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Abstract. The subject of our work is the classical “outer” problem for the interval linear algebraic
system Ax = b with the square interval matrix A.: find “outer” coordinate-wise estimates of the
united solution set X formed by all solutions to the point systems Ax = b withA € A and b € b. The
purpose of this work is to advance a new algebraic approach to the formulated problem, in which
it reduces to solving one noninterval (point) equation in the Euclidean space of double dimension.
We construct a specialized algorithm (subdifferential Newton method) that implements the new
approach, then present results of the numerical tests with it. These results demonstrate that the
proposed algebraic approach combines unique computational efficency with high quality enclosures
of the solution set.

1. Introduction

The subject of our work is the classical problem for the interval linear algebraic
system

Ax=b (1.1)

with the interval (n x n)-matrix A and interval right-hand side n-vector b:

Find (quick and as sharp as possible) “outer” coordinate-wise estimates of the
solution set

={reR"| (@A e A)3b e b)(Ax = b)} (1.2)

formed by all solutions to the point systems Ax = b with A € A and b ¢ b,
that is, evaluate min {x; | x € Z} from below and max {x; | x € T} from above,
k=1,2,...,n

The solution set X is sometimes called the united solution set and denoted by Xa3.
That is not superfluous since many different solution sets to interval systems Ax = b
can be defined (Zy3, Zav, Lo as well as some others). These generalized solution

* The results of this paper have been presented as a highlighted talk at the International Conference
on Interval Methods and Computer Aided Proofs in Science and Engineering (INTERVAL'96),
September 30-October 2, 1996, Wiirzburg, Germany. The author thanks the organizer and chair of
the conference INTERVAL’96 Prof. Dr. Jiirgen Wolff von Gudenberg for giving him this opportunity
and for kind support.
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outer interval estimate

solution set

Figure 1. *‘Outer problems” are problems of outer (interval) estimation of the solution sets, i.e.,
system sensitivity problems in interval form.

sets to (1.1) naturally come into existence and have interesting and significant
applications, for instance, in operations research and decision making [24], [25].
In this work, we shall not consider these generalized solution sets, so, for brevity,
we speak simply of the solution set instead of the correct expanded term “united
solution set” when referring to (1.2).

The main problem to which this entire paper is devoted is often formulated as
follows:

Find (as quickly and sharply as possible) an interval enclosure (1.3)
of the solution set to the given interval linear equation. )

We prefer calling it the outer problem for the interval linear equation (1.1) in order
to distinguish (1.3) from other possible problem statements for (1.1) (considered,
e.g., in [23], [26]). As we mentioned, problem (1.3) is one of the classical interval
analysis problems (being in essence an implicit linear sensitivity problem in the
interval form), and hundreds of papers and several books have been dedicated to
its various aspects, starting in the early 60’s. Among the most important theoretical
results on this problem, one should mention the recent discoveries concerning
the computational complexity of (1.3) and some related problems. (See [11] as
well as the extensive references there.) Even the recognition problem, whether
the solution set X is empty or not has been proved to be intractable in general.
Further, computing outer coordinatewise estimates for the solution set ¥ with a
prescribed absolute or relative accuracy is intractable too, both in general and in
some practically significant particular cases.
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Over more than three decades, many good algorithms have been invented to
solve the problem (1.3), so that one may think the time has come to finish with
the abstract theory and turn to thorough technical improvements of the existing
approaches. Nonetheless, in our paper, we are going to throw a fresh light on the
subject. We advance one more numerical algorithm for the solution of the “outer
problem,” its distinctive features being

¢ high computational efficacy,
¢ good adaptability to various specific interval linear systems,

 universality—the main algorithm is equally applied to the problem of inner
interval estimation of both the solution set (1.2) and the generalized solution
sets to (1.1).

The new approach to (1.3) that we are proposing is a further development of the
so-called algebraic approach, in which the original problem reduces to solving one
noninterval (point) equation in the Euclidean space of double dimension IR*". The
algebraic approach has presented itself as an efficient technique for inner interval
estimation of the various solution sets to interval algebraic equations [23]-[25]. It
is high time the algebraic approach was extended to outer problems as well.

Below, we construct a specialized algorithm (subdifferential Newton method)
that implements the new approach, then we present results of numerical tests with it.
These numerical results demonstrate that the proposed algebraic approach combines
unique computational efficency with high quality enclosures of the solution set, so
that it appears competitive with the popular interval Gaussian method and recent
Hansen-Rohn procedure.

Henceforth, we assume familiarity with the basic facts of interval analysis; for an
introduction, see, e.g., [1], [14]. Our notation follows mainly that of Kearfott (see,
e.g., [16]) who has done a good job modifying and updating the earlier notation of
Neumaier [14].

2. Fundamentals

PROPOSITION 2.1. The solution set of the interval system
Ax=b
coincides with the solution set of the interval system
x=Cx+b 2.1
fC=1-A.
Proof. The solution set of (2.1)

= {xe R" | (3C € C)(3b € b)(x = Cx + b)}
= xeR"| (30— O e - C)@beb)(( — Cx=b)}
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={xeR"|(FAe (I — U - A)))3Fb e b)Ax=b)}, whereA:=1-C
{xe R" | (3A € A)b € b)(Ax = b)}
the solution set of Ax = b,

since if Ce Cthen (/ — C)e (I — C). O

Warning. The equivalent reduction of the interval linear system Ax = b to the
fixed-point form (2.1) described in Proposition 2.1 is not the only possible one. In
what follows, we fix this reduction merely for definiteness, while the question will
be discussed at length in Section 7.

THEOREM 2.1 [2], [13]. The iteration
x¢V=cx® +b, k>0,

converges to a unique fixed point interval X' of the equation (2.1) for every starting
interval vector xV if and only if the spectral radius p(|C|) of the matrix |C| made
up of the moduli of the elements of C is less than 1.

THEOREM 2.2 [1], [2]. Let C be an interval matrix for which p(|C|) < 1. It
then follows that, for the fixed point X" (that exists and is unique according to
Theorem 2.1) of the equation x* = CX" + b, the relation

{-C)'b|CeC,heb}cx’

is valid.

DEFINITION 2.1 [15], [18]. An interval vector is called an algebraic solution to
an interval equation if substituting this vector into the equation and executing all
interval operations according to the rules of interval arithmetic result in the equality.

Thus, taking into account this definition, we can reformulate the above classical
results in the following modified form, which will be extensively used in what
follows:

THEOREM 2.3. If the interval matrix C e TIR"™" is such that p(|C|) < 1, then for
any b, the algebraic solution to the interval equation

x=Cx+b (2.2)
exists, is unique, and gives an interval enclosure of the solution set to this interval
linear equation.

In (2.2) and below, we intentionally designated the unknown variable x by a
boldface letter to emphasize that the required solution is an interval. It must obey
equation (2.2) in the sense of the interval arithmetic operations.
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What is the meaning of the reformulation of the well-known results in the form
of Theorem 2.3? The point is that the assertion of Theorem 2.3, which is arranged
as a pure existence theorem, helps one to recognize the following principal fact:
The way that we prove the theorem need not be connected with the actual way that
we find the solutions to the main equation (2.2).

Of course, the traditional constructive proofs of Theorems 2.1, 2.2 based on
Schrdder’s contraction mapping theorem gave rise to a flow of papers in which
various stationary iterative methods for (2.2) have been built. Generally speaking,
however, nothing obliges one to confine oneself to using only stationary contrac-
tions when developing computational approaches for (2.2), especially since the
resulting procedures often prove to be rather slowly converging. The algorithm
designer should feel free to exploit other concepts (even symbolic manipulation)
in developing algorithms that find the algebraic solution to (2.2). The only under-
lying principle has to be that the sought-for solution satisfies equation (2.2) in the
sense of Definition 2.1. Below, we are just going to advance such more efficient,
nonstationary, algorithms.

3. Interval Arithmetics

It is common knowledge that the main instrument of interval analysis is the so-
called interval arithmetic, that is, an algebraic system (IR, +, —, -, /), where IR
is the set of all real intervals [x,X], x < X, while the binary operations—addition,
subtraction, multiplication and division—are defined according to the following
fundamental principle:

xxy={xxy|xex,yey} (3.1)
for all intervals x,y such that (x x y), x € {+, —, -, /} makes sense for any x € X,
yeyl[ll [14].

Unfortunately, the algebraic properties of the interval arithmetic TIR are bad:
Most of its elements—all intervals with nonzero width—do not have inverses with
respect to the above operations. As a consequence, first, the basic equations

a+x=b, a-x=b

and their like may not have solutions in general. Second, the manipulation technique
in IR is quite poor. We cannot even rearrange terms from one side of the equation
to the other. Clearly, these features do not favor finding the sought-for algebraic
solution to equation (2.2). Besides, IIR is not a lattice [4] with respect to the natural
inclusion ordering. The first of the operations

XAy = [max{x,y}, min{X,y}], - taking minimum (or join),

xvy = [min{x, y}, max {X,¥}], — taking maximum (or meet),
is not always applicable in the classical interval arithmetic.”

* If x,y are ordinary one-dimensional intervals intersecting with each other, thenx Ay and x vy
are simply x n y and x L y respectively. But in general this is not the case.
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Under the circumstances, it is natural to adopt the following plan of action
suggested by Shary [21]: We ought to enlarge IIR to a wider algebraic system (or,
put differently, to embed IR into a wider algebraic system) that would have better
algebraic properties, that would be richer in manipulation technique, with more
powerful analytical tools. Then we seek the algebraic solution in the new wider
algebraic system rather than in the common interval arithmetic IIR. We can hope
that the new problem is easier, but if the interval vector so obtained proves to lie in
IIR, then it will be a solution to the original problem.

How can one perform the desired enlargement of the classical interval arith-
metic? Abstract algebra has come to our rescue in this situation. From the general
viewpoint, the arithmetic IIR is a semigroup both with respect to addition and
multiplication.* As is well known (see, e.g., [5]), a commutative semigroup with
the so-called “cancellation law” can be extended to (or, what is equivalent, can be
embedded into) a group, that is, a richer algebraic system, in which every element
has an inverse. In our case, the interval arithmetic is exactly the commutative semi-
group with the cancellation law, but the multiplicative semigroup satisfying the
cancellation law is formed only by the intervals that do not contain zero.

Luckily, all technical constructions that are necessary to build up the extension
of interval arithmetic according to the above strategy were already done by Kaucher
at the end of the 1970’s. In the works [9], [10], Kaucher elaborated an algebraic
system called “extended interval arithmetic TIR” that includes the common interval
arithmetic IIR as a subset and meets all our requirements. The complete description
of IIR may be found in [7], [10].

Elements of MR are pairs of real numbers [x, X], that are not necessarily related
by the condition x < X. Therefore, IR is obtained by adjoining improper intervals
[x,X], x > X, to the set IIR = {[x,X] | x,X € R, x < X} of proper intervals as well as
real numbers identified with the corresponding degenerate intervals. Elements of
the Kaucher extended interval arithmetic and other objects formed of these elements
shall be denoted by boldface letters, like common intervals.

Proper and improper intervals, the two “halves” of IIIR, change places as the
result of the dualization mapping dual : IIR — IR, such that

dual x = [X, x].
As in classical interval arithmetic, we can define inclusion as
Xgy & x>y & X<Yy. (3.2)

This definition makes Kaucher arithmetic IR a lattice [4] with respect to the
inclusion order relation, in contrast to IIR.
Addition and multiplication by real numbers are defined on IR by

x+y = [x+y,X+Y],
* Strictly speaking, the arithmetic IIR is even a commutative monoid [5] with respect to addition

and multiplication, that is, a semigroup with a neutral element, but this fact is not so important for
our consideration.
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oy J1AXAX] A ER,
X = 1A% Ax], otherwise.

Each element x of IR has thus a unique additive inverse, denoted “opp x”, and
x+oppx=0 = opp[x,X]=[—x,—X].

It follows directly from the definition that, with respect to addition, IR is a
commutative group, which is isomorphic to the additive group of the standard linear
space IR?. Sometimes, we denote for brevity the inverse operation for addition, i.e.,
the inner (algebraic) difference of IR, by “&”, so that

X0y =X+oppy.

The following distributivity properties of addition with respect to the lattice opera-
tions sometimes prove useful:

x+(yvz) = (X+y)v(x+2), (3.3)
X+(yrz) = X+y)a(x+2). (3.4)

The nicest fact about Kaucher arithmetic is that the following representation that
generalizes formula (3.1) holds:

xxy=W" N xx), (3.5)

XEPIOX YeEpProy
where

x , If x is proper, .. . .
|/] = v Prop — conditional lattice operation,
A\, otherwise,

— proper projection of the interval.

prox i= {x, if x is proper,

dual x, otherwise,

This representation expresses the connection between the interval operation x x y
and the results of the point operations xxy forx € proxand y € proy. Multiplication
in Kaucher arithmetic is also defined on the basis of this representation (see, e.g.,
[7]). Below it will suffice to have the above general property, so that we even shall
not write out the explicit formulas (they can be found, e.g., in [10], [23], [24]). The
extended interval multiplication turns out to be commutative and associative [7],
[9], [10]. But the multiplicative group of IR is formed only by intervals [x, X] with
xX > 0, since the “cancellation law” does not hold on any wider subset of TIR.
Extended arithmetic subtraction and division are defined:

x—y =x+(1)-y,
x/ly =x-[1/y,1/y] for0 ¢ proy.

Finally, all extended interval operations are inclusion monotone, similar to their
classical predecessors:

xcx,ycy = x*xycx =y, ref{+ —, -/}
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The interrelation between multiplication and addition is:

if xisproper, X (y+2z) c X y+X- -z (3.6)
— subdistributivity,
if xis improper, x-(y+2z) 2 X y+X-2 (3.7
— superdistributivity.

These inclusions turn into exact equalities, in particular, if x is thin, thatis, x = x €
R.

In extended interval arithmetic, the operations with vectors and matrices are
defined similarly to those in IIR. The sum (difference) of two interval matrices of
identical size is an interval matrix of that same size formed by elementwise sums
(differences) of operands. If X = (x;) € IR"and Y = (y) € TR, then the
product of the matrices X, Y is a matrix Z = (z;) ¢ R™*" such that

!
2z = Z Xik Y-
k=1

The inclusion ordering on the set of interval vectors and matrices is a direct product
[4] of the inclusion orders on the separate components IIIR. Hence, we set

Xy Yi X1VYyi
X2 Y2 X2 VY2

. v . = .
xrl y}’l xl’l v yn

and

X Yi X AY
X> Y2 XoAY2

A = .
x’l Yn xn A yll

Finally, the topology on the extended interval space TIR" is defined in the
standard way, that is, by the metric

dist (x,y) := max {||x — vl IX—¥|}, xyelR"

where || - || is a monotonic vector norm on IR". For IIR", this metric coincides
with Hausdorff distance between interval vectors. All the extended arithmetical
operations, the matrix-vector operations in IIR" as well as the operations v, A,
“dual”, and “opp” are continuous in the above metric (see [10]).
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4. Immersion into Linear Space

The result of the preceding sections is that we have reduced the original “outer
problem” (1.3) to the problem of finding an algebraic solution of the interval
equation

Cxox+b=0.

Essentially, this is the traditional mathematical problem of the solution of an equa-
tion, and much of classical numerical analysis deals with it. The peculiarity of the
situation is that the main set IIR" on which the equation is considered is not a linear
space at all: lack of distributivity violates the axiom requiring

A+u)x =Ax+pux

for all vectors x € NMNR" and any scalars A, u ¢ IR. So most of the existing
computational approaches are not directly applicable to our problem.

Furthermore, remaining in IIIR", we cannot carry out comprehensive theoretical
analysis of the situation and understand some phenomena. For example, the point
matrix

11
(i @

has nonzero determinant, but multiplying by this matrix in TIR" may nullify even a
nonzero vector:

11 [—1I11y _ /(O
(=) ()= ()
What is the reason? One can hardly reveal that from inside the interval space, which
is essentially nonlinear. There is an urgent need to transfer our considerations into
a linear space, which we denote by U for generality.

Mathematically, we have two different spaces, the interval space TIR" and the
linear space U, with totally different structures on them; how can we jump from
the first one to the second? We are going to do that in the following way, which
somewhat resembles a change of variables. First, we should construct a map 1t :
TR" — U, that must be a bijection (one-to-one map) to uniquely restore an interval
preimage by its image in U, and conversely. Then, it is fairly simple to realize that
each bijection 1 : IIR" — U also induces the bijection from the set of all mappings
over IIIR" to the set of all mappings over U: each ¢ : TIR" — MIR" is matched to
the unique induced mapping

lO(pOl_liU-m?U, 4.2)

where “o” stands for composition of mappings. Overall, the situation is described
by the commutative diagram (see Figure 2).
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linear spaces
1togot”!
U U
induced map
___________ l_] —_—— e e —
n q) n
IR IR

original map

interval spaces

Figure 2. How an immersion generates induced mappings.

The fact is, the properties of ¢ and 1 o ¢ o 1! are closely related. Moreover, if
1 is chosen such that 1(0) = 0, then we may change the problem of solution of the
equation in TIR" to the problem of solution of the equation in the linear space U, a
situation familiar to modern numerical analysts.

Formally, we can organize the above construction as an embedding of the interval
space IIR" into the linear space U. The major question about the construction of
the embedding is to provide a reasonable compromise between its simplicity and
convenient form of the induced mappings (4.2). We adopt the following

DEFINITION 4.1 [23]. For a linear space U, a one-to-one mapping ¢ : IIR" — U
is said to be an immersion of IIR" into U provided that it satisfies the following
properties:

(i) 1 is an isomorphism of the additive groups IIR" and U,

(i) t is a homeomorphism of the topological spaces IIIR" and U.
In other words, we require that the immersion keep the additive algebraic structure

and the topological structure of the interval space IIR".
This definition immediately implies that

Or) = Oy,
oppx) = —1(x), xeIR"

In addition, the inverse mapping 1~! : U — IIR" also satisfies conditions (i)—(ii)
from the definition of i, and

mH0y) = Opge,
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17 (=x) = oppr~'w), xeU.

Invoking, for example, dimension considerations, one can show that U is unique-
ly determined by Definition 4.1: U must be IR*". Further, all the embeddings satisfy-
ing Definition 4.1 are easily proved to be equivalent to within a nonsingular linear
transformation of the space IR*" [23], so that we can choose a specific immer-
sion from convenience considerations. As in our previous work [23], we shall
henceforth use a specific immersion, which is quite rightfully named the standard
immersion.

DEFINITION 4.2. The immersion ¢ : TIR" — R?" that acts as follows
(X,Xy,...X%,) (=X, —X3,..., X, X, Xp, ..., X,)s 4.3)

i.e., when the left endpoints of x,,x,,...,x, taken with the opposite signs are
identified with the 1st, 2nd, ..., n-th components of a real 2n-vector, while the right
endpoints of x|, x,, ..., %, are identified with the (n + 1)-th, ..., 2n-th components
of the real 2n-vector, respectively, will be called the standard immersion of the
interval space IR" into R*",

Each immersion 1 : IR" — R*" naturally generates an induced partial order
“C” on the linear space IR?", which is an image of the inclusion order on TIR"
under the immersion t. Specifically, for x, y R?" one can say that “x does not
exceed y” and write “x C y” if and only if :~'(x) < 1~ !(y) in IIR". Since for any
X, V, U, Ve IR?" there holds

xCy, aeR" = oxC a,

xCy, uCv = x+ul y+y,

then the partial order “C” conforms to the linear structure of IR?". Therefore, it is
set by some positive cone K = {x € R>" | x > 0} [17], so that

xCy & y—-xekK..

Clearly, the concrete formulas for “C” depends on the form of immersion, but
for the standard immersion (4.3) they look especially simple. It is not hard to see
that then

xCy ifandonlyif x <y inthecomponentwise sense, (4.4)

that is, if x; < y;,i=1,2,...,2n. The positive cone under the standard immersion is
correspondingly

Ke={xeR"|x>0,i=1,2,..,2n} 4.5)

Thus the induced partial order on the space R*" coincides with the common com-
ponentwise ordering! This is the main justification of the form (4.3) for the standard
immersion that we have chosen. The above is a sufficiently compelling argument
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for us to treat only the standard immersion of the form (4.3) and corresponding
componentwise ordering (4.4) on R in the remaining theoretical development of
this paper. However, in practice, other immersions may also be useful.

COROLLARY 4.1. Directly from the definition of an induced order on R* and in
view of (4.4) we get

0( \/ xy) = G(max - xy) = mall( < 0(%y) (4.6)

<
el ye ye

for any family {x, | y € T'} of intervals. Thus, the immersion transfers maxima in
IIR" to maxima in R*" (and minima to minima).

DEFINITION 4.3 [4]. For a number x € IR, the quantities

+

X max(x, 0),

I

= max(—x, 0)
will called the positive part and the negative part of x respectively.

PROPOSITION 4.1. If ¢ : TR" — TR" is an operator of multiplication by a point
matrix, that is,

p(x) = Ox

for some Q € R"™", Q = (q;), then the induced mapping 10 ¢ o1~
transformation of the space R*".

For the standard immersion &, the matrix of the induced linear transformation
oo oo Listhe following block (2n x 2n)-matrix

Vis a linear

“4.7)

where the matrices Q = (q;) and Q™ = (q;; ) are the positive and negative parts
of Q respectively.

Proof. The first statement immediately follows from the distributivity relation
q-(X+y)=q-X+q-y

that is valid for thin ¢g. The second one is a consequence of the multiplication rule

_ [gx,q%], if ge R,
q [xx]= _ .
[gx,qx], otherwise

and formula (4.3). g
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The block (2n x 2n)-matrix from Proposition 4.1 is so significant in our theory
that we shall use a special designation for it.
DEFINITION 4.4. For a given (n x n)-matrix Q, we set
o | 0
Q° = (4.8)
0" | O
and call the matrix Q° the concomitant matrix to Q.

COROLLARY 4.2. It follows directly from the definition of the induced map that
for any x € R*" there holds

o(Qo™'(0) = 0°x. (4.9)

The other important feature is that the concomitant matrices Q° e IR are
always non-negative: Such matrices must represent “<’’-isotone operators on R
that correspond to inclusion-isotone multiplication on Q in IIR".

We have already noted that the nonsingularity of the point matrix ( in the sense
of classical linear algebra does not necessarily mean that the corresponding operator
of multiplication by Q in TIR" gives a nonzero result. That i$, such a matrix may
not generate an invertible operator on IIR". The matrix (4.1) is a counterexample.
To distinguish such cases, we give the following

DEFINITION 4.5 [23]. We say that the matrix Q € R"*" is v-nonsingular, if
Ox=0 = x=0elR".

Otherwise, we call the matrix Q t-singular.

Obviously, if a matrix is singular in the common sense, then, a fortiori, it is
-singular. As a corollary of Proposition 4.1 we get

PROPOSITION 4.2. The point matrix Q € R"™" is 1-nonsingular if and only if
its concomitant matrix Q° e RR¥™%" js nonsingular in the common sense, i.e., its
determinant in nonzero.

For example, the identity matrix
0
0 .
is e-nonsingular, while the matrix (4.1) is ¢-singular. All nonnegative nonsingular
matrices are ¢-nonsingular.
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COROLLARY 4.3. The operator of multiplication by a point matrix in TR"
¢:IIR" - IR", ox)=0x for QeR"™,

has an inverse operator ¢! : TR" — TIR" if and only if the matrix Q is 1-
nonsingular, in which case ¢~ acts as follows

o7l =0""(@)" o) (4.10)
(cf. (4.9)).

Warning. Even though the explicit formula (4.10) exists, the operator which is
inverse to the operator of multiplication by a point (n x n)-matrix @ in IIR" cannot
be generally expressed through multiplication by a matrix in TIR" (in particular, the
inverse operator is not multiplication by the matrix Q).

Finally, it is worth giving a methodological commentary on the account of this
section. We have singled the map IIR" — IR*" out and studied it as a separate notion.
Why? Some people would be satisfied by merely identifying the interval’s endpoints
with the components of the vectors of R*", thus not introducing unnecessary
abstractions.

The point is that the “mere identification” of the interval’s endpoints with the
components of the vectors of R* is nothing but a disguised trick to introduce an
immersion (embedding) IIR" — IR?*. I am convinced that one had better do that
honestly and in an explicit way. Besides, we have at least two reasons to treat the
immersion as we did:

1) the map IIR" — IR* may not be uniquely defined, i.e., there is not just one
such immersion that is naturally determined for all possible situations;

2) we can gain meaningful benefits from this non-uniqueness, i.e., if a map i :
IIR" — IR*" is the most suitable for one situation, then another map 1, : IIR" —
IR?" can turn out better for another.

Both these points are actually present in the case considered. The map o : TIR" —
R*", which is referred to as the “standard immersion” is appropriate mainly in
theory. When implementing the practical algorithms described in this paper, the
author used the simplest immersion

(x]’x23'-'3xn) lad (5]!_&2)"”Knyilv}_(27~~'1~i")s

which is more convenient when writing a computer code, etc. Moreover, it is not
hard to imagine some situations in which immersions different from the above will
prove helpful. For example, Lyashko [12] utilizes the immersion

(XX, --0X,) P (X,X,X0, %, 0 X Xy)

to vividly represent some results on the asymptotic convergence factor of matrix
iterative methods.
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5. Investigating the Equation

As the result of the embedding, investigation of the mappings IIR” — IIR” reduces
to investigation of the mappings R*" — RR*" of the usual Euclidean space, but
we can state even more. As follows from Definitions 4.1, 4.2, for the immersion
o:IR" — R*"

o(x)#0 of R”" = x#0 of TR",
while
o0 of IR") =0 of IR,

We can thus turn the original problem that concerns us, i.e., that of finding zeros of
the mapping

y(x)=CxSx+Db, 5.1
into the problem of solution of the induced equation

Y(x)=0 5.2)
inIR* such that ¥ = soyoo ! : R” — R*, ie.,

¥(x) = o(Co™'x)© 67 '(x) +b)
o(Co™' () — x+ a(b). (5.3)

Overall, the original equation y(x) = 0 has a solution x* € IIIR" if and only if the
induced equation W(x) = 0 has a solution x* € R?", and there holds

x" =07 1(x).

Also, we do not need to prove separate existence and uniqueness results for the
solutions of the induced equation (5.2)—(5.3). Those are Theorems 2.1-2.3 for the
original equation (2.2).

PROPOSITION 5.1. The induced mapping ¥ : R" — R*" defined by (5.3) is
continuous.

Proof. The original mapping v : IIR" — TIR" defined by (5.1) is continuous,
since interval arithmetic operations in IIIR are continuous. The immersion ¢ as well
as its inverse ¢~ ! are also continuous. O

Well, what about differentiability, smoothness, etc., of ¥? Unfortunately, we
cannot claim any of these properties globally. But we have something even more
attractive instead.

To move forward, we recall the following definition.
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DEFINITION 5.1. Let IR? be an ordered linear space with the partial order “<”. A
mapping F : IR” — RY is called order convex with respect to “<” if

F(ry+(1 —A)z) < AF(y)+(1 — A)F(2)

forany y, ze IR” and A € (0, 1) (see, e.g., [3], [171, [19]).

Being near relatives to linear and affine mappings, convex functions and opera-
tors are known to possess many remarkable properties.

PROPOSITION 5.2. The induced mapping W (x) defined by (5.3), of which we seek
the zeros, is order convex with respect to the componentwise partial ordering “<”
of R™.

Proof. We have for A € (0, 1) and any u, v € ITIR", in view of the subdistributivity
(3.6),

C(iu+(1 —A)v) cACu+(1 — 1)Cv.
Therefore, in R*",

o(C(Au+( —2)v)) < Ac(Cw) + (1 — 1)a(Cv). (5.4)

One can conclude from the above that for y, z € IR?" such that y=o(u), z=o0(v)
the following chain of inequalities is valid:

YAy +(1 — 1))
o(Co™! (Ay+(1 = 2)2)) — (Ay+ (1 = 2)2) + a(b)

o(Cru+1—2v)) = (Ay+(1 = 4)2) + o(b)

[A

Ac(Cu) + (1 — A)o(Cv) — (}.y +(1 — ?t)z) +o(b) by (5.4)
A(06(Cu) — y+ (b)) + (1 — 1)(6(Cv) — z+ o(b))
= A¥Y@y)+ (1 — A)VY(). O

DEFINITION 5.2. Let IRY be an ordered linear space with the partial order “<”.
The subdifferential of the mapping F : R” — IRY at the point x € IR” is the set
d<F(x) of all linear operators D : R” — IR? such that

D@y —x) < F(y —x) (5.5)

for any y € R”. Members of the set dF(x)—the linear operators satisfying
(5.5)—are called subgradients of the mapping F at the point x, while the map-
ping F itself is said to be subdifferentiable at x if its subdifferential is nonempty at
that point (see [3], [19]).
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In general, checking whether the subdifferential exists and, in case of existence,
computing the subdifferential are not easy tasks. Fortunately, the situation is cru-
cially simplified in the finite-dimensional space: it is known (see, e.g., [3], [19])
that convex continuous functions are always subdifferentiable in the interior of their
domain.

The mapping under consideration ‘¥ : R — R, being order convex with
respect to the common componentwise <-order on ]RZ", is equivalent to the
functionals ¥, : R* — R—coordinate components of ¥—being convex for
i = 1,2,...,2n. In addition, the components W;(x) are everywhere continuous.
Therefore, none of the subdifferentials ¥;(x) is empty at any point x € R*", so that
foreach i = 1,2, ..., n there exists a 2n-vector d;), such that

Pi(x+v) — i) > dfv forall veR™

Then, constructing a (2n x 2n)-matrix D = (d1),dy, ..., d(z,,))T, we may conclude
that at any x e IR*" the set of matrices D € IR*?" that satisfy the inequality

Y(x+v)—¥(x) > Dv

for any v € IR?" is nonempty. That is, we have proved

PROPOSITION 5.3. The <-order subdifferential d<¥(x) of the order convex map
Y is always nonempty, i.e., the induced mapping Y defined by (5.3) is everywhere
subdifferentiable.

For brevity, we shall denote the subdifferential simply by 0'¥(x), since no other
order on R?" is considered below.

To give explicit formulas for the subdifferential '¥(x) and to derive estimates
for it which will be used later, we need to know more about the mapping ¥ under
study.

PROPOSITION 5.4. For the mapping ¥ defined by (5.3), the following represen-
tation holds:

Y(x) = max C°x — x+ o(b). (5.6)

Proof. First, for any proper (n x n)-matrix C and arbitrary interval n-vector v,
there holds

C v= \/ C v
CeC

Indeed, if C-v = ((C-v),(C-v),...(C ~v),l)T, then, using (3.5) and dis-
tributivity of the operation ‘v’ with respect to addition (3.3), we get for any
i=12,..,n
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Cvi=>cv=3 \Vegv=V V-V Zcu,
j=1 cijecj

j=1 Cil € €j| Ci2 € Cp Cin € Cin j = |

V. ey = V€

CeC j=1 CeC

Hence, in view of (4.6) and (4.9), we conclude

o(co™ (v) = G(C\e/c Co™ l(,wc)) max < o(Co™ () = max < C°x,

so that overall the formula (5.6) follows. O
DEFINITION 5.3. For a function f : R” — IR, the epigraph is the set

epif ={(x,0) | xe R, re R, f(x) <t}

(see, e.g., [3], [19D]).

A polyhedral convex set in IR” is a set that can be represented as intersection of
a finite number of closed half-spaces of IR”, i.e., as the set of solutions to a finite
system of linear inequalities

hpx <& i=1,2..,m hleR', &elR
A polyhedral convex function is a (convex) function of which the epigraph is a
polyhedral set (see [19]).

We stress that polyhedral functions, in their turn, are the simplest amongst the
convex functions: they are locally affine almost everywhere because their graphs
are composed of pieces of hyperplanes.

PROPOSITION 5.5. All the components ¥i(x), i = 1,2, ...,2n, of the map ¥ defined
by (5.3) are convex polyhedral functions.

Proof. Utilizing the result of Proposition 5.4, we arrive at
W, (x) = (éneaé C"x)i — %+ (o(b)), (5.7)

forany i = 1,2,...,2n. In (5.7), due to the special form (4.7) of the matrix C°, the
maximum may be attained only at endpoints of the interval entries ¢, j = 1,2, .

or at some zeros among them if the corresponding c¢; > 0. In either case, one can
equivalently replace the interval c; by a finite number of points (two or three) to
obtain the maximum in (5.7). With these considerations, we state that

Wi(x) = (C max _ C°x) = xi+ (a(b)),, (5.8)

where Vert C is the extended set of vertex matrices of C defined as

{‘U, lf O Q/CU,
{9,},0, C,j}, otherwise.

(Vert C),; := {
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polyhedral

smooth

N

Figure 3. A graph of a smooth convex function as compared with a graph of a polyhedral convex
function: the latter is made up of pieces of hyperplanes.

Since Vert C is finite, the proposition follows. O

DEFINITION 5.4. For a function f : IR” — IR, the one-sided derivative at a point
x with respect to a direction y € R” (or, briefly, directional derivative) is defined
as the limit
W) _ . fa+ay) — f)
=lim ————=,
dy a\0 (04

provided it exists (see, e.g., [3], [19]).

We will especially need the following particular cases of the above definition

aWix) lim Wilxl, oo X 1, X — 0 Xjg 1, 0 X20) = WPilxy, .0, x20)
ax; a0 a
and
IVi(x) lim Wikt oou X1, X + 0, Xy, . X2) — Wilxy, ., X2n)
oxt T e\ o ’

]

one-sided partial derivatives of the component '¥; at the point x, from the left and
from the right, with respect to the j-th coordinate direction.

DEFINITION 5.5. The support function of a convex set W < IR” is the function
Sw(x) = sup {xTw | we W}

(see, e.g., [3], [19]).
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THEOREM 5.1 ([19], Section 23). Let f : R” — IR be a polyhedral convex func-
tion which is finite at a point x. Then f is subdifferentiable at the point x and Jf(x)
is a polyhedral convex set. In addition, the directional derivative of f at x, as a
function of the direction, is a support function of the subdifferential df(x).

Finally, we are able to write out the explicit form of the subdifferential 0'¥'(x)
under investigation.

PROPOSITION 5.6. The subdifferential d\¥(x) of the mapping ¥ defined by (5.3)
is the following (proper) interval (2n x 2n)-matrix:

[8‘1’1(x) H‘Pl(x)} {3‘{‘1(@ a\yl(x)}

ox; " ox{ oxy, | 0x,

(5.9

V2, (%) 9W¥an(x) d¥on(x) 9W¥2u(x)
ox; = oxf oxy, = 0x3,

Proof. The natural componentwise partial order on IR*" is the direct product of
the orders “<” on IR. Therefore, the order subdifferential is the direct product of
the common subdifferentials of the separate components ¥; : R>" — R, and for
each one of them we can avail ourselves of Theorem 5.1, as follows.

For the functions ¥;(x), the existence of the one-sided derivative with respect
to any coordinate direction in no way affects the existence of the derivative with
respect to the other variables. Besides, the matrices of the form (5.9) composed
of the one-sided derivatives obviously belong to the subdifferential 0'¥(x). Hence,
d'¥(x) is a direct product of the “partial” subdifferentials, that is, an interval matrix

whose elements are [oW;(x) / ax]: , 0Wi(x)/ ()x;“]. O
COROLLARY 5.1. Assuming differentiability of ¥ at x,
a¥; Y; Y,
,(_x) = ,Ex) = the common partial derivative ,(x)’
Ix; 9x; dx;

so that the structure of the matrix (5.9) is simplified. Then, the subdifferential d'¥(x)
consists of the only element, namely, of the Jacobi matrix

a‘{’l(x) a‘{ll(x)
axl 8)(2n

alPZ‘n ()C) ) (9\}’2,,()6)
Ixy IX2n

DEFINITION 5.6. The positive part x* and the negative part x~ of a proper interval
x are the following intervals

x* = {x* | xe x} = {max(x,0) | x e x},
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x = {x" | xe x} ={max(—x,0) | x € x}.

For example,
[-1,2]" = [0,2], [-1,2]7 =[0,1],
[1,2]* = [1,2], [1,2]7 = [0,0].
One can consider taking positive and negative parts of an interval as interval exten-
sions of the functions (-)* and (-)~ introduced in Definition 4.3. As usual, the above

operations will be applied to interval vectors and matrices in the componentwise
manner.

PROPOSITION 5.7. For the subdifferential d\¥(x) of the mapping Y defined by
(5.3), the following estimate is valid:

MW (x) (g 8; > L (5.10)

Proof. Below, it will be convenient to write * instead of either of the signs +
and —. By virtue of the representation (5.8),

E)‘P,‘()C) _ 0 - |
T2 = (e €, -5 (o))
a [+2
N %}(c!“v%iicc x),- — 0, (5.11)

where §;; is Kronecker symbol:

6 = 1, if (=],
v 0, otherwise.

We can avail ourselves of the differentiation rule for a maximum-type function (see,
e.g., [6], Section II1.2):

d

ij-th element of that matrix C° at which
— ( max <
ax; Ce VertC —~

C“x) (5.12)

i the considered max . C%xis attained.
CeVertC ~

Overall, combining (4.7), (5.11) and (5.12), we get the general form of the direc-
tional derivative matrix:

V@) _ [(C) (C) ) /

8x§- IR (GO RN (a ’
where C’, C” e R"™", C’, C” e Vert C. So, in view of Proposition 5.6, we arrive
at the required inclusion (5.10). O

6. Algorithm

To solve the equations (5.2)—(5.3) in the enveloping space R*", we propose the
following iterative algorithm.
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ALGORITHM I. Subdifferential Newton method with a special starting approx-
imation

As the starting vector x¥) take the solution of the “midpoint” system
(I — (mid C)°)x = o(b).

If the k-th approximation x*’, k = 0, 1, ..., has already been found, then compute
any D® e 9¥(x*) and put

x(k+1) = x(k) _ T(D(k))—l (‘I”(x(k)))

for some constant 7 € (0, 1].

Here, 7 is a damping factor, which we incline to recommend to be equal to or
close to 1. Our computational experience shows that then, as a rule, Algorithm [
gives an exact solution to the problem in a small finite number of iterations, which
usually does not exceed the dimension of the system. In this kind of method, the
damping factor was originally introduced to prevent divergence. However, whether
taking T < 1 really improves convergence of the subdifferential Newton method
is not quite clear to me yet. Anyway, in practice it appears that the smaller 7, the
slower Algorithm 1 works.

It is worth noting that the above Algorithm I is exactly the same we used in
[23] to find inner interval estimates of the solution sets to interval linear systems:
we applied Algorithm I to the computation of algebraic solutions of the equation
(dual A)x = b there.

Complete investigation of the subdifferential Newton method is beyond the
scope of the present work. Below, we shall prove, based on the standard technique
(see, e.g., [17]), a local convergence theorem, which is identical to the similar result
from [23]. Tt amounts to the following:

THEOREM 6.1. If the proper interval matrix C is sufficiently narrow and all point
(2n x 2n)-matrices S that satisfy

. Ccr C-

Se ( c- C ) -1
are nonsingular, then Algorithm I converges to o(X"), where X' is an algebraic
solution of the main system (2.2).

Proof. Let us specify what is meant by a “sufficiently narrow” interval matrix
A. We shall require that
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the convex hull of the set

<+ -
U{S‘1K< Sele"xz”,Se(C c )1} (6.1)

Cc- C*
where S~!'K< denotes the preimage of the positive cone (4.5) under the linear
transformation S, itself is a cone K< in R*".

This is not an arbitrary condition. If the matrix C is thin, that is, C = C, then
(C™ IKS is actually a cone, being the image of the cone in a linear transformation.

If the matrices S”,S” ¢ IR**" are “sufficiently close,” then the cones (S")™' K<

and (S")“'KS are close too, and their convex hull is still a cone. The condition
(6.1) thus indeed reflects “narrowness” of the interval matrix C in some sense.
When the set (6.1) is a cone, it defines a partial ordering “<” of R*":

x4y & x—yekKaq

The main idea of our proof is to demonstrate that the sequence of approximations
generated by Algorithm I is decreasing as well as bounded from below with respect
to this specially constructed order “<”.

First, the special choice of the starting vector x¥ implies
Yx?) = ¢(Co™ 1)) — xO + o(b)
o((mid C)o~ ! (x?)) — x@ + 5(b) by inclusion monotonicity
(mid C)°x@ — xO 4 5(b) by property (4.9)
((mid C)° — Nx + o(b) = 0.

v

]

So
(x> 0.
Next, directly from the definition of subdifferential,
\P(x(k+1)) > \.Il(x(k)) +D(k)(x(k+l) _ )C(k))
for D% e 9¥(x%) and any k =0, 1,2, ..., while by virtue of Algorithm I
DPEHD _ xy = (0, (6.2)
Hence, for 0 < v < 1 we get by induction
Yy >0, k=12, ... (6.3)

What is behind the inequality (6.3)? Recall the representation (5.6): for each k,
we have

iy = énaé Cox® — x% 4 5(b) > 0,
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which implies
S®x® + 5(b) € K<

for some

Cct C-
(k) _
57 e (C‘ c+ ) !

at which (max C°x® — x®)) is attained.
The latter is equivalent, inasmuch as S ®) must be nonsingular, to
2+ (WY o(b) e (SPY 1K c Ka,
while this inclusion simply means
B> (0.

If we set

v
B = ming {~S”"a(b) } Se R Se (84 g+ ) —1},

then each x® > B, ie., the sequence {x®} tuns out to be <-bounded from
below.

The other important point: the sequence {x¥'} produced by our algorithm is
monotonically decreasing with respect to the order “<”, that is

X0 > xlkHD (6.4)
forall k =0,1,2, ... Indeed, combining (6.2) and (6.3) one obtains
D(k)(x('”“ —x®y <.

As we could see, the inclusion (5.10)
Ct C-
*) -
DY e ( c- C* ) I
holds for each D®_ Thereby, in view of (6.1), (6.4) follows.
We have thus proved

20 5 kD g (6.5)

In general, the interrelation between order and topology in a partially ordered
linear topological space may be quite complicated, but things luckily get better
in the finite-dimensional situation: a sequence that is monotonic and bounded
with respect to a partial order (conforming to the linear structure) always has a
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topological limit as well. So, we can conclude from (6.5) that there exists a limit
x* of the sequence {x¥)} produced by Algorithm I. We can find it by solving the
fixed-point equation

X =x" — (D) THW()

with some D" € J'¥(x™) which must be nonsingular. Therefore, ¥(x*) = 0. O

7. Modifications and Further Development

What is the position of our algebraic approach amongst other approaches to the
solution of the “outer problem” (1.3)? The algebraic approach inherits good enclo-
sure properties from the interval iterative schemes, while its low computational
complexity is nearly equal to that of the finite algorithms. Overall, the algebraic
approach, appropriately modified and updated, may serve as a tool for quick com-
putation of reasonably good enclosures of the solution set to quite general interval
linear systems. Our immediate purpose is to briefly outline some possible ways of
doing this.

PROPOSITION 7.1. The solution set of the interval system
Ax=b
coincides with the solution set of the interval system
Gx=(dualG — Ax+b (7.1)

for any proper interval matrix G of the same size as A and such thatrad G < rad A.

Proof. Notice, as a remark to the formulation of Proposition 7.1, that the interval
matrix (dual G — A) is proper if rad G < rad A.
We have

the solution set of (7.1)
= {xe R" | (3G e G)(IH e (dual G — A))(3b € b)(Gx = Hx + b)}
= {xeR" | (3G € G)(3H € (dval G — A))(Fb € b)((G— H)x=b)}
= {xeR"| (3A € G — (dual G — A))(3b e b)(Ax = b)}

{xe R" | (3A € A)@3b € b)(Ax = b)}

the solution set of Ax = b,

sinceif Ge Gand H € (dual G — A),then (G-~ H)e G—(dual G — A)=A. O

Now, the main idea of our algebraic approach can be applied to the equation
(7.1). Let us designate by I' : IIR" — IIR" the map with the action

I'x) = Gx, (7.2)
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that is, multiplication by the matrix G. Then, if the inverse T~! : TR" — IR"
exists and the mapping

x > ' ((dual G — A)x +b)

is Lipschitz continuous, where the Lipschitz operator is a contraction of ITIR", then
the algebraic solution of the equation

Gx=(dual G — A)x+b (7.3)

is a solution to the “outer problem” (1.3). The corresponding general result has
been proved in somewhat other terms as early as by Alefeld and Herzberger [1]
(Chapter 11, Corollary 6). Next, to compute the sought-for algebraic solution, we
can make use of equivalent transformation (in Kaucher arithmetic), embedding into
IR*", as well as various numerics, other than traditional stationary contractions.

Before proceeding further, we emphasize that it makes good sense to restrict
ourselves to splitting only thin (point) matrices G from A in (7.3), that is, when
G = G. The reason behind that is twofold and quite important:

¢ To solve the main equation (7.3), we intend to avail ourselves of the subdif-
ferential Newton method, which requires the induced map ¥ = c oy o o~!
matching

v(x)=(dualG — A)xo5Gx+b

to be order convex. Tracing the chain of transformations from the proof of
Proposition 5.2, one can easily check that the desired convexity holds only if the
matrix G is thin.

» For thin G, invertibility of the map (7.2), which is decisive for the solvability
of the implicit relationship (7.3), can be investigated comprehensively and easy
implemented numerically. As was revealed in Section 4, the mapping (7.2) with
G = Gis invertible if and only if the matrix G is 2-nonsingular, while the inverse
mapping I" ! is determined by the formula (4.10).

Thus, let G = G be a ¢-nonsingular point matrix to make sure that the inverse
function to (7.2) actually exists. Now then, the appropriate question is: what are
advantages of the modified form (7.3) as compared with the original basic equation
(2.2)?

Under the circumstances, the operator I'™!, being an inverse to a linear map,
must be a linear map too, so that the modified form (7.3) is equivalent to

x=T"1(G - A)yx) +T~(b).

Both I and I'"! were identity operators in the initially treated case (2.2). But
now, through appropriate choice of G, we can try to make the composition of I"~!
and multiplication by (G — A) a “greater contraction” than the multiplication by
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(I — A) alone. For one thing, if the algebraic approach is not applicable to the
simplest equation

x=Cx+b, (2.2)

then we can hope that, after a suitable transformation, the resulting equation (7.3)
will have a contracting Lipschitz operator. For another, even if p(|C|) < 1 and the
algebraic approach is applicable to the equation (2.2), then the width of its fixed
point is shown (e.g., in [2]) to crucially depend on ||C||. Smaller ||C|| shall produce
better enclosures for the solution set, all other factors being equal.

How can we optimize the choice of the matrix G? This is the subject of our
future work.

8. Computational Tests

In this section, we summarize numerical experiments carried out with an algorithm
(subdifferential Newton method) that realizes the algebraic approach to the outer
problem for interval linear equations on a PC/AT 486. We take the term “algebraic
approach” to mean the simplest version of the modification described in Section 7,
with the splitted matrix G defined as follows.

DEFINITION 8.1. By the deviation of a proper interval x, we mean the quantity

{L if |x| > [x],
devx =< _ )
X, otherwise,

that is, the most distant (from 0) point of the interval x.

We put

devay 0

G :=devdiag A = ,

O dev a,,

that is, a diagonal matrix made up of the deviations of the diagonal elements of
A. Then the map which is inverse to the multiplication by the matrix G is simply
multiplication by the matrix G~!, and we have to solve

x=G'G-Ax+G b

instead of (7.3). We experimentally exhibit that even such simplest choice of G
leads to sufficiently good results. In addition, both the applicability domain of the
approach extends and the quality of interval enclosure improves in comparison to
the nonmodified form (2.2).

In all the following examples we set the damping factor 7 = 1 to show the com-
putational efficacy of the algebraic approach. Checking out whether p(|G~1(G —
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A)|) < 1, which is so essential for feasibility of the algebraic approach, was changed
to checking the stronger condition || |G~'(G — A)||| < 1 by virtue of the well-
known inequality between spectral radius and matrix norms. The algorithm was
implemented using Turbo C in standard double precision floating point arithmetic.
The answers below are presented to three digits.

The natural rivals of the algebraic approach are the famous interval Gauss
algorithm (see, e.g., [1], [14]) and recent Hansen-Rohn’s procedure [8], [20]. Each
of the above methods has its own applicability scope, and for each one there
exists a special class(es) of interval linear equations on which the method gives
the best enclosures, with the least overestimation. To make a definite conclusion
on comparative qualities of a method, much routine work is to be done. A few
examples are hardly convincing that one method is actually better than the others.
Still, we have tried to consider, for completeness, various test examples within the
present paper, including such as the following artificial

EXAMPLE 8.0 from [8].

[0.7,1.3] [-0.3,0.3] [-0.3,0.3] [—14, -7]
[—0.3,03] [0.7,1.3] [-0.3,03] | x= 9,121 |.
[—0.3,0.3] [-03,03] [0.7,1.3] [—3,3]

Here, the interval Gaussian elimination gives the interval

[—101,71]

[—62.25,99] |,
[—90, 90]

Hansen’s approach gives

[~101,17]
( [—15,99] ) ,
[—90, 90]

while the algebraic approach converges after two iterations to

[—101,71]
( [—69, 99]) .
[—90, 90]

No wonder the Hansen’s approach turns out to be best: the midpoint matrix of the
system is the unit matrix.

EXAMPLE 8.1. Let us turn to a more realistic interval linear system from [16]

[15,17]  [=3,3.01] [=3,3.011 [-3,3.01] [—6, 2]
[-3,301] [1517] [-3,299] [-3,299] | | [4.5]
[—3,299] [-3,2.99] [15,171 [-3,301] |*7 | [-2,4]
[-3,3.01] [-3,3.01] [-3,2.99] [15,17] [8,10]



ALGEBRAIC APPROACH IN THE “OUTER PROBLEM”... 131

By interval Gauss algorithm, we obtain the box

[—1.03,0.495]
[—0.347,0.974]
[~0.770,0.917] |

[0.150, 1.25]

and, using Hansen’s technique of [8], we obtain the box

[—1.03,0.363]
[—0.223,0.975]
[—0.752,0.919]

[0.149, 1.25)

By our algebraic approach we get

[—1.03,0.495]
[—0.372,0.974]
[—0.785,0.917] |’

[—0.05,1.25]

which is not so bad: again, the midpoint matrix of the system is nearly diagonal.
That favors good quality of the results obtained by Hansen-Rohn’s procedure.

EXAMPLE 8.2, an example of Hansen (see, e.g., [8]).

(2,31 [0,11\ _ ( [0,120]

[1,2] 12,31 ) * 7 \ [60,240] /-
As in the previous case, the algebraic approach with the diagonal deviation splitting
converges to the exact solution

[—120,90]
[—60, 240]
in 2 iterations. The same answer can be obtained by the interval Gauss algorithm.

The interval obtained is the optimal interval enclosure of the solution set, while
applying Hansen’s approach [8] we get the bounds on the solution set

1845
—120, ——
o]

2 b
0

which is considerably worse (due to a crude preconditioning that is intrinsic to
Hansen-Rohn’s procedure).

The next interesting range of Examples 8.3—-8.7 with a fixed interval matrix is
due to Ning and Kearfott [16] who advocate and further develop the Hansen-Rohn
approach.
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EXAMPLE 8.3 [16]. Let the interval equation system Ax = b be given with

[3.7,43] [—1.5,-0.5] [0, 0]
A=|[-15-05] [3.7,43] [-1.5 -0.5] (8.1
[0,0] [-1.5,—0.5] [3.7,4.3]
and b = ([—14, 14],[—9,9],[—3,3]D .
Then, using interval Gaussian elimination, we obtain the box

[—6.38, 6.38]
[—6.40,6.40] |, (8.2)
[—3.40,3.40]

while using Hansen’s technique [8] or Rohn’s reformulation of Hansen’s technique
[20] or Ning-Kearfott’s modification [16] gives the same result. The box (8.2)
proves to be the exact hull of the solution set of the system under consideration,
and the algebraic approach gives this result too, in only 1 iteration.

EXAMPLE 8.4 [16]. Let the interval equation system Ax = b be given, with A as
in Example 8.3 and b = ([—14,0],[-9,0], [—-3,0D7T.
Using interval Gaussian elimination, we obtain the box

[—6.38, 0]
( [—6.40, 0] ) . (8.3)
[—3.40,0]

Since the matrix (8.1) is an interval M-matrix and the right-hand side components
have one sign, this box is the smallest one containing the solution set. Using
Hansen’s technique of [8] or Rohn’s reformulation of [20], we obtain the wider

box
[—6.38,1.12]
[—6.40,1.54] |,
[—3.40, 1.40]
and using Ning-Kearfott’s modification, we obtain an even wider box
[—6.38,1.67]
[—6.40,2.77] | .
[—3.40,2.40]

The algebraic approach gives, to within roundoff errors, the exact hull of the solution
set (8.3) after 1 (one) iteration.

EXAMPLE 8.5 [16]. Let the interval equation system Ax = b be given, with A as
in Example 8.3 and b = ([0, 14], [0, 9], (0,3]) .
Using interval Gauss algorithm, we obtain the box

[0, 6.38]
( [0, 6.40] ) , (8.4)
[0,3.40]
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which is the hull of the solution set to the system considered. Using Hansen’s
technique of [8], we obtain the wider box

[—1.12,6.38]
[—1.54,640] |,
[—1.40,3.40]
and Ning-Kearfott’s modification gives an even worse result
[—1.67,6.38]
[—2.77,6.40] | .
[—2.40,3.40]

Again, the box obtained by the algebraic approach after 1 iteration is the optimal
box (8.4).

EXAMPLE 8.6 [16]. Let the interval equation system Ax = b be given, with A as
in Example 8.3 and b = ([2, 14],[-9, =3],[-3,1]) .
Using the interval Gauss algorithm, we obtain the box

[—1.09,4.29]
[—4.02,1.24] :
[—2.44,0.773]
Using Hansen’s technique of [8], we obtain the wider box
[—0.995,5.01]
[—4.64,1.52] |,
[—2.69,1.38]
while the smallest interval enclosure of the solution set is
[—0.995,4.29]
[—3.79,1.24] )
[—2.35,0.773]

It is a particular pleasure that, like in the preceding cases, the algebraic approach
gives this interval answer after only | (one) iteration.

EXAMPLE 8.7 [16]. Let the interval equation system Ax = b be given, with A as
in Example 8.3 and b = ([2, 14], [3, 9], [-3, .
Using the interval Gauss algorithm, we obtain the box

[0.517,6.25]
[0.450,6.07] | .
[—0.881,2.73]

Using Hansen’s technique of [8], we obtain the wider box

[—0.206, 6.25]
( [—0.386, 6.07] ) :

[—-2.01,2.73]
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while the smallest interval enclosure of the solution set is

[0.523,6.25]
[0.499, 6.07]
[—0.743,2.73]

And again, the algebraic approach demonstrates its superiority; it gives the above
best interval answer after only 2 iterations.

To sum up, for interval linear systems with “sufficiently arbitrary” matrices
that are not close to the midpoint diagonal, the algebraic approach seems to work
better than Hansen-Rohn-Ning-Kearfott’s procedure. Arnold Neumaier observed
that, with our choice of a diagonal splitted matrix G in the fixed-point form (7.1),
the algebraic approach is easily shown to work precisely for H-matrices [14] and
will give good results for sufficiently diagonally dominant matrices A as in the
above examples. What will happen if we do not confine ourselves to diagonal
splittings in the reduction to (7.1) is an interesting open question.

9. Advertisement

Public domain software that implements the algebraic approach to the outer problem
for interval linear systems (subdifferential Newton method) as well as its text in
C is available. They can be downloaded from ftp://www-sbras.ict.nsc.ru in the file
pub/interval/shary.zip
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