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Abstract, The work advances a numerical technique for computing enclosures of generalized AE-
solution sets to interval linear systems of equations. We develop an approach (called algebraic) in
which the outer estimation problem reduces to a problem of computing algebraic solutions of an
auxiliary interval equation in Kaucher complete interval arithmetic.

1. Introduction

In cur work, we will consider generalized solution sets for interval algebraic systems
that naturaily arise when interval parameters of a system express different kinds of
uncertainty (ambiguity). We would like to remind that, basically, the interval data
uncertainty and/or ambiguity can be understood in two ways, in accordance with
the two-fold interpretation of the intervals.

In real life problems, one is hardly interested in intervals on their own, as integral
and undivided objects, with no further internal structure. In most cases, we only
use an interval v in connection with a property (let us denote it by P) that can
be fulfilled or not for its peint members. Under the circumstances, the following
different situations may occur:

either the property P(v) considered (that may be a point equation, inequality,
etc.) holds for afl members v from the given interval v,

or the property P(v) holds only for some members v from the interval v, not
necessarily all (maybe, only for one value).

In formal writing, this distinction is manifested in using the logical quantifiers—
either the universal quantifier ¥ or the existential quantifier 3:

« in the first case, we write “(Vv € v) P(v)” and shall speak of V-type (A-type} of
uncertainty,

¢ in the second case, we write “(3v € v) P(v)” and are going to speak of I-type
(E-type) of uncertainty

(see also [13], [15], [171. [20]).
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The above difference between the two uncertainty (ambiguity) types should be
taken into account when strictly defining solutions and solution sets to interval
equations, inequalities, etc. For instance, the most general definition of the solution
set to the interval system of linear equations

Ax=Db, (1.1)

with an interval m x n-matrix A = (a;) and an interval right-hand side m-vector
b = (b;), has the form

{xe R"|
(lerrl = Vrrl)(QZVn:z € vn‘g) ce (an+mvnmn+m = Vr:m,,+m) (Ax = b)}, (1.2)

where

Ql9 Q29 ey an+m
are the logical quantifiers ¥ or 3,

. +
(V1. V2, oo Vi) = (@11, e B> B, - b)) € R

is the aggregated (compound) parameter vector of the system
of equations considered,

(VI,VZ, LR vmn+m) = (alla T ) b]9 ---»bm) € IRmn+m
is the aggregated vector of the intervals of the possible values
of these parameters,

(TEI’ M, Emn+m)

is a permutation of the integers 1,2, ., mn + m.

DEFINITION 1.1. The sets of the form (1.2) will be referred to as generalized
solution sets to the interval system of equations Ax = b.

DEFINITION 1.2. The logical formula written out after the vertical line in the
definition of the set (1.2), which determines a characteristic property of the points
of this set, will be called selecting predicate of the cotresponding solution set (1.2)
to the interval system of equations.

Definition 1.1 is very general. One can easily calculate, for example, that the
number of the solution sets it comprehends far much exceeds even 2™**". Such a
great variety is, in particular, due to the fact that in logical formulas (the select-
ing predicates of the solution sets among them) the occurrences of the different
quantifiers cannot be permuted with each other [8].

The generalized solution sets to interval equations and inequalities naturally
come into being in operations research and decision making, they have interesting
and significant applications. In our work, we shall not treat the solution sets of
the most general form (1.2), with arbitrarily combined quantifiers at the interval
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parameters, but confine ourselves only to such solution sets of the interval equations
for which the selecting predicate has all the occurrences of the universal quantifier
Y prior to the occurrences of the existential quantifier 3. To put it differently,
we consider only the solution sets whose selecting predicate has AE-form. When
interpreting in terms of systems analysis they simulate one-stage “perturbation-
control” action on a system [13], [15].

DEFINITION 1.3. For the interval systems of equations, the generalized solution
sets for which the selecting predicate has AE-form will be termed AE-solution sets
{or sets of AE-solutions).

Such is, for example, tolerable solution set”

Zor(A,b) = {x e R" | (Va1 € an)}Vaz € ap) -+ (Vamn € amn)
(3b1 € b))Eby & by) -+ (3by € by)Ax = b)),
which corresponds to the case when all the entries of the matrix A have A-

uncertainty and ali the elements of the vector b have E-uncertainty. Usually, it
is written in the following form

ToilA, by = {x e R" | (VA € A)(3b e b)(Ax = b)},
= {xe R" | (VA e A)Ax e b)}
= {xeR" | (Ax = h)}.
Another example, which is also subsumed under Definition 1.3, 1s united solution
set of interval systems of equation, i.e., the set of solutions to all point systems

with the coefficients from given intervals. For the interval linear system (1.1), it is
strictly defined as

1l

Zuni(Aa b) {-x e R" | (3&11 € ali)(aaﬂ € 312) ce (Elamn € amn)

(361 € b1)(3bz € by) -+ (3by € bu)(Ax = b))

{xe R" | (@A e A)3b e b)Ax = b)}
= {xeR" | (Axnb#M}.

2. Quantifier Formalization

In this section we consider, for the AE-solution sets, various possible ways of
describing the uncertainty types distribution with respect to the interval parameters
of the system.

* One can find surveys of the related results in [7], [10], [19]. For dynamic systems, an analog of
this solution set is the set of viable trajectories, while the mathematicat problem statement that gives
rise to it is nothing but the viability problem.
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1. As far as the order of the quantifiers is fixed, the simplest of such ways is
to directly point out which quantifier is applied to this or that element of the
interval system. Namely, let us introduce an m x n-matrix « = (o) and an
m-vector B = (B;) made up of the logical quantifiers and such that

¥, 1if a; has A-uncertainty,
o = i .
Y 3, if ay; has E-uncertainty,

B = ¥, if b; has A-uncertainty,
‘71 3, if b;has E-uncertainty.

Specifying « and B, along with the interval system itself, completely determines
the corresponding AE-solution set.

2. Another way to represent the uncertainty types corresponding to the elements
of the interval linear system (1.1) is to trace out partitions of the index sets of
both the entries of the matrix A and components of the right-hand side b. More
precisely, let the entire set of the index pairs (i, j) of the entries gy, that is, the

set
{1, D,(1,2),...,(1,n),(2,1),(2,2), ... (2, n),
e (1), (m, 2), ., (m, )},
be divided into two nonintersecting parts Q = {&y,...,d,} and Q =
{1, ....0,}, p + g = mn, such that

a;j is of the interval A-uncertainty for (i, /) € &,
ajj is of the interval E-uncertainty for (i, /) ¢ Q.
Similarly, we introduce nonintersecting sets of the integer indices 0 =
{By,... 8} and © = {B,...,8,}, © U O = {1,2,..,m}, such that, in the
right-hand side vector,
b; is of the interval A-uncertainty for i ¢ @,
b; is of the interval E-uncertainty for i ¢ ©.
Also, we allow the natural pessibility for some of the sets fl, Q, @, & to be
empty. It is evident that
v, if (e, AL if ie®,
YTl 3 if e " la ifie®,
and, again, determining Q, Q, ©, © results in a complete specification of an
AE-solution set to the interval linear system (1.1}.

3. The third way to describe the uncertainty types distribution for an interval
lingar system is to fix disjoint decompositions of both the interval matrix of the
system and its right-hand side. Namely, we define interval matrices A = (af
and A% = (a}) and interval vectors b” = (b) and b = (b}), of the same sizes
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as A and b, as follows:

a;, if o=V, a;, if o =3,

a; = v i A a?] = v v . (2'1)
0, otherwise, 0, otherwise,
b;, if Bi=V, b;, if §; =3,

blv = 1 ﬁl - b? — 1 ﬁt . (22)
0, otherwise, 0, otherwise.

Thus
A=A"+A° aj-az =0,
b = bY+b, bf’-b?=0

for all i,j. The matrix A" and vector b" concentrate all the interval elements
of the system that corresponds to the A-uncertainty, while the matrix A and
vector b3 stores all the elements that correspond to the interval E-uncertainty.

It should be stressed that the three groups of the objects considered which arise
in connection with an AE-solution set of an interval linear system (1.1), namely

1) the quantifier matrix o and vector 3,

2) decompositions of the index sets of the matrix A and of the right-hand side
vector b to the nonintersecting subsets £2, {2, @, &,

3) disjoint decompositions of the interval matrix A = A + A7 and of the right-
hand side vector b =b" + b7,

are in a one-to-one correspondence, so that pointing out any one item of the above

triple immediately determines the other two. We will extensively use all three

descriptions and change any one for another without special explanations.
Summarizing, we can give the following

DEFINITION 2.1. Let us, for an interval linear system Ax = b, be given a quantifier
m x n-matrix o and an m-vector § as well as the associated decompositions of the
index sets of the matrix A and vector b to nonintersecting subsets Q = {@y,..., &, }

and Q = {&,...,3,},O ={d1, .. 8.} and O = {B1,.... & }.p+g=mn, s+t =m,
and disjoint decompositions A = A + A?and b =b" + b~
AE-solution set of the type off to the interval linear system Ax = b is the set
Teg(A,b) i={x e R" |
(Vag, € ag) -+ (Vag, € ag,) (Vbél € bﬁl) - (Vbés € bs)
(Jas, € ag,) --- (Jag, € ag,) (Elbg,1 & blgl) (E]bg,r € bé:)
(Ax = b)}

(2.3)

or, which is equivalent, the set
Zep(A,b) = {xeR" |
(VA ¢ A")Vb e b")3A € AH@b e bH(A+A) x=b+ b))
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3. Outer Estimation Problem

The intersections of the AE-solution sets to interval linear systems with each orthant
of the space R" are easily proved to be convex polyhedral sets (see [15]). They are
defined by systems of linear inequalities whose coefficients are the endpoints of
the interval elements of the system (1.1). In principle, one could give a direct
description of an AE-solution set by writing ount the equations of all its bounding
hyperplanes in each orthant, etc. But in general the complexity of such a process
may grow not slower than the total number of orthants, i.e., exponentially with
the dimension of the space R". The direct explicit description of the solution sets
becomes, as a result, extremely difficult, tedious, and practically even useless as
the dimension of the system under consideration increases*.

On the other hand, a full description of the solution set usually is not even
necessary in real-life situations. It suffices to change the exact solution set for
some approximation (estimate) of it which is sufficient for practical purposes. For
example, viability analysis and some system identification problems require inner
estimation of the solution sets to interval equations, that is, computing simple sub-
sets of the solution sets (see e.g. [21]). Alternatively, when analyzing the parametric
sensitivity of a control system, one is often required to know guaranteed estimates
of the state set within which our compensating control actions are able to hold the
system in spite of the presence of uncontrolled perturbations. This is the case when
outer estimates are needed, and the corresponding problem is usually formulated
as follows;

Find (quick and as sharp as possible) outer coordinate
estimates of the solution set £,5(A, b} or, another way,
evaluate inf {x; | x € Z,3(A, b)} from below and
sup {xz | x € Zop(A, b)} from above, k=1,..., 5.

(3.1)

In point of fact, the problem statement (3.1) prescribes seeking a box—rectangular
parallelotope with the axis-aligned faces—that contains the solution set. The boxes
are geometrical images of the interval vectors, so that we shall term a box enclosing
the solution set as an outer interval estimate of this solution set. To sum up, it
is convenient to reformulate the problem (3.1) in the following purely interval
form:

Find (quick and as sharp as possible) an outer
interval estimate of the solution set Z,5(A, b)
to a given interval linear system Ax=Db.

* Lakeyev managed to prove recently {9] that the complexity of recognition whether an AE-
solution set to a given interval linear system is empty or not is NP-hard, that is, computationaily
intractable problem, provided that sufficiently many entries of A have the interval E-uncertainty.
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The above problem is the main object under study in the present work. More
precisely, we aim at developing a numerical technique for outer interval estimation
of the generalized AE-solution sets to the interval systems (1.1). For simplicity, in
the rest of the paper we consider only the interval linear systems Ax = b with the
square n X p-matrices.

In the theory that we are presenting below, Kaucher complete interval arithmetic
IR plays a crucial role. This arithmetic is a natural completion of the classical
interval arithmetic IR, so that IR — IR. The distinctive feature of the arithmetic IR
is the presence of improper intervals [x,X], x > X, apart from the ordinary proper
intervals [x,x] with x < X forming the classical interval arithmetic. As a whole,
the complete interval arithmetic has good algebraic and inclusion order properties,
which facilitates easier symbolic manipulations, etc.

We remind that the dualization of an interval v € IR is

dual v .= [¥, v],

i.e., reversing its endpoints. For interval vectors and matrices, the dualization opera-
tion is taken componentwise. Modulus (magnitude) of an interval v € IR is defined
as

|v| = max{|v], [¥]}.

By “opp”, we will denote taking the opposite element in the complete arithmetic
IR, while &7 is the inverse operation to the addition:

oppv = [~v, V],

uov  =u+oppv=[u—¥, uU—V].

The definition of the inclusion ordering on IR is as follows:
ucv <« u>v and uwv.
The detailed description of Kaucher complete interval arithmetic can be found e.g.
in the original works [3]-[5], or in [14], [16].
4. Characterizations of AE-Solution Sets

For the generalized AE-solution sets to interval linear systems (1.1}, the following
analytic characterization is known [15], [17]:

THEOREM 4.1. A point x € R" belongs to the solution set Z,5( A, b) if and only
if

A x-bY ¢ b= A7 .y 4.1)

where all the operations and relations are those of the classical interval arithmetic.
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We introduce

DEFINITION 4.1. The interval matrix and interval vector
A¢:= A" + dual A7, b¢ := dual b¥ + b*

are called characteristic for the AE-solution set X,3(A, b) to the interval linear
system (1.1) specified by the disjoint decomposition of A into AY and A7, and of
binto b¥ and b,

The new language Definition 4.1 suggests enables us to speak of a selution set
that corresponds to the characteristic matrix A and right-hand side vector b°
{(in the last Section). A° and b® actually express, in a concentrated form, both the
types of interval uncertainty of all parameters and their intervals proper. In addition,
the new concepts facilitate rewriting the result of Theorem 4.2 in a more concise
form:

THEOREM 4.2. A point x € R" belongs to the solution set Z,5(A, b) if and only
if

A xcbf {4.2)
in complete interval arithmetic.
Proof. Notice that
opp (—v) =dual v

for any interval v e IR. Therefore, adding (dual b" +dual (A? - x)) to both sides of
{4.1) yields the following equivalent inclusion in the complete interval arithmetic

A" x+dual (A7 x) cdual b” + b3 (4.3)
Further, dual (A?-x) = (dual A®) - x, since x is a point. So, (4.3) is equivalent to
A" . x+{dual AY)-x cdual b¥ + b7

In the left-hand side, we can avail curselves of the distributivity with respect to the
point variable x, which results in

(AY +dual A%y x < dual bY + b3,

and that coincides with (4.2). O

In our work, we will need a “fixed-point form characterization” of the AE-
solution sets. To derive it, we add {x & A°x) to both sides of the inclusion (4.2),
thus getting the equivalent relation

x c X +opp (A%x) + b-.
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But opp (A°x) = opp (A°) x for the point x, we have therefore
x cx+(opp A%)Yx+Db",

Again, we can make use of the fact that x is a point and factor it out in the right-hand
side due to the distributivity. Overall,

x e Zop(A, b) = rc{(fo A% x+be.

It should be stressed that for x € X,3(A., b) # () the above proof implies the interval
vector (I © A°) x + b€ being proper.
To summarize, we get the following

THEOREM 4.3. A point x € R" belongs to the solution set Z,5(A, b) if and only
if

xe (IS A x+b".

5. “Algebraic Approach” in Quter Estimation Problem

The problems of inner interval estimation of the generalized solution sets to interval
systems of equations are known to be successfully solved by algebraic approach
[13], [15], [17], a technique that changes the original estimation problem for a
problem of computing an algebraic solution to an auxiliary equation in Kaucher
complete interval arithmetic ER. Recall

DEFINITION 5.1. An interval vector is called an algebraic solution to an interval
equation {inequality, etc.} if substituting this vector into the equation and executing
all interval operaticns according to the rules of the interval arithmetic result in an
equality (inequality, etc.).

We are going to show how a similar approach (which we also shall call algebraic)
may be applied to the problems of outer interval estimation of the AE-solution sets.
An alternative technique that solves the same problem—generalized interval Gauss-
Seidel iteration—has been presented in [18].

THEOREM 5.1. Let an interval matrix C e IR"™" be such that the spectral radius
p(|C)) of the matrix made up of the moduli of its entries is less than 1. Then, for
any vector d € TR", the algebraic solution to the interval linear system

x=Cx+d (5.1)
exists and Is unique.

Proof. In complete interval arithmetic TR, the distance dist(-, -) between the
elements is known to be introduced as follows [3]:

dist(u, v) :=max{{u — v, ju - ¥|} = jluov|
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It is worth noting as well that for any intervals ¢, u, v e IR the inequality
dist (cu, cv) < |c| - dist{u, v)

is valid (see also [5]). This estimate holds true for the multidimensional case too if
the distance between u, v € IR" is understood as the componentwise vector-valued
metric (pseudometric according to the terminology by Collatz [2]). More precisely,
for the interval vectors u, v we define

dist (ay, vy)
dist (w, v) := : e R".

dist (u,, v,;)

Then, for any interval matrix C with the elements ¢;; € IR and any interval vectors
u, v of the corresponding size, we have

dist (Cu, Cv) < |C| - dist (u, v). (5.2)
To prove the inequality (5.2), let us remind that
dist(y + 2,y +z') < dist(y,y") + dist(z,2z")

for any one-dimensional intervals y,y', 2, 2" € IR (see [5]). We can therefore
conclude that

dist ((Cu);, (Cv);)

H 1]
dist (Z c;u;, Z c,-jvj)
=t J=1

n
Z dist (C,‘jllj, CU‘Vj)
j=1

I

n
Z |C,‘J,'| - dist (Uj,Vj)

j=1

A

foralli =1,2,...,n, which proves the multidimensional estimate (5.2).
In the situation under study, for any d < IR”

dist (Cu + d, Cv + d) = dist (Cu, Cv) < |C| - dist (u, v).

If the spectral radivs of the matrix |C| is less than 1, then we can apply the finite-
dimensional version of Schroder’s fixed-point theorem (see e.g. [1], [2], [11]. [12]).
Namely, the map IR” — IR" which acts

x—»Cx+d

is a contraction with respect to the pseudometric “dist” and has thus a unique
fixed-point that is an algebraic solution to the interval linear system (5.1). O
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THEOREM 5.2. Let an AE-solution set 3( A, b) of the interval linear system (1.1)

be nonempty and p(| 15 A°|) < 1. Then the algebraic solution to the interval linear
system

x=(I© A% x+b¢ (5.3)

(which exists and is unique by virtue of Theorem 5.1} is a proper interval vector
enclosing the solution set Zo5(A, b).

Proof. Assume that x” is an algebraic solution to the interval linear system (3.3).
We are going to show that for any point £ € Z,3(A, b) there holds ¥ € x".

Due to Theorem 4.1, the membership £ € Z,3(A, b) is equivalent to the inclu-
sion

el A%)i+h" (5.4

Let us launch an iteration process in IR" according to the following formulas:
x® = % (5.5)
x®tD = (1o A9 x™ +be. (5.6)

Using induction, it is fairly simple to prove that all the vectors generated by this
process contain . Indeed, for x(® it is true by construction. If ¥ € x®| then in view
of (5.4) and inclusion monotonicity of the interval arithmetic operations in TR we
arrive at

FesAYE+b c e AYx® + b =x*+D),
Therefore, ¥ € x™® for all integer k. In particular, the above means that all the
interval vectors x* must be proper.
Furthermore, the condition p(|/ & Af|) < 1 implies the convergence of the
iteration process defined in the pseudometric space IR" by the formulas (5.5}-(5.6)

(see, e.g., [1],[2], [11], [12]). There is no difficulty realizing that the sequence x*,
k=1,2,..., converges to a fixed point of the map

x—= IS5 AYx+be

that is, to the unique algebraic solution x° of the equation (5.3). Since the mem-
bership % e x% is equivalent to a system of 2» nonstrict inequalities, then it must
hold in the limit as well,

fe lim x% =x*,

k—co

while this limit interval x* is proper too. a

6. Implementation

We conclude the paper with some comments on practical implementation of the
technique developed, i.e., on the methods for computing algebraic solutions to
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the main equation (5.3) and overall applicability of our approach. Notice that
Theorems 5.1-5.2 give the necessary theoretical basis for constructing stationary
iteration algorithms relying upon Schréder’s contracting mapping theorem.

Another possibility is the subdifferential Newton method (see e.g. [14]) whose
convergence is substantiated rigorously for the interval linear systems (5.3) with
the matrices A° in which, along every row, the entries are either all proper or all
improper. Empirically, it has been revealed that the method works well even for
the general interval lingar systems of the form (5.3), with arbitrarily mixed proper
and improper entries in the matrix A° (although then the algorithm is no longer
subdifferential, it is quasidifferential Newton method).

The key point of the applicability of our algebraic approach is the reduction
of the original interval system (1.1} to the form (5.3) so that the requirement
p(IT & Af|) < 1is met. This cannot always be done.

Tn the classical problem of computing enclosures for the united solution set, one
traditionally makes use of the so-called preconditioning—-multiplying both sides of
the system, from the left, by a point matrix. Such a transformation leads to widening
of the united solution set, but a careful choice of the preconditioning point matrix
improves the properties of the interval matrix of the system we thus obtain [6], [11].
Unfortunately, the above prescription fails when we turn to outer estimation of the
generalized solution sets: they do not necessarily extend after the preconditioning,
changing in a more complex way. Still, an outcome from our difficulty exists and
it amounts to that we should precondition the characteristic matrix and right-hand
side vector rather than the original interval system itself.

Let us turn to the analytical characterization of AE-solution sets that Theorem 4.2
gives:

x e Zup(A,b) == Ax c b”.

If A is a point n x p-matrix, then Ax < b® implies the inclusion A(Ax) < Ab°.
The interval matrix product is known to be non-associative in the general case, but
for point A and x there holds the equality A(Ax) = (AA%) x. Finally, we get

XxeZep(Ab) =  (AA9xc AbC. (6.1)

We can interpret AA° and Ab® as characteristic matrix and right-hand side vector
of another interval linear system, so the implication (6.1} establishes

THEOREM 6.1 If A is a point n X n-matrix, then the AE-solution set corresponding
to the characteristic matrix AS and right-hand side vector b® is contained in the
AE-solution set corresponding to the characteristic matrix AA° and right-hand
side vector Ab°.

We can therefore replace our main problem (3.1) with the outer estimation of
an AE-solution set defined by the new characteristic matrix AA® and right-hand
side vector Ab*. If the interval matrix of the original system is not “too large,” one
may hope that a suitable choice of A will cause the spectral radius p(|/ & AA°|)
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to become actually less than one. It is worth noting that, similar to the traditional
case, taking A as the inverse to the middle of A works reasonably well. Overall, we
can consider the procedure summarized in Theorem 6.1 as a kind of generalized
preconditioning of the interval linear system (1.1). Its detailed analysis is going to
be presented in an expanded version of this short note.
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