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Motivation. It has been recently proven that the problem of finding exact (or even
g-approximate) componentwise bounds for the solution set X of an linear interval
system ) a;x; = b; with interval coefficients a;; = [aij‘. ,a,-j] and b; = [b;,b{] is
NP-hard [2]-[4]. Here, each interval coefficient is assumed to be rational (i.e., both
bounds of this interval are rational numbers), and the solution set is defined as the
set of all possible x; for which ) a;x; = b; for some a;; € a;; and b; € b;.

This result is true even if we restrict ourselves to systems with square interval
matrices that are regular, i.e., for which each matrix a;; € a;; is regular.

In the proof of this result, a hard-to-solve class C of interval linear systems is
described such that if we can solve systems from the class C in polynomial time,
then we will be able to solve all problems from a class NP in polynomial time;
this proves that the problem of solving linear interval systems is NP-hard. For this
class C, the bounds aiij and b} of the corresponding intervals a; and b; are rational
numbers, i.e., exactly the numbers that can be represented in the existing computers.
In this sense, the problems from the class C are realistic. However, they are not
completely realistic because in systems from C, some bounds of coefficient intervals
grow (tend to co) with the number n of equations. So, if we try to represent these
coefficients in the existing computers, we will, for large n, get an overflow. (Or, if
we re-scale the coefficients so as to avoid the overflow, we will get an underflow
for the other coefficients that will be re-scaled to almost 0.)

Problem and the main result. A natural question is: If we restrict ourselves to
interval linear systems with no underflow and no overflow, i.e., to systems in
which all the bounds of all coefficient intervals are binary numbers of the type
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d_s ... d_1do.dd; ... d, for fixed s and ¢, will the solution problem still be NP-
hard? Our answer is: “yes.”

Moreover, we show that the answer is “yes, NP-hard” even if we restrict ourselves
to regular linear interval systems in which every bound of an interval coefficient is
either equal to 0, or to 1; in other words, to regular linear interval systems in which
each coefficient interval coefficient is equal to [0,0], [1, 1], or to [0, 1].

Comment. 1t is known that NP-hard numerical problems can be, crudely speak-
ing, of two types (see, e.g., [1], Section 4.2):

* Problems that are, in general, NP-hard, but for which a polynomial time algo-
rithm is possible if we restrict ourselves to instances in which the lengths of all
numerical coefficients are bounded by a constant C. Such problems are called
pseudo-polynomial.

* Problems that remain NP-hard even if we restrict ourselves to instances in which
the lengths of all numerical coefficients are bounded by some constant C. Such
problems are called NP-hard in the strong sense.

In these terms, our result shows that the problem of finding exact (or e-approximate)
componentwise bounds for the solution set of a linear interval system is NP-hard
in the strong sense.

Proof. To prove our result, we will start with the known result (mentioned
above) that the problem of solving regular linear interval systems with rational
interval coefficients is NP-hard. We will then describe a general transformation of
such systems into systems in which each interval coefficient is [0, 0], [1, 1], or [0, 1}.
This transformation will be done in several steps.

On some steps, we will introduce new variables in addition to the variables
X1, ..., X, used in the original system. We will make sure that for each of the original
variables x;, the set of possible values of x; will remain the same. Thus, we will
be sure that the resulting final system has exactly the same bounds for xi, ..., x,
as the original system. Thus, if there is a polynomial-time algorithm that can find
these bounds for an arbitrary linear interval system with coefficients [0,0], 1, 1],
or [0, 1], then by applying this algorithm to the transformation result, we would
be able to compute the bounds for the original system, and this computation is
an NP-hard problem. Thus, the problem of computing solution bounds for linear
interval systems with coefficients [0,0], [1, 1], or [0, 1] is also NP-hard.

We will also make sure that each transformation step preserves the number of
non-degenerate interval coefficients (i.e., coefficients that are not of the type [a, a)),
and that when we choose some values inside these intervals, all the variables of the
resulting systems are uniquely determined. In other words, we will make sure that
the systems obtained on each transformation step are regular. Thus, the problem
of computing solution bounds for regular linear interval systems with coefficients
[0,0], [1, 1], or [0, 1] is also NP-hard.
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1) The first transformation simplifies the right-hand side of the linear equation.
Namely, we introduce a new variable xp, replace each of n equations Y a;x; = b; by
an equation a;xg + Y a;x; = 0 with a;p = —b;, and add a new equation x = 1.

If the vector (xy, ..., x,) belongs to the solution set of the new system, then xy = 1,
and thus, the values x1, ..., x, satisfy the original equations. Vice versa, if the values
x1, ..., X, satisfy the original equations, then for xo = 1, the transformed equations
also hold. Thus, for each of the variables x;, ..., x,, the bounds are the same for the
original and for the transformed equations.

If we fix the values a;; € ay;, then, since the original system was regular, the
values xi,...,x, would be uniquely determined. The only missing value xp can
be now uniquely determined from the equation xo = 1. Thus, the new system is
regular.

Hence, this transformation preserves both the bounds on x; and the uniqueness
(regularity) property.

2) For every i, all the bounds of all the coefficients a;; in i-th equation are rational
numbers (i.e., fractions). If we multiply all coefficients of this equation by the least
common denominator of the corresponding fractions, we get a new equation in
which all bounds of all coefficients are integers.

In the second transformation, we apply this procedure to all equations. As a
result, we get an equivalent (thus regular) linear interval systems, in which all
bounds of all interval coefficients are integers.

In particular, the only equation with a the non-zero right-hand side (namely, the
equation xp = 1) stays the same.

3) On the third step, for each j = 0, ..., n, we introduce two new variables n; and
pj (here, n stands for negative, and p for positive).

For each j, we add two new equations x; + n; = 0 and n; + p; = 0. In each
original equation, we replace each term [a; ,aj;]x; by one of the following six
expressions:

o If the interval [a,-; ,a,-*j‘-] is non-degenerate (i.e., if a; < a,j-), then we use one of
the following three expressions:
— If a; < 0, then we replace the term [a;,aj]x; by the sum |aj |n; +
[0,af — a; 1x;.
7

— Ifa; >0, then we replace this term by the sum a;; p; + [0, a;;- —a; 1x;.

- If a; =0, then we leave the term [a ai;]xj = [0, a,-’j'-]xj) unchanged.

o If the interval [a,;-,a,-’;] is degenerate (i.e., if a,»j—- = a,-;), then we use one of the
following two expressions:

— Ifa; <0, then we replace the term [a;;, ajf]x; by |a; |n;.

— Ifa; =0, then we delete the term [a;; ,a;;xj (because it is equal to 0).

— If a,; > 0, then we replace the term [ai; ,ai’j'-]x,- by a,;pj.
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As a result, we get a linear interval system in which each interval coefficient is
either a positive integer, or an interval of the type [0, z] for some positive integer
zZ.

Let us show that this transformation does not change the bounds of the solution
set for xy, ..., x,,, and preserves regularity.

Indeed, if xg, x1, ..., X is a solution of the system that we had before this step,
then, by adding n; = —x; and p; = x;, we get a solution of the transformed system.
Vice versa, if we have a solution of the transformed system, then from the new
equations x; + n; = 0 and n; + p; = 0, we conclude that n; = —x;, p; = —n; = x;. If
a; <0and a; < a,], then, for every z;; € [0, a,-’;- —a;; ], we have

lag; Inj + zjx; = aj; X + 2% = a;x;,

where a; = a; +z; € a; + [O,ai} a;jl=la;,a} ;1- Thus, xo = 1,xy, ..., x, form
a solution of the system that we had before th1s step (A similar proof holds in all
five other cases: a; =0< a,j,O <a; < au,aj =af <0, a; =a; =0, and

a; =aj >0)

Since the system that we had before this step was regular, for each choice of coef-
ficients in their intervals, the variables xo(= 1), xy, ..., x, are uniquely determined;
the new variables n; and p; are uniquely determined from x;. Thus, the transformed

system is also regular.

4) Let us now describe the fourth (and final) transformation step. To &mphfr
the description of this step, let us first rename the variables x;, n;, and p; into x

a9, and pl,

Let N denote the largest integer bound in the system obtained after the third
step, let d denote the number of binary digits in the binary representation of N (i.e.,
d = |log,(N)]), and let I denote the set of all pairs (i, j) for which i-th equation of
the system that we had before this step contains the term [0, z;]x;. The transformed
system will have the following variables:

e Foreachj=0,...,n, and foreach k =0, ..., d, variables x[k] [k] , and p[k]
e For each pair (i,j) € /, and for each k =0, ..., d, variables x,[jk], ,[jk], and p[k].
This system will consist of the following equations:
o Equations x[k] + n["] =0and p[k] + n[k] =0 (forallj < n).
e Equations x[k] [k] =0 and p[k] [k] =0 (for all (i,j) € I).
Equations x[k] +p[k] + n[k+1] 0 (for allj < nand k < d).
Equations x,[jk] +p,[J” [k+1] =0 (forall (i,j) e I and k < d).
Equations n,-[jO] + [0, I]xj[O] =0 (for all (i,j) € I).

Equations that are obtained from the equations of the system that we had before
this step by the following replacement:
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— Each term of the type zn; is replaced by the sum of the terms n}k] for all
places k on which the binary expansion of z has 1 (i.e., for which g = 1 in
the binary expansion z = 3 g2%).

— Each term of the type zp; is replaced by the sum of the terms p}k] for all
places k on which the binary expansion of z has 1.

— Each term of the type [0, z;]x; is replaced by the sum of the terms x[k] for all
places k on which the binary expansion of z;; has 1.

As a result, we get a linear interval system in which each interval coefficient is
either 0, or 1, or an interval [0, 1].

Let us show that this transformation does not change the bounds of the solution
set for x, ..., x,,, and preserves regularity.

Indeed, if the values x;, nj, and p; form a solution of the system that we had
before this step, a solution that corresponds to the coefficients ¢;; € [0, z;;], then,

as one can check, the values x[k] = pj[k] 2K xj, n [k] = -2k . x, ¢ = ¢ij !z
= =pil =2k ¢ - xj, and n[Jk] = —2k. ¢} - x; form a solutlon of the transformed

system for c;€[0,1].
Indeed, e.g., for this choice of variables, the sum of the terms pj[k] for all places

k on which the binary expansion of z has 1, is equal to the sum of the terms 2"xj,
i.e., to the product of x; and the sum of the terms 2* that corresponds to all places k
on which the binary expansion of z has 1. This sum is exactly the binary expansion
of z, and hence, the sum is equal to zx;.

Vice versa, if we have a solution of the transformed system, for c¢;; e [0, 1],
then:

* From the equations x][ 14+ n[k] =0 and p 14 n[k] = 0, we conclude that n[k] =

x4 and pli =l x;kl.

. From the equations xj[k] + p Ty n[k“] 0, we can now conclude that n[k”] =
—2x[k] hence, xj[k“] = j[k“] Zx[k] By mductlon over k, we can now
conclude that x[k] 2% . 19 and hence, that n[k] —2k. 19 and p[k] =2k.x [O]

» Similarly, we can conclude thatx[k] 2k. ,[10], ,[Jk] = 2k ,[jol,and p[k] xi[jol.

e From the equation n[O] + {0, l]x[O] 0, and from our assumption that the coeffi-
cient is equal to ¢;; € [0, 1], we conclude that n[O] —c,jxj[o], and therefore, that
Pl = —nl% = o1

Thus, the sums of the terms of the type n I'and x[k] reduce to zn; and zx; = (zcij)x;,
where z¢j; € z- [0, 1] = [0, z]. Thus, the values xo = 1,x,...,x, form a solution of
the system that we had before this step.

Since the system that we had before this step was regular, for each choice of
coefficients in their intervals, the variables xp(= 1), x, ..., x, are uniquely deter-
mined; the new variables x”‘] [k] , and p["] are uniquely determined by the values
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x;. For fixed c;j, the values of the variables x,-[jk], n,-[jk], and pi[;‘] are also uniquely
determined by the values x;. Thus, the transformed system is also regular.

The theorem is proven. m]
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