APIC’95, El Paso, Extended Abstracts, A Supplement to the international journal of Reliable Computing

Linear Static Systems Under Interval
Uncertainty: Algorithms To Solve Control
And Stabilization Problems

Sergey P. Shary

Abstract— This paper analyzes mathemat-
ical and computational aspects linear static
systems under interval uncertainty.

By an interval uncertainty, we mean that
only intervals of possible values are known for
input data and for the system’s parameters.
In other words, for each of this parameters
p, we know an estimate p, and we know the
upper bound for possible error p — p of this
estimate.

I. DESCRIPTION OF A LINEAR (STATIC) SYSTEM
A. Schematic Description

Let us denote the input and the output of the linear
system by by vectors x € R™ and & € R™ respec-
tively. Usually, the following structural scheme is
used as a model for linear static systems:

b= Az

(1)
How 1is this system described in mathematical
terms?

B. Mathematical Description: Idealized Case

In the 1deal case, when we can neglect the measure-
ment inaccuracies, we can assume that we know (or
can determine) precisely:

¢ all n components z; of the input z;
e all m components b; of the output b;
e all the components a;; of the m x n matrix A.

In this case, relation between input and output is
describe by a linear equation

b= Ax (2)

C. Mathematical Description: A More Realistic
Case (Of Interval Uncertainty)

The assumption that we know the parameters pre-
cisely is an idealization. In reality, we can only de-
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termine the tntervals that contain the desired values:

e for each of n components of the input =, we
know the interval x; that contains the (un-
known) actual value z;;

e all for each of m components of the output b,
we know the interval b; that contains the (un-
known) actual value b;;

e for each of m x n components of the matrix
A, we know the interval a;; that contains the
(unknown) actual value of a;;.

In this case, the relation between input and output
is describe by an interval analog of the system (2):

Ar=b, (3)
where A = (a;;) and b = (b;).

II. PROBLEMS

For every linear system, usually, two kinds of prob-
lems are solved:

e direct problems, when we know the input, and
we want to predict the output;

e inverse problems, when we know the output,
and we want to estimate the input.

Both in the idealized case, and in the case of inter-
val uncertainty, direct problems are easy to solve.
Therefore, in this paper, we will analyze inverse
problems.

In ideal (non-interval) case, an inverse problem
consists of solving a system (2) with known A and
b. In case of interval uncertainty, we also have to
somehow “solve” the interval linear algebraic sys-
tem (ILAS) (3). In this case, however, it is not
automatically clear what a “solution” means. Ac-
tually, as we will see, several solutions make sense
here.

III. PossIBLE INTERPRETATIONS OF INTERVAL
UNCERTAINTY, AND CORRESPONDING
FormuraTioNs Or THE INVERSE PROBLEM
For LINEAR SYSTEMS

One and the same interval can describe two dif-
ferent types of uncertainty. Let us illustrate these
two types of uncertainty on a simplified example, in
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which only one coefficient a1 of the matrix 4 is not
known precisely. Then, the relation (3) can means
two different things:

e First, it can mean that we have one one linear
system with fixed (but unknown) parameters.
For this system, we do not know the exact value
of @11, but we know that it belongs to the inter-
val ajy. For this particular system, and for the
input «, the output belongs to the vector inter-
val b. In mathematical terms, this means that
for some A € A, we have Ax € b. Another sit-
uation that corresponds to this interpretation is
when the changes in the value of the parameter
are possible, but we have no control over these
changes. In this case, still, we can only guaran-
tee that there is a value of this parameter for
which the desired inclusion Az € b holds.

e Second, it can mean that we have several simi-
lar systems; the values of ay; for these systems
are different, but they all lie in the interval a1,
and, potentially, all numbers from this interval
can be represented as the values of a1y for some
system from this class. In this case, a natural
interpretation of the relation (3) is that for all
possible values of A € A, we have Az € b. An-
other situation when a similar interpretation is
possible i1s when we have one system, but we
can control the values of this parameter.

In the second case, when the condition describes
what happens VA € A, the equation (3) contains
more information about the system. Therefore, this
prevailing type of information is called uncertainty
of the I-st type. Correspondingly, the case when the
condition 18 A4 € A is called uncertainty of the II-
nd type.

Different components of the coefficients matrix A
and of the output vector & can correspond to dif-
ferent types of uncertainty. So, in order to describe
the most general case, we must do the following:

e Let the entire set of the index pairs (7, j) (that
describe components a;; of the matrix A) be
divided into two non-intersecting parts:

o QO ={w),...,w,} and

o QO =Huw!, .. W}
Here, p+r = m-n. These sets have the following
interpretation:

o If (4,j) € Q) then the parameter a;; is of
the first type of uncertainty (uncontrolled
perturbation).

o If (4,7) € Q" the the parameter a;; is of
the second type of uncertainty (control).

e Similarly, we introduce two non-intersecting
sets of integer indices:

o O ={¥,...,¥,} and
. O = {0, 00,

such that © U®" = {1,2,...,m}. These sets
have the following interpretation:

e If i € ©, then the parameter b; is of the
first type of uncertainty.

o If i € ©”, the the parameter b;; is of the
second type of uncertainty.

Some of the sets ', Q”, © ©"” may be empty.
The above-mentioned interpretation enables us to
formulate what we mean by a solution of the ILAS.

Definition. We define the set of Qq-solutions to
the interval linear system (3) as follows:

Sog(A,b) = {z € B"|

(Vaw/1 € awzl) .. .(Vaw; € aw;)
(Vbys € byr)...(Vby: € by,)
(Elawflf € awflf) o (Jayr € agn)
(Fbsy € byur) ... (Fbyy € byr)(Az =b)}  (4)

where the quantifier m x n-matrix Q = (Q;;) and

m-vector q = (q;) are such that
qi = 3,

v,
Qij = { 3,

We will also call the set (4) the solution set of the
type Q4.

if (i,5) €Y,
if (i,5) € Q"

if ie®,
if 1€0".

This general definition contains all known solu-
tions of interval analysis as particular cases:

o the united solution set
EEIH(Aa b) =

{r eR" | (A € A)(3b € b)(4x = b)},

formed by the solutions of all systems Az = b
with A € A and b € b (historically first and,
undoubtedly, the most popular of the solution
sets to TLAS),

o the tolerable solution set
EVH(Aa b) =

{e e R" | (VA€ A)(Abeb)(Ax =b)},

formed by all vectors x € R"”, such that the
product Az falls into b for any A € A,
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o the controlled solution set
EEIV(Aa b) =

{e eR" | (Vbeb)(TAecA) Az =b)},

formed by vectors ¥ € R” such that for any
desired b € b we can find an appropriate A € A
satisfying Az = b,

These particular cases are extreme points of the
class of all possible solution sets to (3).

IV. AN EVEN MoORE GENERAL DEFINITION Is
PossiBLE, E.G., IN GAME THEORY AND
DEcCISION MAKING

The above definition (4) is not the most general in-
terpretation of (3). Indeed, in game theory, and in
multi-stage decision making, we must not only de-
scribe which parameters are controllable, but also
what parameters are controllable by whom, and in
what order. It is possible, e.g., that players move
in turn, and a parameter ay; is chosen by the first
player on his ¢—th move, and the parameter as;
is chosen by the second player on his ¢—th move.
Then, if the condition Az € b means that the first
player has won, then the equation (3) can be inter-
preted as follows: There exists such a first move of
the first player that, no matter how the second one
moves, the first can move again, etc, and get Az to
be in b, i.e., as:

E|a11Va21E|a12Va22...(Ax S b)

In general, we can have an arbitrary number of
quantifier combinations.

In the present paper, we will only consider the
set (4), in which all occurrences of the universal
quantifier ¥V precede to occurrences of the existential
quantifier 3. In logical terms, we can rephrase this
condition by saying that the corresponding formula
must have an A E-form.

V. MaIN REsuLT

To formulate our results, we must introduce the fol-
lowing denotations.

For the interval linear system Ax = b, we define
interval matrices AY = (aivj) and A¥ = (a?j) and
interval vectors b¥ = (bY) and b? = (b7) of the
same size as A and b as follows:

av . ai]', lf Qij = V,
K 0, otherwise,
aa _ aj, if QZ] = Ela
K 0, otherwise,

bV _ bi, if 0 = V,
! 0, otherwise,
bEI _ bi, if 0 = E|,
! 0, otherwise.

Thus A = AY + A3 and b = b¥Y + b3. The funda-
mental result of our research 1s

PROPOSITION 1. The point x belongs to the
solution set Taq(A,b) if and only if

A"z —bY C b? - Az, (5)

VI. It Is VERY DirricuLT To DESCRIBE THE
SET OF ALL SOLUTIONS, S0, INSTEAD, LET
Us FIND SOME SOLUTIONS

It is not hard to prove that for all 2 and g, the
intersection of the solution set n4(A,b) with each
orthant of the space R™ is a convex polyhedron. So,
in principle, the set of all x that satisfy the condition
(5) is a union of 2" convex polyhedra.

Each polyhedron can be easily described, but
since there are 2" of them (as many as orthants),
the resulting length of the direct description of
Taq(A, b) grows exponentially with n. As a result,
even from moderate values of n, this description be-
comes practically useless.

This is not because the method is bad: even the
problems of deciding whether the united solution set
and the controlled solution set are empty or not are
known to be NP-hard.

Because of this, instead of trying to describe the
solution set itself, to try to find an element from
this set. In other words, we arrive at the following
problem:

Find an interval vector
that is contained in the solution set
Taq(A,b) (if it is nonempty)
of the interval linear system. (6)

Several particular cases of this problem have direct
practical interpretation:

e For the tolerable solution set Yy3(A,b), the
problem (6) is the classical linear tolerance
problem with numerous and fruitful practical
applications.

e For X,(A,b) = Zav(A,b) or Zne(A,b) =
Y33(A, b) the problem (6) is the control prob-
lem or the identification problem respectively
for the interval linear system [2].
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e The linear tolerance problem can be also inter-
preted as a problem of stabilization within the
required output state corridor b for the sys-
tem of which all parameters a;; are subjected
to bounded perturbations.

o If some a;; are disturbing parameters while
some are controlled ones, and all g, = 3, ¢ =
1,2,...,m, then we come to the stabilization
problem with a control possibility, or, in other
words, to the problem of insuring survival of
the system.

o Alternately, if a part of a;;’s are disturbing
parameters and a part of them are controlled
while all q; =V, ¢ =1,2,...,m, then we have
the control problem under bounded perturba-
tions.

VII. A NEw METHOD OF SOLVING THE
PrOBLEM (6)

In this paper, we present a new, algorithmically ef-
ficient approach to the analysis of the linear static
systems under interval uncertainty, namely, to the
solution of the problem (6).

The underlying idea of our result is unusual for
interval computations: it uses the concept of inter-
val algebraic solution to the interval equation, that
is, an interval vector x = (x1, ..., X,), for which Ax
(interpreted as a normal interval product) coincides
with b.

To be more precise, we reduce the problem (6)
to the problem of finding algebraic interval solution
to a special systems of equations in the extended
Kaucher interval arithmetic TR [1], thus reducing
the original problem to a purely algebraic problem
of the numerical analysis.

This reduction does not always work: there exist
cases in which the set of solutions (4) is not empty,
but the corresponding algebraic problem has no so-
lutions. However, if the algebraic problem does have
a solution, then we can solve the problem (6) as well.
And, in many reasonable cases, the algebraic prob-
lem does have a solution.

To formulate our result, let us briefly recall what
Kaucher arithmetic is. In this formalism, the ba-
sic elements are the pairs [z, T] of real numbers,
for which (unlike standard interval arithmetic) the
condition z < ¥ is not required. Thus, TR is ob-
tained from the set of standard intervals by adding
improper intervals [z, T], & > T, to the set IR =
{[z,Z] |z, € R, 2 < T} of the proper intervals and
the real numbers. Proper and improper intervals
(the two major parts of TR, can change places as
the result of the duality mapping

dual : TR — IR,

defined as dual [z,Z] = [z, z].
PROPOSITION 2. If the proper interval vector

X = (X1,...,Xpn) is an algebraic interval solution of
the equation

(AY 4 dual A?)x = dual b¥ 4 b7, (7)

then x C Xnq(A,b), i.ce., the interval vector x is a
solution to the problem (6).

This algebraic approach is remarkable for its
property to almost always give solutions to the prob-
lem (6) which are mazimal by inclusion:

PROPOSITION 3. If the proper interval vector
x 15 an inclusion-mazimal algebraic interval solu-
tion to the system (7), then it is also an inclusion-
mazimal interval vector contained in Taq(A,b),
t.e., it presents an inclusion-mazimal solution to the

problem (6).

VIII. OTHER RELATED RESULTS
We have also:

e investigated existence and uniqueness of the al-
gebraic interval solutions,

e proposed a number of practical numerical al-
gorithms to compute algebraic solutions (in
particular, the subdifferential Newton method)
and

e proved convergence of these algorithms.
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