
(i), (7.3)

where bi, bi are coordinates of the vectors b and b, respectively (vectors e(i) were
defined in Section 5);

• D = P × Q ⊆ Rmn × Rm, where

P = {p ∈Rm ⋅ n | ‖p‖∞ ≤ 1}, and Q = {q ∈Rm | ‖q‖∞ ≤ 1}. (7.4)

PROPOSITION 7.1. If Ω = (D, A, b) if a reformulation of the interval linear system
(7.1), then Σ(Ω) = Σ∃∃(A, b) and

A = {A(p) | p ∈D}, b = {b(q) | q ∈G}. (7.5)

Proof is evident.

Let us now define the classes of interval linear systems.

DENOTATION.

• By J, we will denote the class of all interval linear systems.

• By I, we will denote the class of all interval linear systems with integer coeffi-
cients (i.e., for which A, A ∈Zm × n and b, b ∈Zm).

Comment. Using denotations introduced in Section 1, we can define classes NI,
BI, RI, FI, DI, I (k), etc. (similarly, NJ, …). In particular:

• I (k) is the class of all interval linear system with integer-valued matrices A and
right-hand side b that consist of n + k equations with n unknowns;

• FI (k) is the class of all systems from I (k) that have finitely many solutions.

PROPOSITION 7.2.

• For every integer k, the class I(k) describes Boolean vectors.

• For every k ≥ 2, the class FI (k) describes Boolean vectors.

Proof. Since the map of the form (5.1) is a particular case of maps (7.2)–(7.3),
we can conclude that for λ0 = (∞, ∞) ∈Λ0, the class Sλ0 defined by Definition 5.1 is
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contained in I; as a result, S(k)
λ0

⊆ I (k), and FS(k)
λ0

⊆ FI (k) for every k ∈Z. According

to Propositions 5.2 and 5.3, the classes S(k)
λ0

(for all k) and FS(k)
λ0

(for all k ≥ 2)
describes Boolean vectors; hence, the classes I (k) and FI (k) also describe Boolean
vectors. 2

THEOREM 7.1.

• For every integer k, the problems N(I (k)) and M(NI (k)) are NP-hard.

• For every k ≥ 2, the problems N(FI (k)) and M(DI (k)) are NP-hard.

Comment. The definition of NP-hardness given above is based on the definition
of the class NP of problems for which checking a candidate solution is easy (i.e.,
can be done in polynomial time). For problems from the class NP, if we guessed
correctly, we will check the guess and get a solution. Some NP-hard problems have
this property (they are called NP-complete), other do not. It is interesting to know
whether our NP-hard problems are NP-complete or not. The answer to this question
follows from the following proposition:

PROPOSITION 7.3. Problems N(I) and M(NI) belong to the class NP (consequent-
ly, this is true for every subclass of the class I).

Proof. Let an interval system (A, b) ∈ Im, n be given, with A = [A, A] and
b = [b, b]. For every vector y ∈ {−1, 1}n, let us denote by Rn

y the orthant of Rn

corresponding to the sequence of signs y, i.e., the set

Rn
y = {x ∈Rn | yi ⋅ xi ≥ 0, i = 1, n}.

According to Oettli-Prager’s theorem [10], the set of solutions for the system (7.1)
can be rewritten as

Σ∃∃(A, b) = {x ∈Rn | |Acx− bc| ≤ ∆|x| + δ},

where

Ac =
1
2

(A + A), ∆ =
1
2

(A− A), bc =
1
2

(b + b), δ =
1
2

(b− b),

and the absolute value |. | of the vector and the relation ≤ for the vectors are
understood coordinate-wise.

For x ∈Rn
y , we have |x| = ∆yx, where D(y) = diag(y1, …, yn) is a diagonal matrix

with elements yi. So, the intersection of Σ∃∃(A, b) and Rn
y can be expressed as

follows:

Σ∃∃(A, b) ∩ Rn
y

={x ∈Rn| − ∆ ⋅ D(y)x− δ ≤ Acx− bc ≤ ∆ ⋅ D(y)x + δ, D(y)x ≥ 0}
={x ∈Rn|(Ac + ∆ ⋅ D(y))x ≥ bc − δ, (Ac − ∆ ⋅ D(y))x ≤ bc + δ, D(y)x ≥ 0}.

In other words, this intersection is the set of solutions for the system of (2m + n)
linear inequalities in n unknowns.
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There exist polynomial time algorithms that check whether such a system has a
solution (see, e.g., [4]). Therefore, to check whether a given interval system has a
solution, we can do the following:

• first, we guess the orthant;

• second, we check if the intersection of the solution set with this orthant is indeed
non-empty.

Hence, the problem N(I) belongs to the class NP.

Similarly, to solve the problem M(NI), we can do the following:

• first, guess an orthant in which the given linear form
∑

cixi attains its maximum;

• for the guessed orthant, the problem of maximizing
∑

cixi under given con-
straints is a linear programming problem; so, we apply a polynomial time algo-
rithm from [4], and compare the result of this application with c0.

Hence, the problem M(NI) also belongs to the class NP. 2

As a corollary, we get the following result:

THEOREM 7.2.

• For every integer k, the problems N(I (k)) and M(NI (k)) are NP-complete.

• For every k ≥ 2, the problems N(FI (k)) and M(DI (k)) are NP-complete.

For some other classes, we will describe polynomial time algorithms. For that,
we will need the following auxiliary results:

PROPOSITION 7.4. Let A ∈IRn × n. Then:

1) if for some interval vector b ∈IRn, the solution set Σ∃∃(A, b) is nonempty and
bounded, then the interval matrix A is regular;

2) if an interval matrix A is regular, then for every interval vector b ∈ IRn, the
solution set Σ∃∃(A, b) is nonempty and bounded.

Proof directly follows from Proposition 6.1.

Comment. In other words, Proposition 7.4 says that the class RJ(0) is the class
of all interval linear systems systems with a regular interval (n × n)-matrix A.

PROPOSITION 7.5. For every interval linear system (A, b) ∈ RJ(0), the solution
set Σ∃∃(A, b) is connected.

Proof directly follows from Proposition 6.2.

THEOREM 7.3. The problem N(BI (0)) is solvable in polynomial time.

Proof. To prove this result, we will use Theorem 6.1 according to which the
problem N(S) is solvable in polynomial time for every inhabited subclass of BC(0).
The class BI (0) is a subclass of the class BC(0), and it is inhabited: we can take
p(0) = (0, …, 0)T ∈D and, correspondingly, A(p(0)) = (1 / 2) ⋅ (A + A) ∈Qn, n. 2
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Comments.

• Due to Theorem 7.2, the problem N(FI (k)) is NP-hard for k ≥ 2; from Theo-
rem 7.3, it follows that for k = 0, this problem is solvable in polynomial time.
We do not know whether the problem N(FI (1)) is NP-hard or not.

• For a similar question for interval linear systems with bounded sets of solutions
instead of finite ones, the answer is known:

THEOREM 7.4. For every k ≥ 0, the problem M(RI (k)) is NP-hard.

Proof. The proof of this theorem uses the following result proven by Rohn and
Kreinovich in [13]. To describe this result, let us denote, for every interval linear
system (7.1) and for every i = 1, n,

xi = max{xi | x ∈Σ∃∃(A, b)}.

In [13], the following theorem was proved:

THEOREM R [13]. The following problem is NP-hard:
Given:

• (n × n)-matrices A, A ∈Zn × n such that A ≤ A and the interval matrix A = [A, A]
is regular;

• vectors b, b ∈Zn for which b ≤ b;

• a number c ∈Z,

To check: whether x1 ≥ c.

The statement of our theorem for k = 0 follows directly from Theorem R and
Proposition 7.4. For k ≥ 1, it is sufficient to note that we can transform the problem
M(RI (0)) into particular cases of the problem M(RI (k)) if we apply the operator E k
times (i.e., if we add k zero equations). 2

Comment. For bounded sets of solutions, the situation is slightly different:

THEOREM 7.5.

• For every k ≥ 1, the problem N(BI (k)) is NP-hard.

• The problem N(BI (0)) is solvable in polynomial time.

Proof. The second part has already been proven (in Theorem 7.3), so it is
sufficient to prove the first part. To prove the first part, we will show how to
transform each instance of the problem M(RI (k)) into an instance of the problem
N(BI(k+1)); since M(RI (k)) is NP-hard, this reduction will prove that the problem
N(BI (k+1)) is NP-hard for all k ≥ 0.

To describe an instance of the problem M(RI (k)), we must define an interval
system (A, b) ∈RIn+k, n and a vector

c = (c0, c1, …, cn)T ∈Z(n+1).
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Let us denote by (Ã, b̃) the following system of (n + k + 2) equations with (n + 1)
unknowns:

Ax = b,
n∑

i = 1

cixi − xn+1 = c0 − 1,

[0, 1]xn+1 = [1, 1].

(7.6)

If
(

x
xn+1

)
∈Σ∃∃(Ã, b̃) then, obviously, x ∈Σ∃∃(A, b) and

xn+1 =
n∑

i = 1

cixi − c0 + 1.

So, boundedness of the solution set of the original system Σ∃∃(A, b) implies that
the solution set of the new system Σ∃∃(Ã, b̃) is also bounded (or empty). Therefore,
(Ã, b̃) ∈BI (k+1).

One can easily see that the last equation of the system (7.6) is equivalent to the
inequality xn+1 ≥ 1; hence, the last two equations of the system (7.6) are equivalent
to the inequality

n∑
i = 1

cixi ≥ c0.

Hence, the solvability of the system (7.6) is equivalent to existence of a vector
x ∈Σ∃∃(A, b) for which

n∑
i = 1

cixi ≥ c0,

i.e., to the solvability of the original instance of the problem M(BI (k)).
The algorithm that constructs the system (7.6) from the original system clearly

takes polynomial time; therefore, if we were able to solve all instances N(BI (k+1))
in polynomial time, we would thus be able to solve all instance of M(BI (k)) in
polynomial time, and we already know that the problem M(BI (k)) is NP-hard.
Therefore, the problem N(BI (k+1)) is also NP-hard. 2

8. Positive Interval Linear Systems

S. P. Shary attracted the authors’ attention to interval systems with positive coef-
ficients. Several interesting properties of such systems are presented in his paper
[16].

DEFINITION 8.1. We say that an interval linear system is strongly positive if the
lower bounds of all coefficients are≥ 1, i.e., if aij ≥ 1 and bj ≥ 1 for all i and j.
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Comments.

• If we restrict ourselves to integer coefficients, then strongly positive means
simply that all coefficients are positive.

• It is convenient to describe these component-wise inequalities in matrix and
vector forms. For that, we will introduce the following denotations:

DENOTATIONS. Let n and m be positive integers.

• By en, we denote the vector en = (1, …, 1)T ∈Rn.

• By Em, n, we denote the (m × n)-matrix Em, n = em(en)T whose all components
are equal to one.

Comment. In these terms, an interval linear system is strongly positive iff A ≥
Em, n and b ≥ em.

DENOTATIONS.

• By PJ, we will denote the class of all strongly positive interval linear systems.

• By PI, we will denote the class of all strongly positive interval linear systems with
integer coefficients (i.e., for which 0 < A ≤ A ∈Zm × n and 0 < b ≤ b ∈Zm).

We will show that the problems that are NP-hard for general interval linear
systems remain NP-hard if we restrict ourselves to strongly positive systems only.
To prove that, we will show that solving a general interval linear system can be
reduced to solving a strongly positive one. For that, we will need the following
transformation:

DEFINITION 8.2. Let us define an operatorP : J → J as follows: it maps a system
(A, b), where A = [A, A] ∈ IRm × n and b = [b, b] ∈ IRm, into a new system
P(A, b) = (Ap, bp), where Ap = [Ap, Ap] ∈ IR(m+1) × (n+1) and bp = [bp, bp] ∈
IRm+1 are defined as follows:

Ap =
(

A + L em

γ (en)T 1

)
, Ap =

(
A + L em

γ (en)T 1

)
,

bp =
(

b + δem

δ

)
, bp =

(
b + δem

δ

)
,

where:

L = γ em(en)T = γ Em, n, γ = max{1, 1−min
i, j

aij}, and

δ = max{1, 1−min
i

bi}.

Comment. For the transformed system, Σ∃∃(P(A, b)) ⊆ Rn+1; for convenience,

we will describe vectors from Rn+1 in the form
(

x
xn+1

)
, where x ∈ Rn and

xn+1 ∈R.
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PROPOSITION 8.1. For every A ∈ IRm × n and b ∈ IRm, we have P(A, b) ∈
PJm + 1, n + 1 and

Σ∃∃(P(A, b)) =
{(

x
δ − γ (en)T x

)
| x ∈Σ∃∃(A, b)

}
. (8.1)

Proof.
First, let us show that P(A, b) ∈PJ.
Indeed, for every i = 1, m and j = 1, n, the following inequalities hold:

aij + γ ≥ aij + 1−min
k, l

akl ≥ 1,

bi + γ ≥ bi + 1−min
k

bk ≥ 1,

γ ≥ 1, and δ ≥ 1. Hence, Ap ≥ Em+1, n+1, bp ≥ em+1, and therefore, P(A, b) ∈
PJm+1, n+1.

Let us now prove the equality (8.1). Note that the matrix Mp belongs to Ap

(correspondingly, the vector cp belongs to bp) if and only if there exists M ∈ A

(corr., c ∈b) such that Mp =
(

M + L em

γ (en)T 1

)
(correspondingly, cp =

(
c + δem

δ

)
).

Therefore, the equality Mp

(
x

xn+1

)
= cp is equivalent to the following system of

equations:{
Mx + γ em(en)T x + xn+1em = c + δem,
γ (en)Tx + xn+1 = δ.

(8.2)

If we subtract from the first equation of the system (8.2) the second equation
multiplied by em , we will conclude that the system (8.2) is equivalent to the following
system:{

Mx = c,
γ (en)T x + xn+1 = δ.

Therefore,
(

x
xn+1

)
∈ Σ∃∃(P(A, b)) if and only if x ∈ Σ∃∃(A, b) and xn+1 = δ −

γ (en)Tx. 2

Comment. In particular, from this proposition, it follows that the operator P does
not change the following properties of the system:

• nonemptiness, boundedness, and finiteness of the solution set;

• the difference between the number of equations and the number of unknowns;

• the fact that all coefficients are integers.
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Therefore, from the above NP-hardness results for general interval linear systems,
we can deduce the following conclusions about NP-hardness of the strongly positive
interval linear systems:

THEOREM 8.1.

• For every integer k, the problems N(PI (k)) and M(NPI (k)) are NP-complete.

• For every k ≥ 2, the problems N(FPI (k)) and M(DPI (k)) are NP-complete.

• For every k ≥ 0, the problem M(RPI (k)) is NP-complete.

• For every k ≥ 1, the problem N(BPI (k)) is NP-complete.

• The problem N(BPI (0)) is solvable in polynomial time.

Comment. The last statement follows from the fact that there is a polynomial
time algorithm that solves all problems from a larger class N(BI (0)).
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