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We study systems of relations of the form Axσ b, where σ is a vector of binary relations
with the components “=”, “≥”, and “≤”, while the parameters (elements of the matrix A

and right-hand side vector b) are uncertain and can take values from prescribed intervals.
What is considered to be the set of its solutions depends on which logical quantifier is

associated with each interval-valued parameter and what is the order of the quantifier

prefixes for specific parameters. For solution sets that correspond to the quantifier prefix
of a general form, we present equivalent quantifier-free analytical descriptions in the

classical interval arithmetic, in Kaucher complete interval arithmetic and in the usual

real arithmetic.
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1. Introduction

1.1. Quantifier solutions to interval linear systems

Our work is devoted to interval linear systems in which equations and inequalities

may be present together. We call them interval linear systems of relations. In recent

years, such mathematical objects have become the subject of intensive study, since

they adequately describe various static linear models with bounded uncertainty and

ambiguity. Some results and concepts from this field also penetrate into the theory
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of fuzzy systems. Below, we widely use the technique of interval analysis (see e.g.

[15, 16, 18, 21, 33]), and therefore there is a need to recall some of its concepts and

facts.

An interval is a bounded connected and closed subset of the real line R. For

example, [−1, 2], [1000, 1234.56], and so on. The set of all real intervals, together

with the interval operations defined on it, is known to be called interval arithmetic.

According to the notation standard [9], we will denote interval objects in bold type,

as A, B, . . . ,y, z, in contrast to usual point (non-interval) quantities that are not

specifically distinguished.

We consider systems of linear equations and inequalities of the form

Axσ b, A ∈ Rm×n, x ∈ Rn,

b ∈ Rm, σ ∈ {=,≥,≤}m, m, n ∈ N,

where x is a vector of unknowns, σ is a vector of binary relations, with the com-

ponents “=”, “≥”, and “≤”, and every uncertain element of the matrix A or of

the right-hand side b can take values within the prescribed eponymous interval.

Symbolically, we shall denote such interval systems of relations as

Axσ b (1)

with an interval m× n-matrix A, an n-vector of unknowns x, an interval m-vector

b, and a relation vector σ ∈ {=,≥,≤}m. An example of such “mixed” systems is

the following 3× 2-system:
[2, 3]x1 − [3, 4]x2 ≤ [−2,−1],

[5, 8]x1 + [−6, 1]x2 = [7, 12],

[−1, 0]x1 + [4, 8]x2 ≥ [5, 9].

The interval system (1) will thus denote the set of all possible point systems

of the same structure for which the elements of the matrix and components of the

right-hand side vector can take values from the corresponding intervals. What will

the “solution” to the interval system of relations (1) mean?

We proceed from the fact, first noted in [31], that the interval uncertainty has a

dual character, i.e. there are two different uncertainty types related to any interval of

values that interests us. This follows from the intuitively clear fact that, in practice,

we usually consider intervals in connection with a certain property, say P (u), that

can be either fulfilled or not fulfilled for the point members u of the intervals. For

instance, the property P may have the form “to be a solution to an equation”,

“to be a solution to a problem” with some parameters that can take values from

prescribed intervals, and so on. Then the following different situations may occur:

(1) either the property P (u) holds for all members u from the given interval u, or

(2) the property P (u) holds only for some members u from the interval u,

not necessarily all, or even for a single value from u.
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Formally, the above distinction can be expressed by logical quantifiers (see e.g. [10]

or any other textbook on mathematical logic):

(1) in the first case, we write “(∀u ∈ u)P (u)”

and speak of interval A-uncertainty or interval uncertainty of A-type;

(2) in the second case, we write “(∃u ∈ u)P (u)”

and speak of interval E-uncertainty or interval uncertainty of E-type.

As a consequence, in order to correctly specify a “solution” for an interval

problem, we need to connect either the universal quantifier “∀” or the existential

quantifier “∃” with each interval parameter u of our problem. This is organized

as the corresponding elementary quantifier prefix, either (∀u ∈ u) or (∃u ∈ u),

put before P (u), and then such prefixes unite with each other to form the general

quantifier prefix for the entire problem. Overall, we get a formula of the predicate

calculus that determines solutions to a given interval problem, and such formulas

are called selecting predicates [31].

For interval systems of linear relations (1), the interval uncertainty of parameters

can be specified by the interval matrix A ∈ IRm×n, the quantifier matrix A of the

same size as A, the interval vector b ∈ IRm and the quantifier vector β of length m.

All the elementary quantifier prefixes can be written down in an arbitrary order,

and we denote the resulting prefix of the length m(n + 1) as Q(A, b,A, β). The

following definitions are useful.

Definition 1. For given interval matrix A, interval vector b, and quantifier pre-

fix Q(A, b,A, β), the interval-quantifier linear system of relations, or interval-

quantifier linear system in short, will be called the predicate of the form

Q(A, b,A, β)(Axσ b).

This definition is, in fact, a further refinement of the general ideas expressed

in [31]. Also, the above introduced interval-quantifier linear systems are a natural

generalization of interval linear systems, which have long been studied in interval

analysis. Interval linear system of the form Axσ b is a formal record, for which

we specially stipulate what is considered a solution in each specific case. Usually,

interval linear systems of only equations or of only inequalities of the same sign are

considered.

Definition 2. A vector x̃ ∈ Rn is referred to as solution to the interval-quantifier

linear system if the predicate Q(A, b,A, β)(Axσ b) takes the value “true” in x̃.

In order to agree with the existing terminology in this field, the solutions to the

interval-quantifier linear system Q(A, b,A, β)(Axσ b) will also be called the quan-

tifier solutions of the interval linear system Axσ b. Thus, interval linear systems

of relations are considered in this case as separate independent objects for which

various sets of solutions (solution sets) are then defined. In recent decades, the ob-

jects of intensive study in interval analysis have been formal (algebraic) solutions,
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AE-solutions, strong solutions, weak solutions, tolerable solutions, controllable so-

lutions (sometimes called simply “control solutions”), etc. (see [31, 33; 3, Chap. 2]

and references in these publications) or our quantifier solutions. Let us recall some

definitions.

Definition 3 (31, Definition 3.1). AE-solutions are quantifier solutions to inter-

val equations (inequalities, etc.) for which the selecting predicate has AE-form, that

is, for which, in the prefix Q(A, b,A, β), all occurrences of the universal quantifier

“∀” precede the occurrences of the existential quantifier “∃”.

Definition 4. The united solution set of the interval linear system Axσ b is the

set

Ξuni(A, b) = {x ∈ Rn | (∃A ∈ A)(∃ b ∈ b)(Axσ b)},

formed by solutions to all the point systems Axσ b with A ∈ A and b ∈ b. Its

members are also called weak solutions of the system of relations.

Definition 5. The tolerable solution set of the interval linear system Axσ b is the

set

Ξtol(A, b) = {x ∈ Rn | (∀A ∈ A)(∃ b ∈ b)(Axσ b)},

formed by all such vectors x ∈ Rn that, for any matrix A ∈ A, the product Ax

satisfies the relation Axσ b for some b ∈ b.

Definition 6. The controllable solution set of the interval linear system Axσ b is

the set

Ξctr(A, b) = {x ∈ Rn | (∀ b ∈ b)(∃A ∈ A)(Axσ b)},

formed by all such vectors x ∈ Rn that, for any vector b ∈ b, we can satisfy the

relation Axσ b for an appropriate choice of the matrix A ∈ A.

Definition 7. A vector x̃ ∈ Rn is called strong solution to the interval linear

system Axσ b if the predicate (∀A ∈ A)(∀ b ∈ b)(∀Axσ b) takes the value “true”

for x = x̃.

Note that AE-solutions, strong solutions, weak solutions, tolerable solutions,

controllable solutions to the system Axσ b are subsumed under the quantifier so-

lutions.

The notation Q(A, b,A, β)(Axσ b) defines all possible interval-quantifier linear

systems in parametric form. The parameters of the description are A, b, A, β, σ

and the order of elementary quantifier prefixes in Q (since the elementary prefixes

with different quantifiers do not always commute). Imposing additional constraints

on the parameters, we obtain different classes (subsets) of interval-quantifier linear

systems. For example, if we require equality to be the value of each component of

the relation vector σ, then we obtain a class of interval-quantifier systems of linear
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equations. For fuzzy systems of linear equations, the above formulated ideas and

concepts were developed, in particular, in the work [23].

The paper presents a revised and expanded version of the work originally re-

ported in [24, 25].

1.2. Transition to analytical descriptions

Interval-quantifier linear systems and their solutions were introduced in the previous

section through a logical predicate of the first order. Predicative description is close

to the formulation of practical problems in natural language, but it allows very

limited means of theoretical investigation and is not at all suitable for calculations.

As a consequence, the following problem arises.

Problem. For the widest possible subset of interval-quantifier linear systems, find a

convenient quantifier-free analytical description of their solutions and solution sets

in algebraic systems (arithmetics) with sufficiently developed tools for equivalent

transformations, study and computation.

Usually, the solution sets to interval systems of equations and inequalities are de-

scribed using real arithmetic in R [3, Chap. 2; 2, pp. 93–95; 5, 11, 12, 19, 20, 34], since

it is simple, familiar, has good properties, and we can apply developed numerical

methods in R. For various subclasses of interval-quantifier systems of linear equa-

tions, a number of analytical descriptions have been obtained in interval arithmetics

[1, 17, 31, 33]. Despite poor algebraic properties of the interval arithmetics (the ab-

sence of the distributivity, etc.), these descriptions turned out to be very useful. For

instance, the description of the AE-solution sets of interval systems of linear equa-

tions made it possible to construct a general theory of these solutions and interval

numerical methods for inner and outer estimation of the AE-solution sets [31, 33].

The features of the quantifier-free analytical descriptions proposed in this paper

are as follows:

(1) They expand the class of the interval-quantifier linear systems for which a

convenient description of solutions can be given in comparison with those known

descriptions where non-negativity of x is not required. (The non-negativity

requirement on the vector of unknowns can be formulated as an additional

restriction on the parameters A, b, and σ. Vatolin in [34] obtained analytical

descriptions for solutions of general interval-quantifier linear systems, but his

result is only valid under non-negativity condition on the variables, which is

quite severe limitation in practice. The class Qσ of interval-quantifier linear

systems we discuss in this paper has no restrictions on A, b, and σ, but it has

a restriction on the order of the elementary quantifier prefixes.)

(2) Analytical descriptions of the solutions are obtained in ordinary real arithmetic

R, classical interval arithmetic IR, and in Kaucher interval arithmetic KR. This

enables us to carry out investigation of the solution sets and computation with

them by both real and interval methods.
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In this paper, we derive analytic descriptions for solution sets in the form of

inclusions and inequalities. It should be noted that there is an alternative way of

describing the solution sets — with the help of so-called recognizing functionals,

which is also very useful and popular for systems of equations. It was developed,

for instance, in the works [26, 28].

2. Necessary Facts About Interval Arithmetics

In this section, we give the necessary information about various interval arithmetics,

since it is scattered across various publications and has not become publicly avail-

able yet.

Arithmetic operations can be defined between real intervals, and the most pop-

ular way to do this is to introduce these operations “by representatives”, that is,

in accordance with the rule

x ? y = {x ? y |x ∈ x, y ∈ y}, ? ∈ {+,−, · , /}.

Expanded constructive formulas for interval arithmetic operations are as follows

(see e.g. [15, 16, 18, 33]):

x + y = [x + y,x + y],

x− y = [x− y,x− y],

x · y = [min{xy,xy,xy,xy},max{xy,xy,xy,xy}],

x/y = x · [1/y, 1/y] for y 63 0.

The algebraic properties of the above operations are rather poor. In particu-

lar, for any intervals of nonzero width, there are no inverse elements with respect

to these operations. The desire to improve the properties of the classical interval

arithmetic IR led to the appearance of its various extensions. The most popular of

them is Kaucher interval arithmetic KR developed by Kaucher [8]. Later, Gardeñes

and Trepat [4] and then Markov [14] proposed another similar constructions. All

these researchers constructed extensions of the classical interval arithmetic IR on

the basis of different principles, which was reflected in the names of the correspond-

ing algebraic structures: extended interval arithmetic [8], modal interval arithmetic

[4], arithmetic of directed intervals [14]. However, despite the difference in their

construction, all three algebraic systems coincide up to notation.

Interval on the real line R is its bounded closed and connected subset, that is,

the set

[η, θ] = {u ∈ R | η ≤ u ≤ θ}.

Formally, we can assume that the interval is a pair [η, θ] of real numbers, for which

the condition η ≤ θ is satisfied. The set of all intervals over R is denoted as IR. In IR,

the values η and θ should satisfy the requirement η ≤ θ, but in Kaucher arithmetic

this is not necessary. Intervals are also denoted by boldface letters, e.g. u ∈ KR. If
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u and [η, θ] denote the same interval, then η is called left (lower) endpoint of the

interval, which is written as u, and θ is called the right (upper) endpoint of the

interval u, which is written as u. Therefore, we take u ≡ [u,u].

In this paper, we will mainly use concepts and properties of Kaucher interval

arithmetic, and they are presented below.

Two intervals are considered equal if both their left and right endpoints coincide:

u = v
def⇔

{
u = v,

u = v.

The inclusion relation “⊆” in KR continues the inclusion relation in IR that

considers intervals as sets. So, we have

u ⊆ v
def⇔

{
u ≥ v,

u ≤ v.
(2)

In particular, [6, 3] ⊆ [4, 5].

The operations of taking the least upper bound (supremum) and greatest lower

bound (infimum) with respect to inclusion are introduced for families of intervals

bounded from above and from below, respectively, using the infimum and supremum

in R: ∨
i∈I

ui := sup
i∈I
⊆ui :=

[
inf
i∈I

ui, sup
i∈I

ui

]
,

∧
i∈I

ui := inf
i∈I
⊆ui :=

[
sup
i∈I

ui, inf
i∈I

ui

]
.

We need the following unary operations on intervals:

midu := ǔ := (u + u)/2 — the midpoint,

radu := û := (u− u)/2 — the radius,

dualu := [u,u]
— the dualization, i.e. swapping

the endpoints of the interval,

prou :=

{
u if u ≤ u,

dualu if u > u

— the proper projection

of the interval.

Note that the dualization makes sense only in KR.

Arithmetic operations of addition, subtraction, multiplication, and division are

determined through the corresponding real operations and taking exact lower and

upper bounds by inclusion so that

u ∗ v =
∨∧u∨∧v

(u ∗ v), where
∨∧u

:=


∨
u

if u ≤ u,

∧
prou

if u ≥ u,
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for each operation ∗ ∈ {+,−, ·, /}. Naturally, division is determined only for such

intervals v that 0 6∈ prov. The addition and multiplication are commutative. The

addition is defined “by endpoints”:

u + v = [u + v,u + v]. (3)

The real numbers η ∈ R are identified with intervals of zero radius [η, η]. Multipli-

cation of an interval by the number η ∈ R satisfy the following properties:

ηu =

{
[ηu, ηu] for η ≥ 0,

[ηu, ηu] for η ≤ 0,
(4)

(dualu)η
(4)
= dual(uη) = [uη,uη]. (5)

The symbol −u means the result of multiplication (−1)·u, not the opposite interval

for u with respect to the addition.

The matrices and vectors whose elements are intervals are called interval matri-

ces and interval vectors, respectively. We denote by Ai: the ith row of the matrix A.

For interval vectors and matrices, their endpoints, the relations “=”, “≥”, “≤” and

“⊆”, the operations “mid”, “rad”, “dual”, “pro”, as well as addition, subtraction,

and multiplication by numbers are introduced componentwise and elementwise. For

example,

(dualA)ij := dual(Aij), (A−B)ij := Aij −Bij , (−A)ij = −Aij .

The multiplication rules for interval vectors and matrices are interval extensions of

analogous rules for the non-interval case:

(AB)ij :=
∑
k

AikBkj . (6)

Also, we need the property

(dualA)x = dual(Ax) for A ∈ KRm×n, x ∈ Rn, (7)

which can be easily derived from the definition of interval matrix–vector product

(a particular case of (6)) with the use of (3) and (5).

3. Main Results

3.1. Analytical descriptions in interval arithmetics

First of all, we are going to develop quantifier-free analytical descriptions, for

interval-quantifier linear systems and their solutions, in interval arithmetics. We

need the following notation:

Qi:(A, b,A, β) will denote a quantifier prefix obtained from Q(A, b,A, β) by

deleting all those elementary prefixes that are not related to the ith row of the

system;
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Q∀ ∃(A, b,A, β) will denote a quantifier prefix of the form Q(A, b,A, β) satisfying

the additional condition: for each i ∈ {1, . . . ,m}, the universal quantifiers in

Qi:(A, b,A, β) (if any) precede the existential quantifiers (if any);

QAE(A, b,A, β) will denote a quantifier prefix of the form Q(A, b,A, β) with

the additional condition: all the universal quantifiers (if any) precede all the

existential quantifiers (if there are such quantifiers);

A∀,A∃ ∈ IRm×n, b∀, b∃ ∈ IRm, Ac ∈ KRm×n, bc ∈ KRm will denote interval

vectors and matrices defined by the rules

A∀ij :=

{
Aij if Aij = ∀,
0 if Aij = ∃,

A∃ij :=

{
Aij if Aij = ∃,
0 if Aij = ∀,

(8)

b∀i :=

{
bi if βi = ∀,
0 if βi = ∃,

b∃i :=

{
bi if βi = ∃,
0 if βi = ∀,

Ac
ij :=

{
Aij if Aij = ∀,
dualAij if Aij = ∃,

bci :=

{
dual bi if βi = ∀,
bi if βi = ∃.

(9)

Definition 8. The matrix Ac and vector bc will be called characteristic matrix

and characteristic vector that correspond to the distribution of interval uncertainty

types (A-type or E-type) described by the quantifier matrix A and vector β in the

interval linear system under study.

The characteristic matrix and characteristic vector of the right-hand side were

introduced in [31] for interval linear systems of equations (see also [33]) and proved

to be extremely useful in the study and computation of solution sets to interval-

quantifier systems of equations. We extend these concepts to interval linear inequal-

ities and more general systems of relations. The Gothic letter “c” as the superscript

of A and b in formula (9) means “characteristic”.

We should write out the property of interval-quantifier linear systems, which

we will repeatedly apply in the sequel: each elementary quantifier prefix from

Q(A, b,A, β) can be carried to the row of the system in which the parameter of

this prefix is present. This means

Q(A, b,A, β) (Axσ b) ⇔ &
i∈{1,...,m}

Qi:(A, b,A, β) (Ai:xσi bi). (10)

The substantiation for this property is that the system of relations (Axσ b) is, in

terms of logic, the conjunction of the relations, that is,

&
i

(Ai:xσi bi).

Additionally, for the conjunction, there hold equivalences

∀ t ∈ S(P1(t)&P2) ⇔ (∀ t ∈ S P1(t))&P2,

∃ t ∈ S(P1(t)&P2) ⇔ (∃ t ∈ S P1(t))&P2,
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where S is the set of values of the variable t, P1, P2 are formulas, and P2 does not

depend on t.

In view of (10), it is obvious that

Q∀ ∃(A, b,A, β) (Axσ b) ⇔ QAE(A, b,A, β) (Axσ b), (11)

i.e. the vector x is a solution to the system Q∀ ∃(A, b,A, β) (Axσ b) if and only if

it is a solution to the system QAE(A, b,A, β) (Axσ b). Thus, although the class of

systems of the form Q∀ ∃(A, b,A, β) (Axσ b) is wider than the class of systems of

the form QAE(A, b,A, β) (Axσ b), the statements proved for the solutions to the

system QAE(A, b,A, β) (Axσ b) are trivially generalized into statements for the

solutions to the system Q∀ ∃(A, b,A, β) (Axσ b).

Now, let us turn to the interval-quantifier systems of linear equations. Analytical

descriptions for the widest subset of such systems have been obtained by Shary. In

[29, 30], he first proved that

QAE(A, b,A, β) (Ax = b) ⇔ A∀x− b∀ ⊆ b∃ −A∃x ⇔ Acx ⊆ bc (12)

(see also [31]). Equivalence (11) allows us to make the following generalization of

(12).

Theorem 1. The following equivalence holds:

Q∀ ∃(A, b,A, β)(Ax = b) ⇔ A∀x− b∀ ⊆ b∃ −A∃x ⇔ Acx ⊆ bc. (13)

Theorem 1 for the interval-quantifier system of equations Q∀ ∃(A, b,A, β)(Ax =

b) gives equivalent analytical inclusion systems, in IR

A∀x− b∀ ⊆ b∃ −A∃x

and in KR

Acx ⊆ bc.

Definition 9. The interval-quantifier systems of relations, in which the vector of

relations σ consists of the same components, will be called relationally homogeneous

systems.

The result of Theorem 1 refers to systems of equations, and our immediate goal

is to obtain similar results for relationally homogeneous systems of inequalities.

Theorem 2. The following equivalences hold :

Q(A, b,A, β) (Ax ≥ b) ⇔ A∀x+ A∃x ≥ b
∀

+ b∃ ⇔ Acx ≥ bc, (14)

Q(A, b,A, β) (Ax ≤ b) ⇔ A∀x+ A∃x ≤ b∀ + b
∃ ⇔ Acx ≤ bc. (15)

Proof. We carry out the detailed proof only for the chain of equivalences (14). For

(15), the substantiation is completely similar.
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(1) From (10), it follows that

Q(A, b,A, β) (Ax ≥ b) ⇔ &
i∈{1,...,m}

Qi:(A, b,A, β) (Ai:x ≥ bi). (16)

(2) Using the fact that

Ai:x ≥ bi ⇔
n∑
j=1

Aijxj + (−bi) ≥ 0

and that, for any continuous functions h : R2 → R, g : R → R and an interval

u ∈ IR, there holds

(∀u ∈ u)(h(u, x) + g(x) ≥ 0) ⇔ min
u∈u

h(u, x) + g(x) ≥ 0,

(∃u ∈ u) (h(u, x) + g(x) ≥ 0) ⇔ max
u∈u

h(u, x) + g(x) ≥ 0,

enables us to get an analytical description for Qi:(A, b,A, β)(Ai:x ≥ bi):

Qi:(A, b,A, β) (Ai:x ≥ bi) ⇔
n∑
j=1

extrAij

Aij∈Aij

(Aijxj) + extrβi

bi∈bi
(−bi) ≥ 0, (17)

where “extr” means conditional extremum, such that

extr∀ = min, extr∃ = max .

(3) Thanks to the equalities

min
u∈u

(ux) = ux, max
u∈u

(ux) = ux, min
u∈u

(u) = u, max
u∈u

(u) = u,

which are valid for any interval u ∈ IR, and taking into account (3), the sum of the

extrema in (17) can be expressed in terms of the matrices A∀, A∃ and the vectors

b∀, b∃ from (8):

n∑
j=1

extrAij

Aij∈Aij

(Aijxj) + extrβi

bi∈bi
(−bi) ≥ 0 ⇔ A∀i:x+ A∃i:x ≥ b

∀
i + b∃i . (18)

(4) From (16)–(18), it follows that

Q(A, b,A, β) (Ax ≥ b) ⇔ A∀x+ A∃x ≥ b
∀

+ b∃.

(5) Let us prove the second equivalence in the chain (14). For the matrix Ac in

(9), we have

[Acx,Acx] = Acx

definitions

of Ac,A∀,A∃

= A∀ x+ (dualA∃)x

properties

(7) and (3)
= [A∀ x+ A∃ x, A∀ x+ A∃ x], (19)

and therefore Acx = A∀ x+A∃ x. The definitions of the vectors bc, b∀, and b∃ give

[bc, bc] = bc = dual(b∀) + b∃ = [b
∀

+ b∃, b∀ + b
∃
], (20)
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hence bc = b
∀

+ b∃. Overall, we get

A∀x+ A∃x ≥ b
∀

+ b∃ ⇔ Acx ≥ bc.

The proof of Theorem 2 is complete.

In the interval arithmetics IR and KR, the relations “≥” and “≤” are applicable,

and they are continuations of the same relations over R. For vectors, “≥” and “≤”

are introduced componentwise. This allows us to formally refer to the records with

A∀, A∃, b∀, b∃ in (14) and (15) as inequalities in classical interval arithmetic, while

the records with Ac and bc will be called inequalities in the Kaucher arithmetic.

Still, in practice it is more convenient to understand all inequalities from (14) and

(15) as componentwise inequalities in Rm.

From (10) and Theorem 2, the following remarkable fact follows.

Corollary 1. For any relation vector σ ∈ {≥,≤}m, the solution sets of interval-

quantifier systems of linear inequalities do not depend on the order of the elementary

quantifier prefixes in their selecting predicates. In other words, all interval-quantifier

systems of linear inequalities with identical A, b, A, β, and σ have the same solution

sets.

This property essentially distinguishes interval systems of inequalities from in-

terval systems of equations.

We give a corollary of Theorems 1 and 2, which establishes the relation between

AE-solution sets of interval systems of linear equations and quantifier solution sets

of interval relationally homogeneous systems of linear inequalities.

Corollary 2. The following equivalence holds:

QAE(A, b,A, β) (Ax = b) ⇔ Q∀ ∃(A, b,A, β) (Ax = b)

⇔

{
Q(A, b,A, β)(Ax ≥ b),
Q(A, b,A, β)(Ax ≤ b).

The proof is given by the following chain of equivalences:{
Q(A, b,A, β) (Ax ≥ b)
Q(A, b,A, β) (Ax ≤ b)

Theorem 2⇔

{
Acx ≥ bc

Acx ≤ bc
definition of ⊆⇔ Acx ⊆ bc

Theorem 1⇔ Q∀ ∃(A, b,A, β) (Ax = b)
(11)⇔ QAE(A, b,A, β)(Ax = b).

Theorems 1 and 2 give analytical descriptions for relationally homogeneous sys-

tems. Next, we turn to the consideration of systems with an arbitrary relationship

vector σ.

Definition 10. We denote by Qσ(A, b,A, β) a quantifier prefix of the form

Q(A, b,A, β) satisfying the following condition: if σi is “=”, then the universal

quantifiers (if any) precede the existential quantifiers (if any) in Qσi:(A, b,A, β).
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Definition 11. The class Qσ within the set of all interval-quantifier systems of lin-

ear relations is a subset consisting of all systems of the form Qσ(A, b,A, β)(Axσ b).

The following theorem gives a quantifier-free analytical description of the class

Qσ in the interval arithmetics KR and IR, with the use of componentwise inequal-

ities from Rm, where R denotes the extended real line, i.e. R = R ∪ {−∞,∞}.

Theorem 3. The following equivalence holds:

Qσ(A, b,A, β) (Axσ b) ⇔

{
Acx ≥ bc + u,

Acx ≤ bc + v

⇔

A∀ x+ A∃ x ≥ b
∀

+ b∃ + u,

A∀ x+ A∃ x ≤ b∀ + b
∃

+ v,
(21)

where Ac and bc are from (9), A∀, A∃, b∀, b∃ are from (8), while the vectors

u, v ∈ Rm are defined as

ui :=

{
0 if σi is “=” or “≥”,

−∞ if “σi” is “≤”,
vi :=

{
0 if σi is “=” or “≤”,

∞ if σi is “≥”.

Proof. [Proof step by step] (1) Due to the fact that each interval parameter (either

an element of the matrix A or a component of the vector b) enters only one row of

the system Axσ b, we have (10) and, in particular,

Qσ(A, b,A, β) (Axσ b) ⇔ &
i∈{1,...,m}

Qσi:(A, b,A, β)(Ai:xσi bi). (22)

(2) We eliminate quantifier prefixes in the predicate Qσi:(A, b,A, β) (Ai:xσi bi)

using Theorems 1 and 2, based on the specific values of σi:

Qσi:(A, b,A, β) (Ai:x = bi)
(13)⇔ (Acx)i ⊆ bci ⇔ ((Acx)i ≥ bci)& ((Acx)i ≤ bci),

Qσi:(A, b,A, β) (Ai:x ≥ bi)
(14)⇔ (Acx)i ≥ bci ⇔ ((Acx)i ≥ bci)&((Acx)i ≤ ∞),

Qσi:(A, b,A, β) (Ai:x ≤ bi)
(15)⇔ (Acx)i ≤ bci ⇔ ((Acx)i ≥ −∞)&((Acx)i ≤ bci).

(3) Introducing the vectors u and v, we pass to the matrix–vector inequalities

Qσ(A, b,A, β) (Axσ b) ⇔

{
Acx ≥ bc + u,

Acx ≤ bc + v.

(4) The equivalence{
Acx ≥ bc + u,

Acx ≤ bc + v
⇔

A∀ x+ A∃ x ≥ b
∀

+ b∃ + u,

A∀ x+ A∃ x ≤ b∀ + b
∃

+ v

is obvious in view of (19) and (20). The proof of Theorem 3 is complete.
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Convenient analytical representations for the class Qσ can be obtained from

Theorem 3, if we introduce the sets of intervals KR = {[z, z] | z, z ∈ R} and IR =

{[z, z] | z, z ∈ R, z ≤ z}, and continue relation “⊆” according to rule (2). Then

Qσ(A, b,A, β) (Axσ b)⇔ Acx ⊆ bc + w ⇔ A∀ x− b∀ ⊆ b∃ −A∃ x+ w, (23)

where Ac and bc from (9), A∀, A∃, b∀, b∃ from (8), and the interval vector w ∈ IRm

is such that

wi :=


0 if σi is “=”,

[0,∞] if σi is “≥”,

[−∞, 0] if σi is “≤”.

The inclusion

Acx ⊆ bc + w

provides an analytical description of the solution set to the quantifier interval linear

system Qσ(A, b,A, β) (Axσ b) in any interval arithmetic that extends the Kaucher

arithmetic to the set KR. An example of such an extension is given in [7]. We agree

to denote the arithmetic extension, as well as its basic set, through KR.

Similarly, the inclusion

A∀ x− b∀ ⊆ b∃ −A∃ x+ w

provides an analytical description of the solution set to the system

Qσ(A, b,A, β)(Axσ b) in interval arithmetic that extends IR to the set IR. Ex-

amples of the extension of the classical interval arithmetic to a set of intervals with

infinite endpoints are described in [13]. Let us agree to refer to any such extension

as arithmetic IR. Thus, the relation (23) gives analytical descriptions of the solution

sets to quantifier interval linear systems of class Qσ in the interval arithmetics KR
and IR.

Comparing the analytical descriptions obtained for the solution sets to quantifier

interval linear systems, we can see that,

on the one hand, the analytical description in KR (KR) is much more remote

from the initial data A, b, A and β due to multilevel notation, and,

on the other hand, the description in KR (KR) is more concise and convenient

for analysis than a similar description in IR (IR).

3.2. Analytical descriptions in real arithmetic

In this section, we derive quantifier-free analytical descriptions of the quantifier

solution sets to interval linear systems in the real arithmetic R. To do that, we will

need Hadamard product of matrices (entrywise product), denoted by the symbol “◦”
(see e.g. [6]). Hadamard product is defined for two matrices of the same dimensions
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and produces another matrix in which the ijth element is the product of the ijth

elements of the original matrices:

(A ◦B)ij := AijBij .

Also, note that the operation of taking the modulus of a vector is understood

componentwise. If, for instance, x ∈ Rn, then |x| is a non-negative vector with the

components |x|i = |xi|.

Theorem 4. The following equivalences hold :

Q∀ ∃(A, b,A, β)(Ax = b) ⇔ |Ǎx− b̌| ≤ (As◦Â)|x|+ βs◦ b̂, (24)

Q(A, b,A, β)(Ax ≥ b) ⇔ b̌− Ǎx ≤ (As◦Â)|x|+ βs◦ b̂, (25)

Q(A, b,A, β)(Ax ≤ b) ⇔ Ǎx− b̌ ≤ (As◦Â)|x|+ βs◦ b̂, (26)

Qσ(A, b,A, β)(Axσ b) ⇔ absσ(Ǎx− b̌) ≤ (As◦Â)|x|+ βs◦ b̂, (27)

where

Asij =

{
1 if Aij = ∃,
−1 if Aij = ∀,

βsi =

{
1 if βi = ∃,
−1 if βi = ∀,

(28)

absi
σ(y) =


|yi| if σi is “=”,

−yi if σi is “≥”,

yi if σi is “≤”.

Proof. (1) Equivalence (24) was proposed and proved by Jiri Rohn at the interna-

tional conference Interval’96 (September–October of 1996, Würzburg, Germany),

in a private talk with Sergey Shary and Anatoly Lakeyev. Later, its reformulation

with the use of Hadamard product was proposed by Lakeyev in the work [12], and

a similar proof was given by Rohn in [22]. Below, we present our own proof.

In view of Theorem 1,

Q∀ ∃(A, b,A, β)(Ax = b) ⇔ Acx ⊆ bc.

Then, using the properties of Kaucher arithmetic

(∀u,v ∈ KRm)(u ⊆ v ⇔ |ǔ− v̌| ≤ v̂ − û),

mid(Acx) = Ǎcx, rad(Acx) = Âc |x|, (29)

we get

Acx ⊆ bc ⇔ |Ǎcx− b̌c| ≤ b̂c − Âc |x|.

From the definitions of (9) and (28) for Ac, bc, As, and βs, we have

Ǎc = Ǎ, Âc = −As ◦ Â, b̌c = b̌, b̂c = βs ◦ b̂. (30)
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(2) Let us prove equivalence (25). According to Theorem 2

Q(A, b,A, β)(Ax ≥ b) ⇔ Acx ≥ bc.

Drawing on the obvious property of the Kaucher arithmetic

(∀u,v ∈ KRm)(u ≥ v ⇔ v̌ − ǔ ≤ v̂ − û),

which allows us to replace the inequality between the endpoints by the inequality

between centers and radii, and then involving (29), we get

Acx ≥ bc ⇔ b̌c − Ǎcx ≤ b̂c − Âc |x|.

Finally, we use (30).

(3) Equivalence (26) is proved similarly to (25).

(4) It remains to substantiate equivalence (27). Just as in the item (1) of the

proof of Theorem 3, we have (22), i.e. the problem splits in rows. We apply, to each

row, one of the equivalences (24), (25), or (26), depending on the corresponding

binary relation, and convolve the resulting system of inequalities using the operation

absσ.

The proof of Theorem 4 is complete.

From equivalences (24)–(26), one more proof of Corollary 2 becomes obvious. In

addition, it is not difficult to identify the following connection between relationally

homogeneous systems of inequalities of the opposite signs.

Corollary 3. The following equivalences hold :

Q(A, b,A, β)(Ax ≥ b) ⇔ Q(−A,−b,A, β)(Ax ≤ b), (31)

Q(−A,−b,A, β)(Ax ≥ b) ⇔ Q(A, b,A, β) (Ax ≤ b). (32)

Proof. Based on the properties of intervals

mid(−u) = −ǔ and rad(−u) = û, (33)

we can show the validity of relation (32):

Q(−A,−b,A, β) (Ax ≥ b) (25)⇔ mid(−b)−mid(−A)x

≤ (As◦ rad(−A))|x|+ βs◦ rad(−b)

(33)⇔ −b̌ + Ǎx ≤ (As◦Â)|x|+ βs◦ b̂

(26)⇔ Q(A, b,A, β) (Ax ≤ b).

Relation (31) is proved similarly.

Corollary 3 means that, if the sign of the inequality and the signs of all intervals

of the parameter values are reversed to the opposite, then the set of quantifier

solutions to the interval system of linear inequalities does not change. For example,

the solution sets to the systems (∀A ∈ A) (∃ b ∈ b) (Ax ≥ b) and (∀A ∈ −A) (∃ b ∈
−b) (Ax ≤ b) coincide.
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3.3. Analytical descriptions in KR, IR, and R
for systems of basic types

So far, when considering the interval-quantifier linear systems Q(A, b,A, β)

(Axσ b), we tried to obtain results in which there were no constraints on the pa-

rameters A, b, A, β, and σ, while the restrictions on the order of the elementary

quantifier prefixes in Q were minimal. In this sense, the most general descriptions

have been found for the class Qσ. In this section, we consider subsets of interval-

quantifier linear systems of class Qσ, which are distinguished by the requirement

of homogeneity of the quantifier matrix A and the homogeneity of the quantifier

vector β. Elements of all these subsets will be called systems of basic types, and

their solutions will be referred to as quantifier solutions of basic types for interval

linear systems of the form Axσ b.

Depending on which quantifiers fill the matrix A and the vector β, all the

interval-quantifier linear systems of the basic types are divided into four subsets, or

four types. This subdivision is presented in the last column of Table 1. For each of

the main types of solutions to the systems, we give a proper name that continues

the one used in [3, 33] for solutions of relationally homogeneous systems of this

type. The names of the solutions are listed in the first column of Table 1, the values

of the elements of the matrix A and components of the vector β are listed in the

second and third columns, and the fourth column gives the general form for the

interval-quantifier systems of the corresponding basic type.

Quantifier-free analytical descriptions in KR, IR, and R for systems of the basic

types can be obtained as corollaries of the corresponding descriptions for systems of

class Qσ. Let us explain that for relationally homogeneous systems using Table 2.

In Table 2, columns 4–7, corresponding to the basic types of quantifier solu-

tions, are obtained, in row-wise manner, from column 3 corresponding to quantifier

solutions with the prefix Qσ. It is necessary to use definition (9) of the matrix Ac

and vector bc in the rows corresponding to the Kaucher arithmetic. In the rows

that correspond to the classical interval arithmetic, we have to use definition (8)

of the matrices A∀, A∃ and the vectors b∀, b∃. Finally, the rows corresponding to

real non-interval arithmetic, definition (28) of the matrix As, vector βs and the

definition of the product “◦” should be used.

Approximately half of the descriptions of the basic types of quantifier solutions

for interval linear systems, presented in columns 4–7 of Table 2, have been obtained

Table 1. Basic types of quantifier solutions to the interval system Axσ b.

Name of solution Values of elements for
Interval-quantifier

matrix A vector β system of basic type

Weak ∃ ∃ (∃A ∈ A)(∃ b ∈ b) (Axσ b)
Tolerable ∀ ∃ (∀A ∈ A)(∃ b ∈ b) (Axσ b)

Controllable ∃ ∀ (∀ b ∈ b)(∃A ∈ A) (Axσ b)

Strong ∀ ∀ (∀A ∈ A)(∀ b ∈ b) (Axσ b)
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Â
|x
|+

b̂
|Ǎ
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earlier. The descriptions that were found first, obtained their own proper names.

These are

the Oettli–Prager characterization in R [19]and the Beeck characterization in

IR [1] for weak solutions of the equation Ax = b;

the Gerlach description in R for weak solutions of the inequality Ax ≤ b [5].

The analytical descriptions of the set of tolerable solutions to the equation Ax = b

was obtained in R by Rohn [20] and in IR by Neumaier [17]. The description in R was

further investigated by Lakeyev and Noskov in [11], and they also presented, as an

evident one, a description in IR for the set of controllable solutions to the equation

Ax = b (see also [27]). The remaining descriptions for the basic types of quantifier

solutions to the equation Ax = b in the interval arithmetics IR and KR are also

known, for example, as obvious corollaries of statement (12), proved by Shary in [29,

30]. In [3, Theorem 2.25], an analytical description in R for strong solutions to the

interval inequality Ax ≤ b was presented. Finally, in [32], alternative descriptions

were given for the set of weak solutions (united solution set) for interval linear

systems of equations in the field of real numbers R
For interval-quantifier systems of basic types in which the relationship vector σ

is not homogeneous, analytical descriptions in KR can be obtained from (23) and

(9). The descriptions in IR can be derived from (23) and (8), and the descriptions

in R follows from (27) and (28). Below, we give these descriptions only in IR and R
(in KR, they are less expressive and differ from the descriptions in IR by obvious

arithmetic transformations, in the same way as the descriptions in KR and IR differ

from each other in Table 2):

(∃A ∈ A)(∃ b ∈ b)(Axσ b) ⇔ 0 ∈ b−Ax+ w ⇔ absσ(Ǎx− b̌) ≤ Â|x|+ b̂;

(∀A ∈ A)(∃ b ∈ b)(Axσ b) ⇔ Ax ⊆ b + w ⇔ absσ(Ǎx− b̌) ≤ −Â|x|+ b̂;

(∀ b ∈ b)(∃A ∈ A)(Axσ b) ⇔ b ⊆ Ax+ w ⇔ absσ(Ǎx− b̌) ≤ Â|x| − b̂;

(∀A ∈ A)(∀ b ∈ b)(Axσ b) ⇔ Ax− b ⊆ w ⇔ absσ(Ǎx− b̌) ≤ −Â|x| − b̂.

4. Conclusion

The main results of the paper are presented in Theorems 2–4 (equivalence (24) was

previously known) and in Corollaries 1–2.

Among the statements that have no restrictions on the parameters A, b, A,

β, and σ, those that give analytical descriptions of the solutions to the interval-

quantifier linear systems of class Qσ have the greatest generality. These are relation

(21), which enables transition to KR and IR, relation (23) for transition to KR and

IR, and equivalence (27) that allows us to go into R.

The usefulness of the quantifier-free analytical descriptions from (21), (23), and

(27) is that they give us the opportunity
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• to study all interval-quantifier linear systems of class Qσ simultaneously and

in a uniform way, and to derive results for their subclasses (in particular, for

interval-quantifier systems of basic types) as consequences of the general result;

• to design such solution methods for problems related to interval-quantifier

linear systems that are suitable for all systems of class Qσ (an example is

the author’s software packages IntLinInc2D and IntLinInc3D for visualiza-

tion of quantifier solution sets to interval linear systems, freely available at

http://www.nsc.ru/interval/sharaya/).

Analytical descriptions, in interval arithmetic, for various classes of interval-

quantifier linear systems and for their solutions, both previously known (for exam-

ple, relation (12)) and those obtained in this work in the form of relations (13)–(15),

(21), (23), allow us

• to investigate interval-quantifier linear systems by interval methods, i.e. to study

the properties of their solution sets, the relationships between systems with var-

ious conditions on the parameters A, b, A, β, σ and the order of the quantifier

prefixes (an example is the proof of Corollary 2);

• to construct interval numerical methods (that is, essentially using interval arith-

metic) for the solution of problems in which the formulation involves interval-

quantifier linear systems (examples of such methods for systems of equations can

be found in [31, 33], while for inequalities and systems of class Qσ constructing

such methods is a matter of the future research).
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