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Abstract. In the paper, we advance a numerical technique for enclosing generalized AE-solution sets
to interval linear systems. The main result of the paper is an extension of the well-known interval
Gauss-Seidel method to the problems of outer estimation of these generalized solution sets. We give
a theoretical study of the new method, prove an optimality property for the generalized interval
Gauss-Seidel iteration applied to the systems with the interval M-matrices.

1. Introduction

The subject matter of our work is interval linear algebraic systems of the form

Ax = b, (1.1)

with an interval m × n-matrix A = (aij) and interval right-hand side m-vector
b = (bi). We will consider the so-called generalized solution sets for (1.1), that
naturally arise in the situations when the interval parameters of the system express
different uncertainty types. We would like to remind that we can take the interval
data uncertainty in two ways, in accordance with the two-fold interpretation of the
intervals.

DEFINITION 1.1 [15]. Generalized solution sets to the interval system of equa-
tions Ax = b are the sets of the form

{x∈R
n | (Q1vπ1 ∈vπ1)(Q2vπ2 ∈vπ2) … (Qmn+mvπmn+m ∈vπmn+m)(Ax = b)}, (1.2)

where

Q1, Q2, …, Qmn+m

are the logical quantifiers ∀ or ∃,

(v1, v2, …, vmn+m) := (a11, …, amn, b1, …, bm) ∈ R
mn+m

is the aggregated (compound) parameter vector of the system

of equations considered,
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(v1, v2, …, vmn+m) := (a11, …, amn, b1, …, bm) ∈ IR mn+m

is the aggregated vector of the intervals of the possible values

of these parameters,

(π1, π2, …, πmn+m)

is a permutation of the integers 1, 2, …, mn + m.

The logical formula written out after the vertical line in the definition of the
set (1.2) that determines a distinctive property of its points will be called selecting
predicate of the corresponding solution set to the interval system of equations.

The interval parameters of the system (1.1) occurring with the universal quan-
tifier “∀” in the selecting predicate of the solution set (1.2) will be referred to
as having interval A-uncertainty, while the interval parameters standing with the
existential quantifier “∃” will be referred to as having interval E-uncertainty.

The generalized solution sets to interval equations and systems of equations
naturally come into existence in operations research and decision making theory,
where they have interesting and significant applications (see e.g. [13]). Further,
we shall not consider the most general solution sets to interval equations, with
arbitrarily permuted quantifiers at the interval parameters, but confine ourselves
only to such solution sets of the form (1.2) that, in their selecting predicates,
all occurrences of the universal quantifier “∀” precede the occurrences of the
existential quantifier “∃”. In other words, we will only deal with the solution
sets for which the selecting predicate has AE-form. When interpreting in terms of
systems analysis, they simulate one stage of a “perturbation-control” action on a
system [10], [13].

DEFINITION 1.2. The generalized solution sets to interval systems of equations
for which the selecting predicate has AE-form will be termed AE-solution sets (or
sets of AE-solutions).

Definition 1.2 embraces, for instance, the well-known united solution set

Ξuni(A, b) = {x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)}

i.e., the set of solutions to all point systems Ax = b with the coefficients A ∈ A and
b ∈ b, that corresponds to the case when all the entries of both the matrix A and
right-hand side vector b are of E-uncertainty.

It is known (see e.g. [15]) that, for the AE-solution sets, there exist three different
possible ways of describing the interval uncertainty distribution with respect to the
elements of the system. As far as the order of the quantifiers is fixed, the simplest of
such ways is to directly point out which quantifier is applied to this or that element
of the interval system. Namely, we introduce m × n-matrix α = (αij) and m-vector
β = (βi) made up of the logical quantifiers and such that

αij :=

{
∀, if aij has A-uncertainty,
∃, if aij has E-uncertainty;
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βi :=

{
∀, if bi has A-uncertainty,
∃, if bi has E-uncertainty.

Another way to represent the uncertainty types corresponding to the elements of
the interval linear system (1.1) is to specify partitions of the index sets of both the
entries of the matrix A and components of the right-hand side b. More precisely,
let the entire set of the index pairs (i, j) of the entries aij, that is, the set

{(1, 1), (1, 2), …, (1, n), (2, 1), (2, 2), …, (2, n), …, (m, 1), (m, 2), …, (m, n)},

be divided into two nonintersecting parts ϒ̂ := {υ̂1, …, υ̂p}, and ϒ̌ := {υ̌1, …, υ̌q},
p + q = mn, such that

the parameter aij has the interval A-uncertainty for (i, j) ∈ϒ̂, and

the parameter aij has the interval E-uncertainty for (i, j) ∈ϒ̌ .

Similarly, we introduce nonintersecting sets of the integer indicesΘ̂ = {ϑ̂ 1, …, ϑ̂ s}
and Θ̌ = {ϑ̌1, …, ϑ̌t}, Θ̂ ∪ Θ̌ = {1, 2, …, m}, such that, in the right-hand side,

the parameter bi has the interval A-uncertainty for i ∈Θ̂, and

the parameter bi has the interval E-uncertainty for i ∈Θ̌.

We allow the natural possibility for some of the sets ϒ̂, ϒ̌, Θ̂, Θ̌ to be empty. It is
apparent that

αij =

{
∀, if (i, j) ∈ ϒ̂,

∃, if (i, j) ∈ ϒ̌,
βi =

{
∀, if i ∈ Θ̂,

∃, if i ∈ Θ̌.

The third way to specify the uncertainty types distribution for the interval linear
system is to determine disjoint decompositions of the interval matrix of the system
and its right-hand side vector. We define interval matrices A∀ = (a∀

ij ) and A∃ = (a∃
ij)

and interval vectors b∀ = (b∀
i ) and b∃ = (b∃

i ) of the same sizes as A and b as
follows:

a∀
ij :=

{
aij, if αij = ∀,
0, otherwise,

a∃
ij :=

{
aij, if αij = ∃,
0, otherwise,

(1.3)

b∀
i :=

{
bi, if βi = ∀,
0, otherwise,

b∃
i :=

{
bi, if βi = ∃,
0, otherwise.

(1.4)

Thus

A = A∀ + A∃, a∀
ij ⋅ a∃

ij = 0,

b = b∀ + b∃, b∀
i ⋅ b∃

i = 0

for all i, j, that is, the matrices A∀, A∃ and vectors b∀, b∃ really form disjoint
decompositions for A and b respectively.
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The matrix A∀ and vector b∀ concentrate all the interval elements of the system
that correspond to the A-uncertainty, while the matrix A∃ and vector b∃ store all the
elements that correspond to the interval E-uncertainty.

It should be stressed that the three groups of the objects considered which arise
in connection with the interval linear system (1.1), namely

1) the quantifier matrix α and vector β ,

2) decompositions of the index sets of the matrix and of the right-hand side vector
to the nonintersecting subsets ϒ̂, ϒ̌, Θ̂, Θ̌,

3) disjoint decompositions of the interval matrix A = A∀ +A∃ and of the right-hand
side vector b = b∀ + b∃,

are in one-to-one correspondence, so that pointing out any one item of the above
triple immediately determines the other two. We will use all three descriptions and
change any one for another without special explanations.

We can give the following

DEFINITION 1.3. Let us, for an interval linear system Ax = b, be given

• quantifier m × n-matrix α and m-vector β , as well as the associated

• decompositions of the index sets of the matrix A and vector b to nonintersecting
subsets ϒ̂ = {υ̂1, …, υ̂p} and ϒ̌ = {υ̌1, …, υ̌q}, Θ̂ = {ϑ̂ 1, …, ϑ̂ s} and Θ̌ =
{ϑ̌1, …, ϑ̌t}, p + q = mn, s + t = m, and

• the disjoint decompositions A = A∀ + A∃ and b = b∀ + b∃.

We will call the set

Ξαβ(A, b)

:= {x∈R
n | (∀aυ̂1 ∈aυ̂1) … (∀aυ̂p ∈aυ̂p)(∀bϑ̂ 1

∈bϑ̂1
) … (∀bϑ̂ s

∈bϑ̂ s
)

(∃aυ̌1 ∈aυ̌1 ) … (∃aυ̌q ∈aυ̌q)(∃bϑ̌1
∈bϑ̌1

) … (∃bϑ̌t
∈bϑ̌t

)(Ax = b)} (1.5)

AE-solution set of the type αβ to the interval linear m × n-system of equations
Ax = b.

THEOREM 1.1. For any quantifiers α and β , the intersection of the AE-solution
set Ξαβ(A, b) with each orthant of the space R

n is a convex polyhedral set whose
vertices are solutions of the “boundary” point linear systems Ax = b, i.e., such
that

A = (aij), aij = either aij or aij,
b = (bi), bi = either bi or bi.

Proof. The membership of a point vector x to an orthant of R n is determined by
pointing out the signs of its components. It is worthwhile to note that, for any interval
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m × n-matrix C, the components of the product C⋅x = ((C⋅x)1, (C⋅x)2, …, (C⋅x)m)�
can be represented as follows:

(C⋅x)i =
n∑

j= 1

cijxj =


 n∑

j= 1

cijxj,
n∑

j= 1

cijxj


 =


 n∑

j= 1

c′ijxj,
n∑

j= 1

c′′ijxj


 , (1.6)

where c′ij and c′′ij are some numbers (they may coincide), which belong to the set of
endpoints {cij, cij} and are fixed for each individual orthant.

Writing out the inclusions (2.1) componentwise and changing, on the base of
the representation (1.6), each of the one-dimensional inclusions for the pair of
inequalities between the endpoints of the intervals, we get a system of 3n linear
inequalities


A′x ≥ b′,
A′′x ≤ b′′,
condition for the signs of xi, i = 1, 2, …, n,

(1.7)

where A′, A′′ and b′, b′′ are made up of the endpoints of aij and bi respectively. The
system of inequalities (1.7) determines a convex polyhedral set. �

At the worst, the description of an AE-solution set thus includes 2n different
linear inequalities systems (its own for each separate orthant). Therefore, for n being
merely several tens the exact description may be extremely difficult and practically
useless.

Usually, it is sufficient to somehow estimate the AE-solution set, i.e., to approx-
imate it by a simple set. The shape and location of such an estimate with respect to
the solution set should depend on the practical sense of the problem under solution.
For example, some identification problems require inner estimation, that is, com-
puting subsets of the solution set. Conversely, the parametric sensitivity problems
for the control systems require outer estimation of the solution sets, considering
that we must take into account all possible variations of the system state.

The purpose of our work is to advance a numerical technique for outer interval
estimation of the generalized AE-solution sets to interval linear systems of equations
of the form (1.1), and the problem under solution can be formulated in the following
purely interval form:

Find (quick and as sharp as possible) an outer

interval estimate of the solution set Ξαβ (A, b)

to a given interval linear system Ax = b.

(1.8)

For the sake of simplicity, we confine ourselves only to the square systems with
the interval n × n-matrices.
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2. Preliminaries

In the theory we are constructing below, complete interval arithmetic IR (also
termed Kaucher interval arithmetic) plays one of the leads. It is a natural comple-
tion of the classical interval arithmetic IR , so IR ⊂ IR . A peculiarity of Kaucher
arithmetic is that the basic set of IR consists of both ordinary proper intervals [a, a]
with a ≤ a and improper intervals [a, a] with a > a. As a whole, the complete inter-
val arithmetic has good algebraic properties and is a conditionally complete lattice
with respect to the inclusion ordering “⊆”. The reader can find a more detailed
description of the complete interval arithmetic both in the original works [4], [5] or
in [10]–[12].

For an interval v = [v, v] ∈ IR , we define

dual v := [v, v] — the dualization operation,

|v| := max{|v|, |v|} — the absolute value (magnitude).

“opp” denotes taking the algebraic opposite element in the complete interval arith-
metic IR , and “�” is the operation which is inverse to the addition, that is,

opp v := [−v,−v],
u � v := u + opp v = [u − v, u − v].

For interval vectors and matrices, the operations “dual”, “opp” and “�” are defined
componentwise.

DEFINITION 2.1. [15] The interval matrix and vector

Ac := A∀ + dual A∃, bc := dual b∀ + b∃

will be called characteristic for the AE-solution set Ξαβ (A, b) to the interval linear
system (1.1) specified by the disjoint decomposition of A into A∀ and A∃, of b into
b∀ and b∃.

The following analytic characterization is known [15] for the AE-solution sets
of the interval linear systems (1.1):

THEOREM 2.1. The point x ∈ R
n belongs to the solution set Ξαβ(A, b) if and

only if

Ac ⋅ x ⊆ bc (2.1)

in Kaucher complete interval arithmetic.

DEFINITION 2.2. An interval vector is called an algebraic solution to the interval
equation (inequality, etc.) if substituting this vector into the equation and executing
all interval operations according to the rules of the interval arithmetic result in an
equality (inequality, etc.).
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The interval [0, 1] is, for example, the algebraic solution to the quadratic interval
equation

[1, 2] x2 + [−1, 1] x = [−1, 3].

It has been known that the problems of both inner and outer interval estimation
of the generalized solution sets to interval linear systems are successfully solved
by the algebraic approach [10]–[12], [14], [15], in which we replace the original
estimation problem by a problem of computing an algebraic solution to an auxiliary
equation in Kaucher complete interval arithmetic IR . In the rest of this section, we
summarize our results on the algebraic approach for outer estimation of the AE-
solution sets to interval linear systems that will be extensively used further in our
study.

An interval matrix S ∈ IR
n × n will be referred to as invertible providing that

there exists an interval matrix, denoted S−1, such that S S−1 = S−1S = I—identity
matrix. It is fairly simple to realize that diagonal matrices S = diag{s1, …, sn} are
invertible if and only if sisi > 0, i = 1, 2, …, n, and

S−1 = diag{s−1
1 , …, s−1

n }.

THEOREM 2.2. Let, for an interval matrix G ∈ IR
n × n, there exist an interval

diagonal invertible matrix S ∈ IR
n × n such that

ρ(|S−1| |G|) < 1

—the spectral radius of the product |S−1| |G| of matrices made up of the magnitudes
of the entries of S−1 and G respectively is less than 1. Then, for any vector h ∈ IR

n,
the algebraic solution to the interval linear system

Sx = Gx + h (2.2)

exists, is unique and equal to the limit of the following iteration

x(k +1) = S−1(Gx(k) + h), k = 0, 1, …,

from any starting point x(0).

THEOREM 2.3. Let, for an interval linear system Ax = b, a set of AE-solutions
Ξαβ(A, b) be nonempty, Ac and bc be the corresponding characteristic matrix and
right-hand side vector, and there exists a diagonal invertible interval matrix S ∈
IR

n × n, such that

ρ(|S−1| |S � Ac|) < 1.

Then the algebraic solution to the interval system

Sx = (S � Ac) x + bc (2.3)
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(which exists and is unique due to Theorem 2.2) is a proper interval vector enclosing
the solution set Ξαβ(A, b).

The algebraic solution to the interval system (2.3) thus provides us, under certain
conditions, with a solution to the main problem (1.8).

What is the quality of the outer interval estimation of the AE-solution sets to
interval linear systems that one can obtain by using the above results? To put it
differently, how close is the interval enclosure to the interval hull of the solution
set, which is the best possible outer estimate? We are not going to inquire into
this interesting question in the general case. One should only bear in mind that the
theoretical results in complexity theory [7], [8] show that the problem of estimation
turns out to be intractable provided that we do not impose restrictions on the
interval matrix of the system. Moreover, as Lakeyev [8] managed to prove recently,
if the interval matrix A has “sufficiently many” entries with E-uncertainty, then
the problem of recognition whether the corresponding solution set is empty or not
(as well as the problem of its estimation) is NP-hard. Hence, we cannot hope to
compute “good” enclosures of the AE-solution sets to interval linear systems in the
general case. Still, there holds

THEOREM 2.4 [14]. Let the interval system

Sx = (S � Ac)x + bc (2.3)

meets the requirements of Theorem 2.3 and, additionally, the matrix

S−1(S � Ac)

be nonnegative. Then the algebraic solution to the system (2.3) (which exists, is
unique and gives an outer interval estimate for Ξαβ (A, b) by virtue of Theorems 2.2–
2.3) is the interval hull of Ξαβ(A, b), i.e., the best possible solution to (1.8).

3. Generalized Interval Gauss-Seidel Iteration

Interval Gauss-Seidel method is known to be one of the most efficient and popular
algorithms for computing of the outer interval estimates (enclosures) of the united
solution set to interval linear systems of equations. The method is usually used
after preliminary preconditioning of the interval systems (see, e.g., [6], [9]). The
purpose of this section is to adapt the interval Gauss-Seidel iteration to the problems
of outer interval estimation of the generalized AE-solution sets. Below, we suppose
that the interval matrix A is nonsingular, i.e., that all the point matrices A ∈ A
are nonsingular. One can achieve then, after suitable permutation of the equations
(matrix rows), that the diagonal entries aii, i = 1, 2, …, n, do not contain zeros.

The basis of the point Gauss-Seidel method is writing out the system of equations
Ax = b in the explicit componentwise manner

n∑
j= 1

aijxj = bi, i = 1, …, n,
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and further solving the i-th equation with respect to xi assuming that aii �= 0:

xi = a−1
ii


bi −

∑
j �= i

aijxj


 , i = 1, 2, …, n.

When iterating, to find the i-th component of the next (k + 1)-th approximation to
the solution (k = 0, 1, …), we involve the newly computed (k +1)-th approximations
of the preceding components 1, 2, …, i − 1, along with the old k-th values of the
components i + 1, …, n. The overall formulas of the classical point Gauss-Seidel
method look thus as follows:

x(k +1)
i := a−1

ii


bi −

∑
j< i

aijx
(k +1)
j −

∑
j> i

aijx
(k)
j


 , i = 1, 2, …, n, k = 0, 1, …

To construct the interval method, we shall act in a similar way.
Let us make use of the characterization of AE-solution sets presented by Theo-

rem 2.1:

x ∈ Ξαβ(A, b) ⇐⇒ Acx ⊆ bc. (3.1)

Breaking down the inclusion (3.1) componentwise, we get
n∑

j= 1

acijxj ⊆ bc
i , i = 1, …, n,

which is equivalent to

aciixi ⊆ opp

(∑
j �= i

acijxj

)
+ bc

i , i = 1, …, n.

If we are already given an interval vector x containing the solution set Ξαβ(A, b),
then we have for any x ∈ Ξαβ (A, b) and i = 1, 2, …, n

xi ⊆ (acii)
−1

(
opp

∑
j �= i

acijxj + bc
i

)

= (acii)
−1

(∑
j �= i

opp (acijxj) + bc
i

)

= (acii)
−1

(∑
j �= i

(opp acij)xj + bc
i

)

⊆ (acii)
−1

(∑
j �= i

(opp acij)xj + bc
i

)
=: x̃i. (3.2)

The interval vector x̃ determined by (3.2) thereby
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Table 1. Generalized interval Gauss-Seidel method.

Input

Characteristic matrix Ac ∈ IR
n × n and right-hand side vector bc ∈ IR

n corresponding to
the AE-solution set Ξαβ (A, b) under estimation of an interval linear system Ax = b.

An interval vector x = (x1 , …, xn)� ∈ IR n bounding the desired portion of the solution
set Ξαβ (A, b).

A prescribed accuracy ε > 0.

Output

Either the information “the solution set Ξαβ (A, b) does not intersect the initial vector x”
or a new outer estimate x̃ = (x̃1, …, x̃n)� of the solution set Ξαβ (A, b) ∩ x.

Algorithm

d := +∞;
DO WHILE (d ≥ ε)
DO FOR i = 1 TO n

x̃i := (ac
iic)−1

(
i−1∑
j = 1

(opp ac
ijc) x̃j +

n∑
j = i +1

(opp ac
ijc)xj + bc

i c

)
;

IF (x̃i is an improper interval) THEN
STOP, signaling “the solution set Ξαβ (A, b) does not intersect x”;

x̃i := xi ∩ x̃i;
IF (x̃i is the empty set ∅) THEN
STOP, signaling “the solution set Ξαβ (A, b) does not intersect x”;

END DO

d := distance between x and x̃;
x := x̃;

END DO

• must be a proper interval despite the possible presence of improper intervals acij
and bc

i and taking the inverses in the expression (3.2),

• provides us with an outer interval estimate of the solution set Ξαβ (A, b) too.

So, the natural idea is to take the intersection

x ∩ x̃ ⊇ Ξαβ (A, b),

which may prove a narrower estimate than each of x and x̃ on its own.
Finally, to make the best use of the information available at the runtime we can

immediately involve the values of the first components ofx̃, already improved by the
algorithm, into the computation of the next components. The overall computational
scheme of the interval Gauss-Seidel iteration for computing the enclosures of AE-
solution sets to interval linear systems is presented in Table 1.

If Ξαβ(A, b) ∩ x �= ∅, then the result of the execution of the above algorithm is
the sequence {x̃} of proper nested intervals, which must have a limit in IR n (see [1],
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[6], [9]). The stopping criteria for the above iteration is, as usual, attaining sufficient
closeness (in some interval metric) between the two successive approximations.

To start our generalized interval Gauss-Seidel method we need an initial interval
vector x ⊇ Ξαβ (A, b). For the AE-solution sets, we can always take it as an enclosure
of the united solution set Ξuni(A, b) for the corresponding interval linear system
(since Ξuni is the widest among the solution sets), applying any one of the numerous
techniques that have been elaborated for this purpose [1], [6], [9].

4. Investigating the Method

Barth and Nuding [2] and afterward Neumaier [9] gave a profound investigation
of the interval Gauss-Seidel method for the classical case of enclosing the united
solution set to interval linear systems. The theory developed by Barth-Nuding
and Neumaier can be partly transferred to the generalized interval Gauss-Seidel
method we have derived. We are doing that below, although changing accents and
interpretation of some results as compared with Neumaier’s theory [9].

The key point in the considerations of Barth-Nuding and Neumaier is the notions
of M-matrix and H-matrix:

DEFINITION 4.1 (see [3], [9]). A matrix A ∈ R
n × n is called an M-matrix, if it

satisfies any one of the following equivalent conditions

• A = sI − P, where P is a nonnegative matrix and s > ρ(P);

• off-diagonal entries of the matrix A are nonpositive and A−1 ≥ 0;

• …, etc. (For instance, Berman and Plemmons [3] list 50 conditions equivalent
to the statement “the matrix A is an M-matrix”.)

THEOREM 4.1 (Neumaier [9], Proposition 3.6.3). Let P, Q be point n × n-
matrices and suppose that Q is an M-matrix and P ≥ 0. Then (Q − P) is an
M-matrix if and only if ρ(Q−1P) < 1.

DEFINITION 4.2 [2]. An interval matrix A ∈ IR n × n is termed an interval M-matrix
if every point matrix A ∈ A is an M-matrix.

DEFINITION 4.3 [9]. By a mignitude 〈a〉 of a proper interval a we mean the
smallest distance between the points of a and zero, i.e.,

〈a〉 :=

{
min{|a|, |a|}, if a � � 0,

0, if a � 0.

For a proper interval matrix A = (aij) ∈ IR n × n, by a comparison matrix we mean
the matrix 〈A〉 ∈ R

n × n such that

the ij-th entry of 〈A〉 :=

{ 〈aij〉, if i = j,
−|aij|, if i �= j.
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DEFINITION 4.4 [9]. A proper interval square matrix A is called an H-matrix, if
its comparison matrix is an M-matrix.

In particular, strictly diagonally dominant interval matrices A = (aij) that satis-
fy

〈aii〉 >
∑
k �= i

|aik| for i = 1, 2, …, n, (4.1)

are H-matrices. Less trivial examples of the interval H-matrices are nonsingular
upper triangular matrices and lower triangle matrices [9].

THEOREM 4.2. If x� is the limit of the generalized Gauss-Seidel method applied
to an interval linear system Ax = b, then

〈A〉 | x�| ≤ |b|. (4.2)

If A is an interval H-matrix, then

|x�| ≤ 〈A〉−1|b|. (4.3)

Proof. We consider only nonsingular interval matrices A, assuming without
loss in generality that 0 �∈ aii. The formulas specifying the generalized interval
Gauss-Seidel method thus imply

x�
i ⊆ (acii)

−1
(∑

j �= i

(opp acij)x
�
j + bc

i

)
,

so that

|x�
i | ≤ 〈aii〉−1

(∑
j �= i

|aij| |x�
j | + |bi|

)

since both sides of the above inclusion are proper intervals. We get therefore

〈aii〉|x�
i | ≤

∑
j �= i

|aij| |x�
j | + |bi|,

which is equivalent to

(〈A〉|x�|)i ≤ |bi|
for all i = 1, 2, …, n, that is, coincides with (4.2).

If A is an interval H-matrix, then 〈A〉 is an M-matrix, so 〈A〉−1 ≥ 0. Multiplying
both sides of (4.2) by 〈A〉−1, we arrive at (4.3). �

It follows from the theorem that an initial box larger than that allowed by the
inequality (4.3) is improved (i.e., is decreased in size) by the generalized Gauss-
Seidel iteration providing that the matrix A is an H-matrix. On the contrary, if A
is not an H-matrix, we cannot draw such a conclusion. Under these circumstances,
Neumaier in [9] even proved the following interesting result for the classical version
of the interval Gauss-Seidel iteration:
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THEOREM 4.3 [9]. If a proper interval n × n-matrix A = (aij) is not an H-matrix,
then there exist arbitrary large proper interval vectors that cannot be improved by
Gauss-Seidel iteration as applied for outer estimation of the united solution set of
the interval system Ax = 0.

For the generalized interval Gauss-Seidel method under study, Neumaier’s proof
does not work in case the interval matrix (opp Ac) contains at least one improper
interval in each row. The reason is simple: magnitude of an interval product is
not equal to the product of the factors’ magnitudes in Kaucher complete interval
arithmetic.

One of the most remarkable facts with the interval Gauss-Seidel iteration as
applied to the united solution set is the following optimality property: if the matrix
of the interval linear system is an interval M-matrix, the method produces the
interval hull of the solution set. This fact has been first revealed by Barth and
Nuding [2]. We managed to generalize this classical result as the following

THEOREM 4.4. If, in an interval linear system Ax = b, the matrix A = (aij) is an
interval M-matrix, then the generalized interval Gauss-Seidel iteration applied to
this system converges to the interval hull of an AE-solution set.

Proof. We denote by E = (eij) the matrix obtained from A = (aij) by replacing
its diagonal entries by zeros and by D = (dij) the diagonal matrix with the diagonal
entries dii = aii, i = 1, 2, …, n. Similarly, we denote by Ec = (ecij) the matrix
obtained from Ac = (acij) by replacing its diagonal entries by zeros and by Dc = (dc

ij)
the diagonal matrix with the diagonal entries dcii = acii, i = 1, 2, …, n. Then

A = D + E, Ac = Dc + Ec,

with dii = dc
ij = 0 for i �= j, and eij = ecij = 0 for i = j.

If x� is the limit of the generalized interval Gauss-Seidel method, then evident-
ly

x� = x� ∩ (Dc)−1((opp Ec)x� + bc),
and therefore

x� ⊆ (Dc)−1((opp Ec)x� + bc). (4.4)

Next, if A is an M-matrix, then its main diagonal consists of positive entries,
|(Dc)−1| = 〈D〉−1, so

|(Dc)−1| |opp Ec| = 〈D〉−1|E|. (4.5)

Additionally, D is an M-matrix too.
But the comparison matrix 〈A〉 is also an M-matrix, being a point matrix within

A. Moreover, since 〈A〉 = 〈D〉 − |E|, Neumaier’s result (Theorem 4.1) implies
ρ(〈D〉−1|E|) < 1, which yields, together with (4.5), the inequality

ρ
(|(Dc)−1| |opp Ec|) < 1.
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We can thus conclude that the iteration in IR
n defined by

x(0) := x�,

x(k +1) := (Dc)−1((opp Ec)x(k) + bc), k = 0, 1, …,

converges to a unique algebraic solution of the interval linear system

x = (Dc)−1((opp Ec)x + bc).
Furthermore, the inclusion (4.4) implies that

x� ⊆ x∗, (4.6)

which can be substantiated by induction. Indeed, x� ⊆ x(0), and if x� ⊆ x(k), then

x� ⊆ (Dc)−1((opp Ec)x� + bc)
⊆ (Dc)−1((opp Ec)x(k) + bc) = x(k +1).

Passing to the limit k → ∞ yields (4.6).
To complete the proof, one should only refer to Theorem 2.4: x∗ is the interval

hull of the solution set Ξαβ (A, b), so does x� too, inasmuch as x� ⊇ Ξαβ (A, b) and
(4.6) holds. �

Overall, the theory of this section shows that the generalized interval Gauss-
Seidel method works well only for the interval linear systems with H-matrices.
How can we find enclosures for the AE-solution sets to interval linear systems in
the general case? An answer to this question is the so-called generalized precondi-
tioning proposed in [15].

Another important issue is treating the interval linear systems with general rect-
angular matrices (typically arising in real life identification and control problems).
The technique we have elaborated is not directly applicable to the non-square case,
and we recommend as a natural (although not universal) outcome extracting square
subproblems of the initial problem. Specifically, any interval linear m × n-system
with m > n can be represented as a system of several square n × n-subsystems,
generally overlapping. In its turn, each of the elementary subsystems may be solved
by our generalized Gauss-Seidel iteration, while the overall outer estimate of the
solution set to the original system is thus obtained by intersecting the enclosures
for the separate subsystems.
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