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Abstract

We study systems of relations of the form Axσ b, where σ is a vector of binary relations
with the components “=”, “≥” and “≤”, and the parameters (elements of the matrix A

and right-hand side vector b) can take values from prescribed intervals. What is considered
to be the set of its solutions depends on which logical quantifier is associated with each
interval-valued parameter and what is the order of the quantifier prefixes for certain
parameters. For solution sets that correspond to the quantifier prefix of a general form,
we present equivalent quantifier-free descriptions in the classical interval arithmetic, in
Kaucher complete interval arithmetic and in the usual real arithmetic.

Keywords: interval linear systems of equations and inequalities, quantifier elimination,
Kaucher interval arithmetic.
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1 Introduction

1.1 Quantifier solutions to interval linear systems

In the classical interval arithmetic IR, an interval is a non-empty bounded connected closed
subset of the real line R. According to the notation standard [9], we will denote interval objects
in bold type (A, B, . . . , y, z), in contrast to usual point (non-interval) quantities that are not
specifically distinguished.

We consider a system of linear equations and inequalities of the form

Axσ b, A ∈ R
m×n, x ∈ R

n, b ∈ R
m, σ ∈ {=,≥,≤}m, m, n ∈ N,

where x is a vector of unknowns, σ is a vector of binary relations, with the components “=”,
“≥” and “≤”, and every parameter u ∈ R (which may be an element of the matrix A or of the
right-hand side b) can take values within the prescribed eponymous interval u from IR.

∗The work is a revised and extended English translation of the original Russian work Sharaya, I.A.

Quantifier-free descriptions of interval-quantifier linear systems // Trudy Instituta Matematiki i Mekhaniki
UrO RAN (Proceedings of the Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy
of Sciences). – 2014. – Vol. 20, No. 2. – P. 311–323.
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As an example of such “mixed” systems, we can consider a 3× 2-system







2x1 − 3x2 ≤ 4,

5x1 + 6x2 = 7,

−x1 + 4x2 ≥ 5.

With each parameter u, we connect either the universal quantifier “∀” or the existential
quantifier “∃” as well as the corresponding elementary quantifier prefix (∀u ∈ u) or (∃u ∈ u).
Such interval uncertainty of parameters can be specified by the interval matrix A ∈ IR

m×n,
the quantifier matrix A of the same size as A, the interval vector b ∈ IR

m and the quantifier
vector β of length m. All the elementary quantifier prefixes can be written down in an arbitrary
order, and we denote the resulting prefix of the length m(n + 1) as Q(A, b,A, β).

Definition 1 For given interval matrixA, interval vector b, and quantifier prefix Q(A, b,A, β),
the interval-quantifier linear system of relations, or interval-quantifier linear system in short,
will be called the predicate of the form Q(A, b,A, β)(Axσ b). A vector x̃ ∈ R

n is referred to
as solution to the interval-quantifier linear system if the predicate Q(A, b,A, β)(Axσ b) takes
the value “true” in x̃.

This definition is, in fact, a further refinement of the general ideas expressed in [20]. Also, the
above introduced interval-quantifier linear systems are a natural generalization of interval linear
systems, which have long been studied in interval analysis. Interval linear system of the form
Axσ b is a formal record, for which we specially stipulate what is considered a solution in each
specific case. Usually, interval linear systems of only equations or of only inequalities of the same
sign are considered, while their solutions are taken as formal (algebraic) solutions, AE-solutions,
strong solutions, weak solutions, tolerable solutions, controllable solutions (sometimes called
simply “control solutions”), etc. (see [20,21; 3, chapter 2] and references in these publications).

In order to agree with the existing terminology in this field, the solutions to the interval-
quantifier linear system Q(A, b,A, β)(Axσ b) will also be called the quantifier solutions of
the interval linear system Axσ b. Notice that AE-solutions, strong solutions, weak solutions,
tolerable solutions, controllable solutions to the system Axσ b are subsumed under the quan-
tifier solutions. In particular, the AE-solutions to interval linear systems of equations are their
quantifier solutions for which the determining predicate Q(A, b,A, β)(Axσ b) has the so-called
AE-form, that is, in which all occurrences of the universal quantifier “∀” precede the occurrences
of the existential quantifier “∃”.

The notation Q(A, b,A, β)(Axσ b) defines all possible interval-quantifier linear systems in
parametric form. The parameters of the description are A, b, A, β, σ and the order of
elementary quantifier prefixes in Q (since the elementary prefixes with different quantifiers do
not always commute). Imposing additional constraints on the parameters, we obtain different
classes (subsets) of interval-quantifier linear systems. For example, if we require equality to be
the value of each component of the relation vector σ, then we obtain a class of interval-quantifier
systems of linear equations.

1.2 Transition to quantifier-free descriptions

Interval-quantifier linear systems and their solutions were introduced in the previous section
through a logical predicate of the first order. Predicative description is close to the formulation
of practical problems, but it allows very limited means of theoretical investigation and is not
at all suitable for calculations. As a consequence, the following problem arises:
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Problem For the widest possible subset of interval-quantifier linear systems, find a convenient
quantifier-free description of their solutions in algebraic systems with sufficiently developed
tools for equivalent transformations, study and computation.

Usually, the solution sets to interval systems of equations and inequalities are described
using real arithmetic in R [3, chapter 2; 2, pp. 93–95; 5, 10, 11, 15, 16, 22], since it is simple,
familiar, has good properties, and we can apply developed numerical methods in R. For var-
ious subclasses of interval quantifier systems of linear equations, a number of quantifier-free
descriptions have been obtained in interval arithmetics [1, 14, 20, 21]. Despite poor algebraic
properties of the interval arithmetics (the absence of the distributivity, etc.), these descriptions
turned out to be very useful. For instance, the description of the AE-solution sets of interval
systems of linear equations made it possible to construct a general theory of these solutions
and interval numerical methods for inner and outer estimation of the AE-solution sets [20,21].

The features of the quantifier-free descriptions proposed in this paper are as follows:

1. They expand the class of the interval-quantifier linear systems for which a convenient
description of solutions can be given in comparison with those known descriptions where
non-negativity of x is not required. (The nonnegativity requirement on the vector of
unknowns can be formulated as an additional restriction on the parameters A, b and σ.
A.Vatolin in [22] obtained quantifier-free descriptions for solutions of general interval-
quantifier linear systems, but his result is only valid under nonnegativity condition on the
variables, which is quite severe limitation in practice. The class Qσ of interval-quantifier
linear systems we discuss in the present paper has no restrictions on A, b and σ, but it
has a restriction on the order of the elementary quantifier prefixes.)

2. Quantifier-free descriptions of the solutions are obtained in ordinary real arithmetic R,
classical interval arithmetic IR, and in Kaucher interval arithmetic KR. This enables us
to carry out investigation of the solution sets and computation with them by both real
and interval methods.

2 Necessary facts about interval arithmetics

In this section, we give the necessary information on various interval arithmetics. The desire
to improve the properties of the classical interval arithmetic IR led to the appearance of its
various extensions. The most popular of them is Kaucher interval arithmetic KR developed
by E.Kaucher [8]. E.Gardeñes and A.Trepat [4] and then S.Markov [13] proposed another
similar constructions. All these researchers constructed extensions of the classical interval
arithmetic IR on the basis of different principles, which was reflected in the names of the
corresponding algebraic structures: extended interval arithmetic [8], modal interval arithmetic
[4], arithmetic of directed intervals [13]. However, despite the difference in their construction,
all three algebraic systems coincide up to notation.

Interval in KR is just a record of the form [a, b], where a, b ∈ R. In IR, the values a and b
should additionally satisfy the requirement a ≤ b. Intervals are also denoted by small boldface
letters, e. g., u ∈ KR. If u and [a, b] denote the same interval, then a is called left (lower)
endpoint of the interval, which is written as u, and b is called the right (upper) endpoint of the
interval u, which is written as u. Therefore, u ≡ [u,u]. The intervals from IR, as was stated
in Introduction, can be considered as subsets of the real axis R:

[u,u] = { u ∈ R | u ≤ u ≤ u }.
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In this paper, we will mainly use concepts and properties of Kaucher interval arithmetic,
and we present them below.

Two intervals are considered equal if both their left and right endpoints coincide:

u = v
def
⇐⇒

{

u = v,

u = v.

The inclusion relation “⊆” in KR continues the inclusion relation in IR that considers
intervals as sets. So, we have:

u ⊆ v
def
⇐⇒

{

u ≥ v,

u ≤ v.
(1)

In particular, [6, 3] ⊆ [4, 5].
The operations of taking the least upper bound (supremum) and greatest lower bound

(infimum) with respect to inclusion are introduced for families of intervals bounded from above
and from below respectively, using the infimum and supremum in R:

∨

i∈I

ui := sup
i∈I

⊆ui :=
[

inf
i∈I

ui, sup
i∈I

ui

]

,

∧

i∈I

ui := inf
i∈I

⊆ui :=
[

sup
i∈I

ui, inf
i∈I

ui

]

.

We need the following unary operations on intervals:

midu := ǔ := (u+ u)/2 — the midpoint,

radu := û := (u− u)/2 — the radius,

dualu := [u,u] — the dualization, i. e., swapping
the endpoints of the interval,

prou :=

{

u, if u ≤ u,

dualu, if u > u,
— the proper projection

of the interval.

Notice that the dualization makes sense only in KR.
Arithmetic operations of addition, subtraction, multiplication and division are determined

through the corresponding real operations and taking exact lower and upper bounds by inclusion
so that

u ∗ v =
∨∧u∨∧v

(u ∗ v), where
∨∧u

:=











∨

prou
, if u ≤ u,

∧

prou
, if u ≥ u,

for each ∗ ∈ {+,−, ·, /}. Naturally, division is determined only for such intervals v that
0 6∈ pro v. The addition and multiplication are commutative. The addition is defined “by
endpoints”:

u+ v = [u+ v,u+ v]. (2)
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The real numbers λ ∈ R are identified with intervals of zero radius [λ, λ]. Multiplication of
an interval by the number λ ∈ R satisfy the following properties:

λu =

{

[λu, λu], for λ ≥ 0,

[λu, λu], for λ ≤ 0;
(3)

(dualu)λ
(3)
= dual(uλ) = [uλ,uλ]. (4)

The symbol −u means the result of multiplication (−1) · u, not taking the opposite interval
for u with respect to the addition.

The matrices and vectors whose elements are intervals are called interval matrices and
interval vectors respectively. We denote byAi: the i-th row of the matrixA. For interval vectors
and matrices, the endpoints, the relations = and ⊆, the operations mid, rad, dual, pro, as well
as addition, subtraction and multiplication by numbers are introduced componentwise. For
example, (dualA)ij := dual(Aij), (A−B)ij := Aij −Bij, (−A)ij = −Aij . The multiplication
rules for interval vectors and matrices are interval extensions of analogous rules for the non-
interval case:

(AB)ij :=
∑

k

AikBkj. (5)

Also, we need the property

(dualA)x = dual(Ax) for A ∈ KR
m×n, x ∈ R

n, (6)

which can be easily derived from the definition of interval matrix-vector product (a particular
case of (5)) with the use of (2) and (4).

3 Results

3.1 Quantifier-free descriptions in interval arithmetics

First of all, we are going to develop quantifier-free descriptions in interval arithmetics for
interval-quantifier linear systems and their solutions. We need the following notation:

Qi:(A, b,A, β) will denote a quantifier prefix obtained from Q(A, b,A, β) by deleting all
those elementary prefixes that are not related to the i-th row of the system;

Q∀∃(A, b,A, β) will denote a quantifier prefix of the form Q(A, b,A, β) satisfying the
additional condition: for each i ∈ {1, . . . , m} in Qi:(A, b,A, β), the universal quantifiers
(if any) precede the existential quantifiers (if any);

QAE(A, b,A, β) will denote a quantifier prefix of the form Q(A, b,A, β) with the addi-
tional condition: all the universal quantifiers (if any) precede all the existential quantifiers
(if there are such quantifiers);

A∀,A∃ ∈ IR
m×n, b∀, b∃ ∈ IR

m, Ac ∈ KR
m×n, bc ∈ KR

m will denote interval vectors and
matrices defined by the rules

A∀
ij :=

{

Aij, if Aij = ∀,

0, if Aij = ∃,
A∃

ij :=

{

Aij, if Aij = ∃,

0, if Aij = ∀,

b∀i :=

{

bi, if βi = ∀,

0, if βi = ∃,
b∃i :=

{

bi, if βi = ∃,

0, if βi = ∀,

(7)
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Ac

ij :=

{

Aij, if Aij = ∀,

dualAij, if Aij = ∃,
bci :=

{

dual bi, if βi = ∀,

bi, if βi = ∃.
(8)

The Gothic letter “c” as the superscript of A and b in formula (8) means “characteristic”.
Overall, the matrix Ac and vector bc will be called characteristic matrix and characteristic

vector that correspond to the distribution of interval uncertainty types (A-type or E-type)
described by the quantifier matrix A and vector β in the system under study [20, 21].

We should write out the property of interval-quantifier linear systems, which we will repeat-
edly apply in the sequel: each elementary quantifier prefix from Q(A, b,A, β) can be carried
to the row of the system in which the parameter of this prefix is present. This means

Q(A, b,A, β) (Axσ b) ⇐⇒ &
i∈{1,...,m}

Qi:(A, b,A, β) (Ai:xσi bi). (9)

The substantiation for this property is that the system of relations (Axσ b) is, in terms of logic,
the conjunction of the relations, that is,

&
i

(

Ai:xσi bi
)

.

Additionally, for the conjunction, there hold equivalences

∀t ∈ S
(

P1(t) & P2

)

⇐⇒
(

∀t ∈ S P1(t)
)

& P2,

∃t ∈ S
(

P1(t) & P2

)

⇐⇒
(

∃t ∈ S P1(t)
)

& P2,

where S is the set of values of the variable t,

P1, P2 are formulas, and P2 does not depend on t.

In view of (9), it is obvious that

Q∀∃(A, b,A, β) (Axσ b) ⇐⇒ QAE(A, b,A, β) (Axσ b), (10)

i. e., the vector x is a solution to the system Q∀∃(A, b,A, β) (Axσ b) if and only if it is a solu-
tion to the system QAE(A, b,A, β) (Axσ b). Thus, although the class of systems of the form
Q∀∃(A, b,A, β) (Axσ b) is wider than the class of systems of the form QAE(A, b,A, β) (Axσ b),
the statements proved for the solutions to the system QAE(A, b,A, β) (Axσ b) are trivially
generalized into statements for the solutions to the system Q∀∃(A, b,A, β) (Axσ b).

Now let us turn to the interval-quantifier systems of linear equations. Quantifier-free descrip-
tions for the widest subset of such systems have been obtained by S.P. Shary. In [18, 19], he
first proved that

QAE(A, b,A, β) (Ax = b) ⇐⇒ A∀x− b∀ ⊆ b∃ −A∃x ⇐⇒ Acx ⊆ bc. (11)

(see also [20]). Equivalence (10) allows us to make the following generalization of (11).

Theorem 1

Q∀∃(A, b,A, β) (Ax = b) ⇐⇒ A∀x− b∀ ⊆ b∃ −A∃x ⇐⇒ Acx ⊆ bc. (12)
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Theorem 1 for the interval-quantifier system of equations Q∀∃(A, b,A, β) (Ax = b) gives
equivalent quantifier-free inclusion systems in IR

A∀x− b∀ ⊆ b∃ −A∃x

and in KR

Acx ⊆ bc.

Definition 2 Let us agree to refer to interval quantifier systems of relations, in which the
vector of relations σ consists of the same components, as relationally homogeneous systems.

The results of Theorem 1 is intended for systems of equations, and our immediate goal is
to obtain similar results for relationally homogeneous systems of inequalities.

Theorem 2

Q(A, b,A, β) (Ax ≥ b) ⇐⇒ A∀x+A∃x ≥ b
∀
+ b∃ ⇐⇒ Acx ≥ bc, (13)

Q(A, b,A, β) (Ax ≤ b) ⇐⇒ A∀x+A∃x ≤ b∀ + b
∃

⇐⇒ Acx ≤ bc. (14)

P r o o f. We carry out the proof only for the chain of equivalences (13). For (14), the
substantiation is completely similar.

1) From (9), it follows that

Q(A, b,A, β) (Ax ≥ b) ⇐⇒ &
i∈{1,...,m}

Qi:(A, b,A, β) (Ai:x ≥ bi). (15)

2) Using the fact that

Ai:x ≥ bi ⇐⇒

n
∑

j=1

Aijxj + (−bi) ≥ 0

and that, for any continuous functions h : R2 → R, g : R → R and an interval u ∈ IR, there
holds

(∀u ∈ u) (h(u, x) + g(x) ≥ 0) ⇐⇒ min
u∈u

h(u, x) + g(x) ≥ 0,

(∃u ∈ u) (h(u, x) + g(x) ≥ 0) ⇐⇒ max
u∈u

h(u, x) + g(x) ≥ 0,

enables us to get a quantifier-free description for Qi:(A, b,A, β) (Ai:x ≥ bi):

Qi:(A, b,A, β) (Ai:x ≥ bi) ⇐⇒

n
∑

j=1

extrAij

Aij∈Aij

(Aijxj) + extrβi

bi∈bi
(−bi) ≥ 0, (16)

where “extr” means conditional extremum, such that

extr∀ = min, extr∃ = max .

3) Thanks to the equalities

min
u∈u

(ux) = ux, max
u∈u

(ux) = ux, min
u∈u

(u) = u, max
u∈u

(u) = u,

7



which are valid for any interval u ∈ IR, and taking into account (2), the sum of the extrema
in (16) can be expressed in terms of the matrices A∀, A∃ and the vectors b∀, b∃ from (7):

n
∑

j=1

extrAij

Aij∈Aij

(Aijxj) + extrβi

bi∈bi
(−bi) ≥ 0 ⇐⇒ A∀

i:x+A∃
i:x ≥ b

∀

i + b∃i . (17)

4) From (15)–(17), it follows that

Q(A, b,A, β) (Ax ≥ b) ⇐⇒ A∀x+A∃x ≥ b
∀
+ b∃.

5) Let us prove the second equivalence in the chain (13). For the matrix Ac in (8), we have

[Acx,Acx] = Acx

definitions
of Ac,A∀,A∃

= A∀x+ (dualA∃)x

properties
(6) and (2)

= [A∀x+A∃x, A∀x+A∃x], (18)

and therefore Acx = A∀x+A∃x. The definitions of the vectors bc, b∀, and b∃ give

[bc, bc] = bc = dual(b∀) + b∃ = [b
∀
+ b∃, b∀ + b

∃
], (19)

hence bc = b
∀
+ b∃. Overall, we get

A∀x+A∃x ≥ b
∀
+ b∃ ⇐⇒ Acx ≥ bc.

The proof of Theorem 2 is complete.

In the interval arithmetics IR and KR, the relations “≥” and “≤” are applicable, and
they are continuations of the same relations over R. For vectors, “≥” and “≤” are introduced
componentwise. This allows us to formally refer to the records with A∀, A∃, b∀, b∃ in (13)
and (14) as inequalities in classical interval arithmetic, while the records with Ac and bc will
be called inequalities in the Kaucher arithmetic. Still, in practice it is more convenient to
understand all inequalities from (13) and (14) as componentwise inequalities in R

m.
From (9) and Theorems 2, the following remarkable fact follows: the solution sets of interval-

quantifier systems of linear inequalities with arbitrary σ ∈ {≥,≤}m does not depend on the

order of the elementary quantifier prefixes, that is, all interval-quantifier systems of linear

inequalities with the same A, b, A, β and σ have the same solution sets. This property
essentially distinguishes interval systems of inequalities from interval systems of equations.

We give a corollary of Theorems 1 and 2, which establishes the relation between AE-solution
sets of interval systems of linear equations and quantifier solution sets of interval relationally
homogeneous systems of linear inequalities.

Corollary 1

QAE(A, b,A, β) (Ax = b) ⇐⇒ Q∀∃(A, b,A, β) (Ax = b) ⇐⇒

{

Q(A, b,A, β)(Ax ≥ b),

Q(A, b,A, β)(Ax ≤ b).

The proof is given by the following chain of equivalences:

{

Q(A, b,A, β) (Ax ≥ b)

Q(A, b,A, β) (Ax ≤ b)

Theorem 2
⇐⇒

{

Acx ≥ bc

Acx ≤ bc
definition of ⊆

⇐⇒ Acx ⊆ bc

Theorem 1
⇐⇒ Q∀∃(A, b,A, β) (Ax = b)

(10)
⇐⇒ QAE(A, b,A, β) (Ax = b).

8



Theorems 1–2 give quantifier-free descriptions for relationally homogeneous systems. Next,
we turn to the consideration of systems with an arbitrary relationship vector σ.

Definition 3 We denote by Qσ(A, b,A, β) a quantifier prefix of the form Q(A, b,A, β) satis-
fying the following condition: if σi is “=”, then the universal quantifiers (if any) precede the
existential quantifiers (if any) in Qσ

i:(A, b,A, β).

Definition 4 The class Qσ within the set of all interval-quantifier systems of linear relations
is a subset consisting of all systems of the form Qσ(A, b,A, β) (Axσ b).

The following theorem gives a quantifier-free description of the class Qσ in the interval
arithmetics KR and IR, with the use of componentwise inequalities from R

m
, where R denotes

the extended real axis, i. e., R = R ∪ {−∞,∞}.

Theorem 3

Qσ(A, b,A, β) (Axσ b) ⇐⇒

{

Acx ≥ bc + u,

Acx ≤ bc + v,
⇐⇒







A∀x+A∃x ≥ b
∀
+ b∃ + u,

A∀x+A∃x ≤ b∀ + b
∃
+ v,

(20)

where Ac and bc are from (8), A∀, A∃, b∀, b∃ are from (7), while the vectors u, v ∈ R
m

are

defined as

ui :=

{

0, if σi is “=” or “≥”,

−∞, if “σi” is “≤”,
vi :=

{

0, if σi is “=” or “≤”,

∞, if σi is “≥”.

P r o o f (step by step).
1) Due to the fact that each interval parameter (the element of the matrix A or the vector

b) enters only one row of the system Axσ b, we have (9) and, in particular,

Qσ(A, b,A, β) (Axσ b) ⇐⇒ &
i∈{1,...,m}

Qσ
i:(A, b,A, β) (Ai:xσi bi). (21)

2) We eliminate quantifier prefixes in the predicate Qσ
i:(A, b,A, β) (Ai:xσi bi) using Theo-

rems 1 and 2, based on the specific values of σi:

Qσ
i:(A, b,A, β) (Ai:x = bi)

(12)
⇐⇒ (Acx)i ⊆ bci ⇐⇒

(

(Acx)i ≥ bci
)

&
(

(Acx)i ≤ bci
)

,

Qσ
i:(A, b,A, β) (Ai:x ≥ bi)

(13)
⇐⇒ (Acx)i ≥ bci ⇐⇒

(

(Acx)i ≥ bci
)

&
(

(Acx)i ≤ ∞
)

,

Qσ
i:(A, b,A, β) (Ai:x ≤ bi)

(14)
⇐⇒ (Acx)i ≤ bci ⇐⇒

(

(Acx)i ≥ −∞
)

&
(

(Acx)i ≤ bci
)

.

3) Introducing the vectors u and v, we pass to the matrix-vector inequalities

Qσ(A, b,A, β) (Axσ b) ⇐⇒

{

Acx ≥ bc + u,

Acx ≤ bc + v.

4) The equivalence

{

Acx ≥ bc + u,

Acx ≤ bc + v,
⇐⇒







A∀x+A∃x ≥ b
∀
+ b∃ + u,

A∀x+A∃x ≤ b∀ + b
∃
+ v,

9



is obvious in view of (18) and (19). The proof of Theorem 3 is complete.

Convenient quantifier-free representations for the class Qσ can be obtained from Theorem 3,
if we introduce the sets of intervals KR = {[z, z] | z, z ∈ R} and IR = {[z, z] | z, z ∈ R, z ≤ z}
and continue relation “⊆” according to rule (1). Then

Qσ(A, b,A, β) (Axσ b) ⇐⇒ Acx ⊆ bc +w ⇐⇒ A∀x− b∀ ⊆ b∃ −A∃x+w, (22)

where Ac and bc from (8), A∀, A∃, b∀, b∃ from (7), and the interval vector w ∈ IR
m

is such
that

wi :=











0, if σi is “=”,

[0,∞], if σi is “≥”,

[−∞, 0], if σi is “≤”.

The inclusion
Acx ⊆ bc +w

provides a quantifier-free description of the solution set to the quantifier interval linear system
Qσ(A, b,A, β) (Axσ b) in any interval arithmetic that extends the Kaucher arithmetic to the
set KR. An example of such an extension is given in [7]. We agree to denote the arithmetic
extension, as well as its basic set, through KR.

Similarly, the inclusion
A∀x− b∀ ⊆ b∃ −A∃x+w

provides a quantifier-free description of the solution set to the system Qσ(A, b,A, β) (Axσ b)
in interval arithmetic that extends IR to the set IR. Examples of the extension of the classical
interval arithmetic to a set of intervals with infinite endpoints are described in [12]. Let us agree
to refer to any such extension as arithmetic IR. Thus, the relation (22) gives quantifier-free
descriptions of the solution sets to quantifier interval linear systems of class Qσ in the interval
arithmetics KR and IR.

Comparing the quantifier-free descriptions obtained for the solution sets to quantifier inter-
val linear systems, we can see that,

on the one hand, the quantifier-free description in KR (KR) is much more remote from the
initial data A, b, A and β due to multilevel notation, and,

on the other hand, the description in KR (KR) is more concise and convenient for analysis
than a similar description in IR (IR).

3.2 Quantifier-free descriptions in real arithmetic

In this section, we derive quantifier-free descriptions of the quantifier solution sets to interval
linear systems in the real arithmetic R. To do that, we will need Hadamard product of matrices
(entrywise product), denoted by the symbol “◦” (see e. g. [6]). Hadamard product is defined for
two matrices of the same dimensions and produces another matrix in which the ij-th element
is the product of the ij-th elements of the original matrices:

(A ◦B)ij = AijBij .

Also, notice that the operation of taking the modulus of a vector is understood componentwise.
If, for instance, x ∈ R

n, then |x| is a nonnegative vector with the components |x|i = |xi|.
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Theorem 4

Q∀∃(A, b,A, β) (Ax = b) ⇐⇒ |Ǎx− b̌| ≤ (As◦Â)|x|+ βs◦ b̂, (23)

Q(A, b,A, β) (Ax ≥ b) ⇐⇒ b̌− Ǎx ≤ (As◦Â)|x|+ βs◦ b̂, (24)

Q(A, b,A, β) (Ax ≤ b) ⇐⇒ Ǎx− b̌ ≤ (As◦Â)|x|+ βs◦ b̂, (25)

Qσ(A, b,A, β) (Axσ b) ⇐⇒ absσ(Ǎx− b̌) ≤ (As◦Â)|x|+ βs◦ b̂, (26)

where

As
ij =

{

1, if Aij = ∃,

−1, if Aij = ∀,
βs
i =

{

1, if βi = ∃,

−1, if βi = ∀,
(27)

absi
σ(y) =











|yi|, if σi is “=”,

−yi, if σi is “≥”,

yi, if σi is “≤”.

P r o o f.
1) The equivalence (23) was proposed and proved by Jiri Rohn at the international confer-

ence INTERVAL’96 (September–October of 1996, Würzburg, Germany), in a private talk with
Sergey Shary and Anatoly Lakeyev. Later, its reformulation with the use of Hadamard product
was proposed by Anatoly Lakeyev in the work [11]. Below, we present our own proof.

In view of Theorem 1,

Q∀∃(A, b,A, β)(Ax = b) ⇐⇒ Acx ⊆ bc.

Then, using the properties of Kaucher arithmetic

(∀u, v ∈ KR
m)

(

u ⊆ v ⇐⇒ |ǔ− v̌| ≤ v̂ − û
)

,

mid(Acx) = Ǎcx, rad(Acx) = Âc |x|, (28)

and we get
Acx ⊆ bc ⇐⇒ |Ǎcx− b̌c| ≤ b̂c − Âc |x|.

From the definitions of (8) and (27) for Ac, bc, As, and βs, we have

Ǎc = Ǎ, Âc = −As ◦ Â, b̌c = b̌, b̂c = βs ◦ b̂. (29)

2) Let us prove the equivalence (24). According to Theorem 2

Q(A, b,A, β)(Ax ≥ b) ⇐⇒ Acx ≥ bc.

Drawing on the obvious property of the Kaucher arithmetic

(∀u, v ∈ KR
m)

(

u ≥ v ⇐⇒ v̌ − ǔ ≤ v̂ − û
)

,

which allows us to replace the inequality between the endpoints by the inequality between
centers and radii, and then involving (28), we get

Acx ≥ bc ⇐⇒ b̌c − Ǎcx ≤ b̂c − Âc |x|.

Finally, we use (29).
3) The equivalence (25) is proved similarly to (24).

11



4) It remains to substantiate the equivalence (26). Just as in the item 1 of the proof of
Theorem 3, we have (21), i. e., the problem splits in rows. We apply, to each row, one of the
equivalences (23), (24) or (25), depending on the corresponding binary relation, and convolve
the resulting system of inequalities using the operation absσ.

The proof of Theorem 4 is complete.

From the equivalences (23)–(25), one more proof of Corollary 1 becomes obvious. In addi-
tion, it is not difficult to establish the following connection between relationally homogeneous
systems of inequalities of the opposite signs.

Corollary 2

Q(A, b,A, β) (Ax ≥ b) ⇐⇒ Q(−A,−b,A, β) (Ax ≤ b), (30)

Q(−A,−b,A, β) (Ax ≥ b) ⇐⇒ Q(A, b,A, β) (Ax ≤ b). (31)

P r o o f. Based on the properties of intervals

mid(−u) = −ǔ and rad(−u) = û, (32)

we can show the validity of relation (31):

Q(−A,−b,A, β) (Ax ≥ b)
(24)
⇐⇒ mid(−b)−mid(−A)x ≤

(

As◦ rad(−A)
)

|x|+ βs◦ rad(−b),

(32)
⇐⇒ −b̌+ Ǎx ≤ (As◦Â)|x|+ βs◦ b̂,

(25)
⇐⇒ Q(A, b,A, β) (Ax ≤ b).

Relation (30) is proved similarly.

Corollary 2 means that, if the sign of the inequality and the signs of all intervals of the
parameter values are reversed to the opposite, then the set of quantifier solutions to the interval
system of linear inequalities does not change. For example, the sets of solutions to the systems
(∀A ∈ A) (∃b ∈ b) (Ax ≥ b) and (∀A ∈ −A) (∃b ∈ −b) (Ax ≤ b) coincide.

3.3 Quantifier-free descriptions in KR, IR and R

for systems of basic types

So far, considering the interval-quantifier linear systems Q(A, b,A, β) (Axσ b), we tried to
obtain results in which there are no constraints on the parameters A, b, A, β and σ, and the
restrictions on the order of the elementary quantifier prefixes in Q are minimal. In this sense,
the most general descriptions were found for the class Qσ. In this section, we consider subsets
of interval-quantifier linear systems of class Qσ, which are distinguished by the requirement
of homogeneity of A and the homogeneity of β. Elements of all these subsets will be called
systems of basic types, and their solutions will be referred to as quantifier solutions of basic

types for interval linear systems of the form Axσ b.
Depending on which quantifiers fill the matrix A and the vector β, all the interval-quantifier

linear systems of the basic types are divided into 4 subsets, or 4 types. This subdivision
is presented in the last column of Table 1. For solutions to systems of each of the main
types, we give a proper name that continues the one used in [3,21] for solutions of relationally
homogeneous systems of this type. The names of the solutions are listed in the first column
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T a b l e 1

Basic types of quantifier solutions to the interval system Axσ b

Name Values of elements Interval-quantifier
of solution of the matrix A of the vector β system of basic type

weak ∃ ∃ (∃A ∈ A)(∃b ∈ b) (Axσ b)

tolerable ∀ ∃ (∀A ∈ A)(∃b ∈ b) (Axσ b)

controllable ∃ ∀ (∀b ∈ b)(∃A ∈ A) (Axσ b)

strong ∀ ∀ (∀A ∈ A)(∀b ∈ b) (Axσ b)

of Table 1, the values of the elements of the matrix A and components of the vector β are
listed in the second and third columns, and the fourth column gives the general form for the
interval-quantifier systems of the corresponding basic type.

Quantifier-free descriptions in KR, IR and R for systems of basic types can be obtained as
corollaries of the corresponding descriptions for systems of class Qσ. Let us explain that for
relationally homogeneous systems using Table 2.

In the Table 2, columns 4–7, corresponding to the basic types of quantifier solutions, are
obtained, in row-wise manner, from column 3 corresponding to quantifier solutions with the
prefix Qσ. It is necessary to use the definition of (8) of the matrix Ac and vector bc in the rows
corresponding to the Kaucher arithmetic. In the rows that correspond to the classical interval
arithmetic, we have to use definition (7) of the matrices A∀, A∃ and the vectors b∀, b∃. Finally,
the rows corresponding to real non-interval arithmetic, the definition (27) of the matrix As,
vector βs and the definition of the product ◦ should be used.

Approximately half of the descriptions of the basic types of quantifier solutions for interval
linear systems, presented in columns 4–7 of Table 2, have been obtained earlier. The descriptions
that were found first, obtained their own proper names. These are

the Oettli-Prager characterization in R [15] and the Beeck characterization in IR [1]
for weak solutions of the equation Ax = b,

the Gerlach description in R for weak solutions of the inequality Ax ≤ b [5].

The quantifier-free descriptions of the set of tolerable solutions to the equation Ax = b was
obtained in R by J.Rohn [16] and in IR by A.Neumaier [14]. The description in R was further
investigated by A.V. Lakeyev and S.I. Noskov in [10], and they also presented, as an evident one,
a description, in IR, for the set of controllable solutions to the equation Ax = b (see also [17]).
The remaining descriptions for the basic types of quantifier solutions to the equation Ax = b

in the interval arithmetics IR and KR are also known, for example, as obvious corollaries
of the statement (11), proved by S.PShary in [18, 19]. In Theorem 2.25 from the book [3],
a quantifier-free description in R for strong solutions to the interval inequality Ax ≤ b was
presented.

For interval-quantifier systems of basic types in which the relationship vector σ is not homo-
geneous, quantifier-free descriptions in KR can be obtained from (22) and (8). The descriptions
in IR can be derived from (22) and (7), and the descriptions in R follows from (26) and (27).
Below, we give these descriptions only in IR and R (in KR, they are less expressive and differ
from the descriptions in IR by obvious arithmetic transformations, in the same way as the
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T a b l e 2

Characterization of relationally homogeneous interval-quantifier linear systems and their main solution types

Type of solution and corresponding quantifier prefix Q(A, b,A, β)

Axσ b

S
p
ac
e

of
d
es
cr
ip
ti
on

Basic types of solutions

Quantifier Weak Tolerable Controllable Strong

Qσ(A, b,A, β) (∃A ∈ A) (∃b ∈ b) (∀A ∈ A) (∃b ∈ b) (∀b ∈ b) (∃A ∈ A) (∀A ∈ A) (∀b ∈ b)

Ax = b KR Acx ⊆ bc (dualA)x ⊆ b Ax ⊆ b (dualA)x ⊆ dual b Ax ⊆ dual b

IR A∀x− b∀ ⊆ b∃ −A∃x 0 ∈ b−Ax Ax ⊆ b b ⊆ Ax Ax− b ⊆ 0

R |Ǎx− b̌| ≤ (As◦Â)|x|+ βs◦b̂ |Ǎx− b̌| ≤ Â|x|+ b̂ |Ǎx− b̌| ≤ −Â|x|+ b̂ |Ǎx− b̌| ≤ Â|x| − b̂ |Ǎx− b̌| ≤ −Â|x| − b̂

Ax ≥ b KR Acx ≥ bc (dualA)x ≥ b Ax ≥ b (dualA)x ≥ b Ax ≥ b

IR A∃x+A∀x ≥ b∃ + b
∀

Ax ≥ b Ax ≥ b Ax ≥ b Ax ≥ b

R b̌− Ǎx ≤ (As◦Â)|x|+ βs◦b̂ b̌− Ǎx ≤ Â|x|+ b̂ b̌− Ǎx ≤ −Â|x|+ b̂ b̌− Ǎx ≤ Â|x| − b̂ b̌− Ǎx ≤ −Â|x| − b̂

Ax ≤ b KR Acx ≤ bc (dualA)x ≤ b Ax ≤ b (dualA)x ≤ b Ax ≤ b

IR A∃x+A∀x ≤ b
∃
+ b∀ Ax ≤ b Ax ≤ b Ax ≤ b Ax ≤ b

R Ǎx− b̌ ≤ (As◦Â)|x|+ βs◦b̂ Ǎx− b̌ ≤ Â|x|+ b̂ Ǎx− b̌ ≤ −Â|x|+ b̂ Ǎx− b̌ ≤ Â|x| − b̂ Ǎx− b̌ ≤ −Â|x| − b̂
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descriptions in KR and IR differ from each other in Table 2):

(∃A ∈ A)(∃b ∈ b) (Axσ b) ⇐⇒ 0 ∈ b−Ax+w ⇐⇒ absσ(Ǎx− b̌) ≤ Â|x|+ b̂;

(∀A ∈ A)(∃b ∈ b) (Axσ b) ⇐⇒ Ax ⊆ b+w ⇐⇒ absσ(Ǎx− b̌) ≤ −Â|x|+ b̂;

(∀b ∈ b)(∃A ∈ A) (Axσ b) ⇐⇒ b ⊆ Ax+w ⇐⇒ absσ(Ǎx− b̌) ≤ Â|x| − b̂;

(∀A ∈ A)(∀b ∈ b) (Axσ b) ⇐⇒ Ax− b ⊆ w ⇐⇒ absσ(Ǎx− b̌) ≤ −Â|x| − b̂.

4 Conclusion

The main results of the paper are presented in Theorems 2–4 (equivalence (23) was previously
known) and in Corollary 1.

Among the statements that have no restrictions on the parameters A, b, A, β and σ, those
that give quantifier-free descriptions of interval-quantifier linear systems of class Qσ have the
greatest generality. These are the relation (20), which provides a transition to KR and IR, the
relation (22) for the transition to KR and IR, and equivalence (26) that allows us to go into R.

The usefulness of quantifier-free descriptions from (20), (22) and (26) is that they give us
the possibility

• to study all interval-quantifier linear systems of class Qσ simultaneously and in a uniform
way, and to derive results for their subclasses (in particular, for interval-quantifier systems
of basic types) as consequences of the general result;

• to design such solution methods for problems related to interval-quantifier linear systems
that are suitable for all systems of class Qσ (an example is the author’s software pack-
age for visualization of quantifier solution sets to interval linear systems, available at
http://www.nsc.ru/interval/sharaya).

Quantifier-free descriptions, in interval arithmetic, for various classes of interval-quantifier
linear systems and for their solutions, both previously known (for example, relation (11)) and
those obtained in this paper in the form of relations (12)–(14), (20), (22), allow us

• to investigate interval-quantifier linear systems by interval methods, i. e., to reveal the
properties of their solution sets, the relationships between systems with various conditions
on the parameters A, b, A, β, σ and the order of the quantifier prefixes (an example is
the proof of Corollary 1);

• to construct interval (that is, essentially using interval arithmetic) solution methods for
problems in which the formulation involves interval-quantifier linear systems (examples
of such methods for systems of equations can be found in [21], while for inequalities and
systems of class Qσ constructing such methods is a matter of the future).
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