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However, the interval global optimization methods that we mentioned in Intro-
duction involve into active operation — adaptive subdivision — only the first
n coordinates of this set. The last (n + 1)-th coordinate of the function repre-
sented by its graph is processed in a substantially different manner, passively,
and the same is true for the overwhelming majority of the classical optimization
techniques. How could we correct the situation and what would be the result?

We start our consideration from the simplest case of a single-variable function
f : R ⊇ X → R, defined on a closed interval X, for which we have to solve the
problem (1). In the plane 0xy, let us construct a straight line parallel to the first
axis, with the equation y = l, where l is a constant. We can ascertain whether
the line intersects the graph of the function y = f(x) after having solved the
equation

f(x)− l = 0 (2)

on X or, alternatively, making sure that it is incompatible (unsolvable). As is
easily seen, the answer to the above question provides us with information on
the minimum (1) under computation: if the straight line y = l intersects the
graph of the function y = f(x), then

min
x∈X

f(x) ≤ l.

Moreover, if f(x) is continuous on X, then

min
x∈X

f(x) = min
{

l ∈ R | the equation f(x)− l = 0 is solvable
}

.

Therefore, varying the value of the “level” l and repeating the process of the
solution of the equation (2), we can substantially improve the estimate for the
sought-for minimum (1).

The procedure we have just described can be substantially modified by using
the ideas and methods of the interval analysis:

First, the interval methods make it possible to easily compute estimates for the
range of f over X from below and from above, which is necessary to deter-
mine the bounds of variation of the level l in the process of the correction of
the minimum.

Second, it makes sense to examine the intersection of the graph of the function
y = f(x) not with single lines, but with the whole bundles of lines parallel
to the 0x axis and defined by the equations y = l, where l is an interval in
R. We will be able thereby to estimate the global minimum (1) both from
below and from above, since minx∈X f(x) is not less than the minimum of
the left endpoints and not greater than the minimum of the right endpoints
of all the intervals l such that the bundle y = l intersects the graph of the
function y = f(x).

Third, the interval methods for the solution of equations (e.g. the interval New-
ton method and its modifications [1, 3, 5]) enable us, under very mild re-
quirement on the smoothness of f , to examine solvability of both the point
equation (2) and the interval equation f(x)− l = 0. The latter is understood
as the existence of some l ∈ l for which (2) is solvable.
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Fig. 1. Does the bundle of lines intersect the graph of the function?. . .

The answer produced by the interval methods may have one of the following
forms [1, 3, 5]:

1. The equation does not have solutions — unsolvable — within the interval
under consideration, i. e. 0 6∈ f(x)− l for any x ∈ X.

2. The equation has, with guarantee, a solution (or solutions) within the in-
terval under consideration, i. e. there certainly exists x⋆ ∈ X such that
f(x⋆)− l = 0 for at least one l ∈ l. We shall speak that the equation is just
solvable then.

3. Applying the solution procedure does not allow us to speak, with certainty,
that the equation is either has solutions or unsolvable on the given interval
X. In such cases, we shall speak that the equation is possibly solvable.

The third option is the most unfavorable algorithmically, but we should carefully
take it into account in our reasoning since this kind of uncertainty is quite actual
in computation often being the case when the equation (2) has multiple roots.
Notice also that the interval methods never lose roots and cannot at all output
the message “no solutions” if the equation really has them.

Finally, we will use the subdivision of the interval of the range of values
instead of the “varying the level” l. The overall interval version of the procedure
for finding the global minimum of the single-variable function f(x) over the
intervalX can look as follows. It starts with computing a crude interval enclosure
Y of the range of values f(x) over X (for example, as the natural interval
extension of f on X). Further,
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we bisect the interval Y to beget the subintervals Y ′ := [Y ′,mid Y ] and
Y ′′ := [mid Y ,Y ] , where mid Y = 1

2
(Y + Y ) is the midpoint of Y ;

we check the solvability of the interval equations f(x) − Y ′ = 0 and f(x) −
Y ′′ = 0 :

– if the equations is unsolvable, then we discard the respective interval,
either Y ′ or Y ′′, and never consider it;

– solvability or possible solvability of the equation implies that either lower
or upper estimate of the global minimum can be corrected according to
the prescription formulated in the item “Second” of the list at page 154.

The above procedure correcting the estimate of the minimum (1) may be re-
peated with respect to its descendants Y ′ and Y ′′, after which the bisection-
correction ought to be carried out again and so on unless the computed lower
and upper bounds of the minimum are not sufficiently close to each other. Notice
that, to maintain guarantee of our computation, in such a process we have to
keep all the subintervals y of the initial interval Y for which the corresponding
equations f(x)− y = 0 are possibly solvable, since they may correspond to the
bundles having nonempty intersection with the graph.

3 Multidimensional case

Theoretically, the computational scheme of the one-dimensional global optimiza-
tion algorithm we have developed in the preceding section is completely appli-
cable to the functions f(x) := f(x1, x2, . . . , xn) of several variables. The only
thing we should be able to do for that is to check intersection of the graph of
the function y = f(x) with the bundle of the hyperplanes y = l that are or-
thogonal to the 0y axis. Sometimes, that can be really done when we have a
powerful equations solver and are able to apply it easily. In particular, Semenov
[7] implemented a similar kind of procedure to refine the value of the optimum
in some problems.

However, in most cases the practical implementation of our idea encounters
big difficulties. The point is that, in the general multidimensional case, the so-
lution of an equation — inquiring into its solvability — is in no ways easier
problem than the global optimization. As opposed to the single-variable situa-
tion, we do not have simple and efficient techniques such as the interval Newton
method and its modifications at our disposal. A way out of the difficulty may
be subdivision of the domain of definition of f — the box X — along some
(but not all!) selected coordinate directions, whose number and specific choice
depend on the problem under solution and its objective function.

The coordinate directions along which the function’s domain shall not be
subdivided will be referred to asmute, and first we consider the simplest methods
having only one mute direction with the number µ ∈ {1, 2, . . . , n}. Let, in the
space R

n+1, a line be given, parallel to the µ-th coordinate axis and having the
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Table 1. The simplest graph subdivision method for global optimization
(one mute variable)

Input

A box X ⊆ R
n and a function f : X → R. An accuracy ǫ > 0.

A number µ of the mute component, µ ∈ {1, 2, . . . , n}.

A method for checking the solvability of the single-variable interval equation
φ(Z, t) = 0 for φ and Z defined as (4)–(5).

Output

The lower y and upper y estimates, with the accuracy ǫ, for the global
minimum of the function f over the box X .

Algorithm

compute an enclosure Y of the range of f over X ;

assign Z := (X1, . . . ,Xµ−1,Xµ+1, . . . ,Xn,Y ) ;

set z := Y and y := Y ;

initialize the working list L :=
{

(Z, z)
}

;

DO WHILE ( y − z ≥ ǫ )

choose the component k of the box Z having the largest
length, i. e. such that wid Zk = max1≤i≤n wid Zi ;

bisect the box Z along the k-th coordinate to get the boxes Z′ and Z
′′

such that Z
′ := (Z1, . . . ,Zk−1, [Zk, mid Zk ],Zk+1, . . . ,Zn) ,

Z
′′ := (Z1, . . . ,Zk−1, [mid Zk, Zk ],Zk+1, . . . ,Zn) ;

if the equation φ(Z′, t) = 0 is solvable or possibly solvable on Xµ,
then assign z′ := Z

′
n and put the record (Z′, z′) into L so that

the second fields of the records in L increase ;

if the equation φ(Z′, t) = 0 is solvable on Xµ, set y := min{ y,Z
′

n} ;

if the equation φ(Z′′, t) = 0 is solvable or possibly solvable on Xµ,
then assign z′′ := Z

′′
n and put the record (Z′′, z′′) into L so that

the second fields of the records in L increase ;

if the equation φ(Z′′, t) = 0 is solvable on Xµ, set y := min{ y,Z
′′

n} ;

delete the former leading record (Z, z) from the list L ;

denote the new leading record of the list L by (Z, z) ;

END DO

y := z ;
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x1 = r1,

...

xµ−1 = rµ−1,

xµ = t,

xµ+1 = rµ+1,

...

xn = rn,

y = l,

(3)

where t is a parameter varying over the entire of R and r1, . . . , rµ−1, rµ+1, . . . ,
rn, l are some constants. Similar to the one-dimensional case,

min
x∈X

f(x) = min

{

l ∈ R

∣

∣

∣

the line (3) defined by (3) intersects
the graph of the function y = f(x)

}

provided that f is continuous. Therefore, we can “feel about” the graph of the
function to be minimized by the one-dimensional lines, making use of the efficient
one-dimensional interval procedures (the famous interval Newton method and
modifications) to check whether the elementary “level equations” f(x) − l = 0
are solvable or not.

Turning to the interval optimization procedure, we designate

Z = (Z1, . . . ,Zn) := (X1, . . . ,Xµ−1,Xµ+1, . . . ,Xn,Y ), (4)

φ(Z, t) := f(X1, . . . ,Xµ−1, t,Xµ+1, . . . ,Xn)− Y . (5)

The n-dimensional boxes Z represent the bundles of straight lines parallel to
the µ-th coordinate direction and “groping” the graph of the function y = f(x),
while the result of either intersection or nonintersection of the bundle with the
graph will be determined from the solution of the one-dimensional equation
φ(Z , t) = 0 on Xµ with respect to the unknown t. Keeping all the boxes that
have nonempty intersection with the graph is the guarantee that the sought-for
global minimum will not be lost.

To sum up, we organize the overall process of the successive improvement of
the estimates for the minimum (1) similar to what has been done in the
popular “branch-and-bound” based interval global optimization techniques
from [1, 3, 6]:

– we arrange all the boxes, produced from the subdivision of the initial
box Z, as a working list L;

– at each step of the algorithm, the bisected box is that from the list L
having the smallest left endpoint of the last component, i. e. the one
showing the smallest estimate of the range of f ;

– we bisect only the longest component in the box to be subdivided.
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Additionally, the boxes of the form (4) that the list L consists of will be
ordered so that the values of the left endpoint of their last component (they
represent the ranges of values) increase. The first record of the working list is, as
usual, called leading for the current step of the algorithm. The overall pseudocode
of the new method that we are going to call graph subdivision method is given
in Table 1, where wid means the width of an interval.

Coming up next is a more general situation when s (1 ≤ s ≤ n) coordinate
directions are declared as mute, and without loss in generality we can take the
numbers of these directions as 1, 2, . . . , s. Let, in the space R

n+1, a plane be
defined, parallel to the mute coordinate directions and thus determined by the
equation



























































x1 = t1,

...

xs−1 = ts−1,

xs = ts,

xs+1 = rs+1,

...

xn = rn,

y = l,

(6)

where t1, . . . , ts are parameters varying over the whole of the real axis and
rs+1, . . . , rn, l are some constants. Similar to the one-dimensional case, if f is
continuous on X,

min
x∈X

f(x) = min

{

l ∈ R

∣

∣

∣

the plane defined by (6) intersects
the graph of the function y = f(x)

}

.

We denote

Z = (Z1, . . . ,Zn−s+1) := (Xs+1, . . . ,Xn,Y ), (7)

ϕ(Z, t) := f( t1, . . . , ts,Xs+1, . . . ,Xn)− Y , (8)

so as the (n−s)-dimensional boxes Z are bundles of planes of the form (6), while
either the intersection or nonintersection of such bundles with the graph will be
determined from the result of the solution of the interval equation φ(Z , t) = 0
with respect to t = ( t1, t2, . . . , ts). Therefore, we can “grope” the graph of
the objective function by the planes (6) provided that we are able to effectively
check the solvability of these equations of s unknowns.

Finally, we arrange the overall process of the successive improvement of the
estimates for the global minimum according to the “branch-and-bound” strategy,
and the pseudocode of the resulting new algorithm presented in Table 2 is quite
similar to the previous case of only one mute direction.

The two above pseudocodes are evidently intended for the computation of
the function’s minimum (1) only, but a straightforward modification may adjust
the algorithm in order to also find the values of the variables where f takes its
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Table 2. The simplest graph subdivision method for global optimization
(several mute variables)

Input

A box X ⊆ R
n and a function f : X → R. An accuracy ǫ > 0.

A method for checking the solvability of the interval equation ϕ(Z, t) = 0
for t = ( t1, . . . , ts) and ϕ, Z, defined in (7)–(8).

Output

The lower y and upper y estimates, with the accuracy ǫ, for the global
minimum of the function f over the box X .

Algorithm

compute an enclosure Y of the range of f over X ;

assign Z := (Xs+1, . . . ,Xn,Y ) ;

set z := Y and y := Y ;

initialize the working list L :=
{

(Z, z)
}

;

DO WHILE ( y − z ≥ ǫ )

choose the component k of the box Z having the largest
length, i. e. such that wid Zk = max1≤i≤(n−s+1) wid Zi ;

bisect the box Z along the k-th coordinate to half-boxes Z ′ and Z
′′

such that Z
′ := (Z1, . . . ,Zk−1, [Zk, mid Zk ],Zk+1, . . . ,Zn−s+1),

Z
′′ := (Z1, . . . ,Zk−1, [mid Zk, Zk ],Zk+1, . . . ,Zn−s+1) ;

if the equation φ(Z′, t) = 0 on (X1,X2, . . . ,Xs) is solvable or possibly
solvable, then assign z′ := Z

′
n−s+1 and put the record (Z′, z′) into L

so that the second fields of the records in L increase ;

if the equation φ(Z′, t) = 0 on (X1,X2, . . . ,Xs) is solvable, then

set y := min{ y,Z
′

n−s+1} ;

if the equation φ(Z′′, t) = 0 on (X1,X2, . . . ,Xs) is solvable or possibly
solvable, then assign z′′ := Z

′′
n−s+1 and put the record (Z′′, z′′) into L

so that the second fields of the records in L increase ;

if the equation φ(Z′′, t) = 0 on (X1,X2, . . . ,Xs) is solvable, then

set y := min{ y,Z
′′

n−s+1} ;

delete the former leading record (Z, z) from the list L ;

denote the new leading record of the list L by (Z, z) ;

END DO

y := z ;



Graph Subdivision Methods 161

f
(x

1
,x

2
)

0x1
0x2

Fig. 2. A global minimization process via graph subdivision
technique for an objective function f : R2 → R.

global minimums. Namely, we should trace and store all the roots (either certain
or possible) of the “level equations” φ(Z , t) = 0 apart from the information
on their solvability. This will require extending the records that compose the
working list L to incorporate the root enclosures into them.

What can be said about the convergence of the graph subdivision methods?
In the traditional interval global optimization algorithms from [1, 3, 6], the di-
ameters of the leading boxes are well-known to tend to zero, and this should be
also valid for the graph subdivision methods inasmuch as their logical structure
coincides with that of the traditional methods. Therefore, the “level equations”
φ(Z , t) = 0 defined by (5) and (8) tend to point (noninterval) equations. If the
objective function f is such that the roots of φ(Z, t) = 0 depend continuously
on the parameter Z, then we can expect that the graph subdivision method
converges to global optimums.

Although the graph subdivision methods may appear unnecessarily complex
in comparison with the traditional (“direct”) interval global optimization meth-
ods based on adaptive subdivision of the domain of the objective function, there
exists a large realm of problems where both approaches have equal practicalities.
These are optimization problems with implicitly defined objective functions. In
such problems, evaluation of the objective fucntion requires solving an equation
or a system of equations anyway.

Yet another idea that can make the graph subdivision methods much more
attractive and practical is the use of constraint propagation techniques for the
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solution of ”level equations”. This is one of the main reasons why the article is
published among this collection of constraint propagation papers.

The simplest graph subdivision methods have been implemented using Sun
Microsystems’ Fortran 95 (also known as FORTE Fortran) and, for a number
of the standard test problems, demonstrated very high sharpness of enclosing
the global optimums, although achieved at the price of relatively large labor
consumption. Much is to be done to modify and tune up the new idea.

4 Gradient tests

We use the term “gradient tests” to denote procedures that involve gradient of
the objective function and help to discard unpromising boxes from the working
list maintained by our algorithm.

If f is a continuously differentiable function then its gradient vanishes in
the global minimum point which are interior in the domain X. Therefore, if an
enclosure of the gradient over a box x lying in the interior of X does not contain
zero, then there are no extrema within x. Deleting the box x from the domain
of the objective function (and the corresponding record from the working list of
the algorithm) will not affect the results of the global optimization process.

If the subbox x is not interior for X, then we cannot discard it so simlply.
Although the interior of x really cannot have extremums of f , one need to
additionally investigate the part of x that shows up the boundary of the entire
domain box X. The techniques using gradients enclosures are very popular in
the interval global optimization methods (see [1, 3, 6]), but application of the
above idea in the graph subdivision methods has specific character.

In the graph subdivision methods, we do not subdivide the domain along
the mute coordinate directions. As the result, all the boxes from the working
list intersect the boundary of the initial domain X and never become inte-
rior subboxes. We have to take this fact into account when processing new
sub-boxes during the execution of the algorithm. Let, for example, the algo-
rithm of Table 1, with the mute direction µ, has generated a record (Z, z),
Z = (x1, . . . ,xµ−1,xµ+1, . . . ,xn,y ), such that within the box (x1, . . . , xµ−1,
Xµ, xµ+1, . . . , xn ) ⊆ X the gradient of the objective function does not contain
zero. Hence, the sought-for extremum can be attained only at the points from
the box (x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn) that goes out to the boundary ∂X of
the initial box X, i. e. they are in the intersection

X ∩ (x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn ). (9)

Therefore, at best we have to retain for further processing only two (n − 1)-
dimensional subboxes of X , i. e.

(x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn ),

(x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn ),
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obtained from (x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn) by throwing away the points of
the interior of X, and at worst we have to retain (2n − 1) or even 2n faces of
the intersection box (9) (in case (x1, . . . ,xµ−1,Xµ,xµ+1, . . . ,xn) = X).

The same happens to the graph subdivision methods with several mute vari-
ables, with the sole difference that the number of pieces of the boundary that
we have to retain may only increase.

To sum up, in the graph subdivision methods, we never discard the subboxes
entirely, but always retain parts of their boundaries. In the traditional “direct”
interval global optimization methods, whole subboxes may be in the interior of
the initial domain X, and we entirely discard them.

5 Application to interval band linear systems

The most interesting implementations of the idea of graph subdivision methods
are those where one can take several mute variables and thus substantially de-
screase the dimension of the argument of the original optimization problem. As
a practical example of such an application, we consider the problem of outer
component-wise estimation of the solution set to interval linear systems with
band matrices.

Solution set to the interval linear system

Ax = b (10)

with an interval m× n-matrix A and interval m-vector b is the set

Ξ(A, b) = { x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b) },

formed by all solutions to the point linear systems Ax = b for A ∈ A and
b ∈ b. Structure of the solution set is quite complex, and usually we confine
ourselves to the problems of approximate description (estimation) of the solution
set according to this or that sense. For simplicity, we consider only square systems
of equations with an n× n-matrix A.

An important problem arising in connection with the interval linear systems
(10) is that of computing outer component-wise estimates of the solution set:

For an interval system of linear algebraic equations Ax = b

find the estimates for min{ xν | x ∈ Ξ(A, b) } from below
and for max{ xν | x ∈ Ξ(A, b) } from above, ν = 1, 2, . . . , n.

(11)

When speaking of the “solution of interval linear systems of equations” one
often means the problem (11). In our work, we fix the index ν and concentrate
on computing only min{ xν | x ∈ Ξ(A, b) }, since

max{ xν | x ∈ Ξ(A, b) } = −min{ xν | x ∈ Ξ(A,−b) }.

The matrix A = (aij) (either point or interval) is called band, if there exists
nonnegative integers p and q, such that aij = 0 for j > i+ p and i > j+ q. Then



164 Sergey P. Shary

-

6

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

�
�
�
�
�
�
��

HHHH

A
A
A
A

HHHH
A
A
A
A

x1

x2

l

Fig. 3. Solution set and crossing it by a line.

the value of (p+ q+1) is the width of the band in the matrix A. Below, we take
the assumption that the band is not “too wide”, namely

p+ q ≤
n

2
. (12)

When solving the problem (11), we suppose that an interval box V is known
that contains the solution set estimated, that is, V ⊇ Ξ(A, b). The box V can
be found by any of the methods described e. g. in [3–5], and its size is not a big
part of the entire technique.

The fact of fundamental importance is that the problem (11) of outer inter-
val estimation of the solution set is, in essense, an optimization problem. The
corresponding reformulation can be given, for example, in the following way [8].
If ν ∈ { 1, 2, . . . , n } is a fixed index, then, through l, we denote a straight line in
R

n that is parallel to the ν-th coordinate axis and has the parametric equation















































x1 = r1,
...

xν−1 = rν−1,

xν = t ,

xν+1 = rν+1,
...

xn = rn,

(13)

where t is a real parameter. Every such line is entirely determined by an (n−1)-
dimensional vector r = (r1, . . . , rν−1, rν+1, . . . , rn)

⊤, and, to explicitly show its
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0

0
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⇐

0
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0
splitted “doubly triangular” matrix

Fig. 4. How the band matrix is transformed.
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parameters, we will designate this line as l(r). Also, let

Ω(r) = min { xν | x ∈ Ξ(A, b) ∩ l(r) }

be the smallest value of the ν-th coordinate of the points from the intersection
of l(r) with the solution set (10) (see Fig. 3). If Ξ(A, b)∩ l(r) = ∅, then we set
Ω(r) = +∞. Then we have

min { xν | x ∈ Ξ(A, b) } = min

{

xν

∣

∣

∣
x ∈

⋃

l∩V 6=∅

(

Ξ(A, b) ∩ l
)

}

= min
{

min{ xν | x ∈ Ξ(A, b) ∩ l(r)}
∣

∣ r ∈ (V 1, . . . ,V ν−1,V ν+1, . . . ,V n)
}

= min { Ω(r) | r ∈ (V 1, . . . ,V ν−1,V ν+1, . . . ,V n) }, (14)

i. e. finding the ν-the coordinate estimate of the points from the solution set
Ξ(A, b) reduces to optimization of the objective function Ω(r) over an (n− 1)-
dimensional interval box.

The main idea of the section is to apply the technique developed in §3 to
the solution of the optimization problem (14). If, in doing this, we take s mute
coordinate directions, then examining, at each algorithm step, intersections of
the bundles of s-dimensional planes with the solution set will require solving
interval n × s-systems of linear equations whose matrices are made up of the
columns of A having the numbers of mute components.

Specifically, we employ the general scheme of the graph subdivision methods
when the mute variables have the indices p + 1, . . . , n − q, so that there are
(n − p − q) of them in total. Let us consider in detail the situation when the
number ν of estimated component satisfies 1 ≤ ν ≤ p or n− q + 1 ≤ ν ≤ n.

If the first variables x1, x2, . . . , xp and the last variables xn−q, . . . , xn

are assigned specific values, then the initial band system (10) turns into an
interval linear system with an m × (n − p − q)-matrix that has a special form.
Namely, the boundaries of the band of its nonzero elements are diagonals of
the new matrix (see Fig. 3). Hence, such a matrix is represented as the union
of two (overlapping) triangular matrices, lower and upper ones. Each of the
resulting triangular interval linear systems can be solved by either forward or
back substitution respectively, and then the solvability of the entire interval
n× (n− p− q)-system can be revealed through intersecting of the enclosures for
the solution sets to the upper and lower susbsystems obtained.

Therefore, the dimension of the global optimization problem (14) that we
have to solve in connection with outer estimation of the solution set dicreases to
just (p+ q), no matter what is the dimension of the initial system. For example,
for tridiagonal interval linear systems this amounts to only 2.

In Tables 3–4, the overall algorithm for solving interval linear band systems
is presented. Table 3 shows how checking solvability of the interval subsystems
can be organized, while Table 4 gives the general algorithm. In Tables 3–4, we
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Table 3. Checking solvability of subsystem generated by the algorithm of Table 4

DO i = 1 TO n

b̆i(Z) := bi −

p
∑

j=1

aijZj −

p+q
∑

j=p+1

ai,j+n−p−qZj

END DO

Gp+1 := b̆1(Z) /a1,p+1 ;

DO i = p+ 2 TO n− q

Gi :=

(

b̃i−p(Z)−
i−1
∑

j=p+1

ai−p,jGj

)

/

ai−p,i

END DO

Hn−q := b̆n(Z) /an,n−q ;

DO i = n− q − 1 DOWNTO p+ 1

Hi :=

(

b̃i+q(Z)−

n−q
∑

j=i+1

ai+q,jHj

)

/

ai+q,i

END DO

IF ( G ∩H 6= ∅ ) THEN

the system Ăx = b̆(Z) is solvable

ELSE

the system Ăx = b̆(Z) is not solvable

END IF

denote Z =
(

Z1,Z2, . . . ,Zp+q

)⊤
∈ IR

p+q, and

Ă =
(

aij

)n−q

j=p+1
, b̆(Z) =

(

b̆1(Z), b̆2(Z), . . . , b̆n(Z)
)⊤

,

b̆i(Z) = bi −

p
∑

j=1

aijZj −

p+q
∑

j=p+1

ai,j+n−p−qZj .

The interval linear system Ăx = b̆(Z) is an analogue of the “level equation” from
§§2–3. To examine its solvability, we split it as shown in Fig. 4, and then compute
the interval vectors G = (G1,G2, . . . ,Gn)

⊤ and H = (H1,H2, . . . ,Hn)
⊤,

interval hulls of the solution sets to the lower and upper triangular interval
linear systems obtained from Ăx = b̆(Z). In the pseudocode of Table 3, G and
H are found by forward substitution and back substitution respectively.

Of course, in such testing solvability of the interval system, we allow some
coarsening, since we intersect not the solution sets of the subsystems, but their
interval hulls (i. e., the tightest enclosures), that is, wider sets. Let us consider,
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Table 4. Estimating the solution set for band interval linear systems

Input

An interval linear system Ax = b with a band matrix A.

A number ν of the estimated component of the solution set.

An interval enclosure V ⊇ Ξ(A, b) for the solution set estimated.

Output

An estimate y for min{xν | x ∈ Ξ(A, b) } from below.

Algorithm

assign Z := (V 1, . . . ,V p,V n−q+1, . . . ,V n ) ;

set z := V ν ;

initialize the working list L :=
{

(Z, z)
}

;

DO WHILE ( the box Z is wide )

choose the component k along which the box Z has the largest
width, i. e. wid Zk = max1≤i≤(p+q) wid Zi ;

bisect the box Z along its k-th coordinate direction to such
boxes Z′ and Z

′′ that
Z

′ := (Z1, . . . ,Zk−1, [Zk, mid Zk ],Zk+1, . . . ,Zp+q) ,

Z
′′ := (Z1, . . . ,Zk−1, [ mid Zk, Zk ],Zk+1, . . . ,Zp+q) ;

if the system Ăx = b̆(Z ′) is solvable, then assign z′ := Z
′
ν

and put the pair (Z′, z′) into L so that the second field
of the pairs in L increase ;

if the system Ăx = b̆(Z ′′) is solvable, then assign z′′ := Z
′′
ν

and put the pair (Z′′, z′′) into L so that the second field
of the pairs in L increase ;

delete the former leading box (Z, z) from the list L ;

denote the current leading box of the list L through (Z, z) ;

END DO

y := z ;

as an example, the interval linear system

(

1 1

0 1

)

·

(

x1

x2

)

=

(

[−1, 1]

[−1, 1]

)

. (15)

Its matrix is an upper triangular point matrix, and the solution set is depicted at
Fig. 5. As the result, we can compute an estimate of the solution set to the band
interval linear system which is not optimal. But our computational experience
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Fig. 5. Solution set for the system (15) and its interval hull.

shows that they are quite sharp providing that the band width is small and
intervals in the matrix are not too wide.

As distinct from the graph subdivision methods from §§3–4 designed for the
solution of general optimization problems, we do not have to involve interval
bounds on the mute variables, that is, V p+1, V p+2, . . . , V n−q. The point is
that the procedure for testing solvability of the “level equations” used in the
algorithm (Table 3) can spare these values. Hence, initially we suffice to know
not the entire box V ⊇ Ξ(A, b), but only its components V 1, . . . , V p and
V n−q+1, . . . , V n.

There is room for further improvement of our algorithm through taking into
account fine geometric structure of the solution set to triangular interval linear
systems. For example, we can use prisms for enclosing them rather than axis
aligned boxes. This will require additional efforts to reveal their intersection,
but results in sharper estimates of the solution set.
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