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1 Introduction

Historically, interval analysis originated from sensitivity problems and it
is no wonder that at its early years the solution set to a problem with
interval coefficients was understood as the set of all possible solutions to
point problems with the coefficients within the given intervals. In our paper,
the main object under study is the interval linear system

Ax = b (1)

with an interval m × n-matrix A and interval right-hand side m-vector b

and for many years the only solution set to the system (1) was the united
solution set

Σ∃∃(A,b) = { x ∈ IRn | (∃A ∈ A)(∃ b ∈ b)(Ax = b) }, (2)

formed by the solutions of all systems Ax = b with A ∈ A and b ∈ b

(see [1] et al.). The above definition, the most correct mathematically,
is arranged according to the selection axiom of the formal set theory [3].
Namely, a point x̃ belongs to the set if and only if substituting it for the
variable x in the predicate written out after the vertical line results in a
true proposition. So, from now on we shall call the predicates written out
after the vertical line in the records of the form (2) the selecting predicates
for the respective sets.

In 1972, Nuding [4] introduced the other solution set to interval linear sys-
tems, which we shall refer to as the tolerable solution set:

Σ∀∃(A,b) = { x ∈ IRn | (∀A ∈ A)(∃ b ∈ b)(Ax = b) },



formed by all vectors x ∈ IRn, such that the product Ax falls into b for any
A ∈ A (see also [6]). To my mind, the work [4] was a remarkable advance,
whose significance has not been appreciated at its true value so far. In point
of fact, Nuding demonstrated us the possibility to vary quantifiers in the
selecting predicate of the definition of the solution set. Anyway, the next
step on that way was made only in 1991–92 when several Russians indepen-
dently and almost simultaneously faced with the necessity to introduce the
solution set

Σ∃∀(A,b) = { x ∈ IRn | (∀ b ∈ b)(∃A ∈ A)(Ax = b) },

formed by vectors x ∈ IRn such that for any desired b ∈ b we can find
an appropriate A ∈ A satisfying Ax = b. Shary [5] proposed to call it
controllable solution set and the term seems to have been adopted.

In principle, since the quantifiers ∀ and ∃ do not commute with each other
[3], the next rightful question to ask is as follows: what about the solution
sets { x ∈ IRn | (∀A ∈ A)(∀ b ∈ b)(Ax = b) }, { x ∈ IRn | (∃A ∈ A)(∀ b ∈
b)(Ax = b) } and { x ∈ IRn | (∃ b ∈ b)(∀A ∈ A)(Ax = b) }? Considering
them is not senseless, but we can go even farther.

We would like to remind that the symbolic designation (∀A ∈ A) means
nothing but (∀ a11 ∈ a11)(∀ a12 ∈ a12) . . . (∀ amn ∈ amn). This is true for
(∃A ∈ A), (∀ b ∈ b) and (∃ b ∈ b), too. Hence, to further generalize the
concept of the solution set to interval systems, we can split the action of
quantifiers as applied to various elements of the matrix and right-hand side:
we can form the other solution sets to interval equations through combining
∀ and ∃ with the parameters of the equation and changing their order! Since
the quantifier that corresponds to each interval element may have two values
{ ∀, ∃ } and the order of entries in the selecting predicate is also essential for
the definition, the total number of the solution sets we can thus define for
the interval linear m×n-system far exceeds 2mn+m. Generally, these solution
sets can be practically interpreted as solutions of some games or multistep
decision-making processes under interval uncertainty, as well as solutions to
some minimax operations research problems (see e.g. [8]).
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2 αβ-solution sets

and their characterization

Before developing the proper mathematics, we need some formal definitions
for the objects we discussed in the introduction. In this work, we shall
restrict ourselves only to the solution sets of interval linear systems (1),
in which all occurrences of the universal quantifier ∀ (if any) precede the
occurrences of the existential quantifier ∃ in the selecting predicate, or, put
it differently, only those solution sets for which the selecting predicate has
AE-form.

Let the entire set of the index pairs (i, j) of the elements aij be divided
into two nonintersecting parts Ω′ = {ω′

1, . . . , ω
′
p} and Ω′′ = {ω′′

1 , . . . , ω
′′
r},

p+r = mn, such that the parameter aij belongs to the ∀-type of uncertainty
for (i, j) ∈ Ω′ and to the ∃-type of uncertainty for (i, j) ∈ Ω′′. Similarly,
we introduce nonintersecting sets of integer indices Θ′ = {ϑ′

1, . . . , ϑ
′
s} and

Θ′′ = {ϑ′′
1, . . . , ϑ

′′
t }, Θ′ ∪Θ′′ = {1, 2, . . . , m}, such that the element bi of the

right-hand side is subsumed under the interval ∀-uncertainty for i ∈ Θ′ and
of the ∃-type for i ∈ Θ′′. Also, we allow the natural possibility for some of
the sets Ω′, Ω′′, Θ′, Θ′′ to be empty.

Definition 1. We define the set of αβ-solutions to the interval linear
system (1) as the set

Σαβ(A,b)

= { x ∈ IRn |

(∀aω′

1
∈ aω′

1
) . . . (∀aω′

p
∈ aω′

p
) (∀bϑ′

1
∈ bϑ′

1
) . . . (∀bϑ′

s
∈ bϑ′

s
)

(∃aω′′

1
∈ aω′′

1
) . . . (∃aω′′

r
∈ aω′′

r
) (∃bϑ′′

1
∈ bϑ′′

1
) . . . (∃bϑ′′

t
∈ bϑ′′

t
)

(Ax = b) },

(3)

where the quantifier m × n-matrix α = ( αij) and m-vector β = ( βi) are
such that

αij =

{

∀, if (i, j) ∈ Ω′,

∃, if (i, j) ∈ Ω′′,
βi =

{

∀, if i ∈ Θ′,

∃, if i ∈ Θ′′.
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Other suitable terms to denote (3) are αβ-solution set or solution set of the
type αβ.

For the interval linear system Ax = b, we define interval matrices A∀ =
(a∀

ij) and A∃ = (a∃
ij) and interval vectors b∀ = (b∀

i ) and b∃ = (b∃
i ) of the

same size as A and b as follows:

a∀
ij =

{

aij , if αij = ∀,

0, otherwise,
a∃

ij =

{

aij , if αij = ∃,

0, otherwise,

b∀
i =

{

bi, if βi = ∀,

0, otherwise,
b∃

i =

{

bi, if βi = ∃,

0, otherwise.

Thus A = A∀ + A∃, b = b∀ + b∃ and a∀
ij a∃

ij = 0, b∀
i b∃

i = 0 for all i, j.

Theorem 1. The point x belongs to the solution set Σαβ(A,b) if and only
if

A∀ · x − b∀ ⊆ b∃ − A∃ · x. (4)

Proof. Using the matrices A∀, A∃ and vectors b∀, b∃ introduced above,
we can rewrite the definition of the solution set Σαβ(A,b) in the following
equivalent form:

Σαβ(A,b) = { x ∈ IRn | (∀A′ ∈ A∀)(∀b′ ∈ b∀)(∃A′′ ∈ A∃)(∃b′′ ∈ b∃)

( (A′ + A′′)x = (b′ + b′′) ) }.

It is not hard to complete the proof of the theorem now, transforming
equivalently the selecting predicate of the solution set. We have

Σαβ(A,b) = { x ∈ IRn | (∀A′ ∈ A∀)(∀b′ ∈ b∀)(∃A′′ ∈ A∃)(∃b′′ ∈ b∃)

(A′x − b′ = b′′ − A′′x) }

= { x ∈ IRn | (∀A′ ∈ A∀)(∀b′ ∈ b∀)(A′x − b′ ∈ b∃ −A∃ · x) }

= { x ∈ IRn | A∀ · x − b∀ ⊆ b∃ − A∃ · x },

since for any interval matrix C and a real point vector x the result of the
multiplication C·x always coincides with {Cx | C ∈ C } [1]. �
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Corollary. For any quantifiers α and β, the intersection of the solution set
Σαβ(A,b) with each orthant of the space IRn is a convex polyhedral set.

3 Problem statement

Now, that we have defined what the solution sets to interval systems are, it
is time to decide what to do with them. In spite of the fine characterization
Theorem 1, the complexity of the direct description of Σαβ(A,b) grows
exponentially with n. Such a description thus becomes extremely laborious
and practically useless already for moderate dimension of the system.

There are various ways to estimate solution sets, to change their direct and
complete description for an approximate one, which is suitable or sufficient
in some sense. According to the practical interpretation of the general-
ized solution sets and taking into account the ability of the mathemati-
cal technique, we shall confine ourselves to finding some interval subsets of
Σαβ(A,b), since the selecting predicate from the definition (3) remains valid
for all their points. In other words, we change the solution set Σαβ(A,b)
for some inner approximation, formulating the problem to be solved in the
following form:

Find an interval vector that is contained in the solution set

Σαβ(A,b) (if it is nonempty) of the interval linear system.
(5)

If the tolerable solution set Σ∀∃(A,b) is taken as a case in point in the
above definition, then the problem (5) is the classical linear tolerance prob-
lem with numerous and fruitful practical applications [6]. Actually, the
linear tolerance problem is a problem of stabilization within the required
output state corridor b for the system in which all parameters aij are sub-
ject to bounded perturbations. If some aij have ∀-uncertainty while the
others have ∃-uncertainty and all βi = ∃, i = 1, 2, . . . , m, then we arrive at
the stabilization problem with a control possibility, which some of the re-
searchers call “the problem of insuring survival of the system”. Alternately,
if part of aij’s are ∀-parameters and a part of them are ∃-parameters while
all βi = ∀, i = 1, 2, . . . , m, then we have the control problem under bounded
perturbations.
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The aim of this work is not only to introduce new solution sets, but to
present algorithmically efficient approach to work with them, i.e., to solve
the problem (5), and we are based upon the concept of algebraic solution
to the interval equation.

Definition 2. An interval vector is said to be algebraic solution to the
interval system if substitution of it to the equation and execution of all
interval arithmetic operations results in a valid equality.

More precisely, we change the problem (5) for the problem of finding alge-
braic solution to a special systems of equations in the extended Kaucher
interval arithmetic IIIR, thus reducing the original problem to a purely al-
gebraic problem of the numerical analysis.

4 Kaucher interval arithmetic

The extended interval arithmetic IIIR proposed by Kaucher [2] is a natu-
ral algebraic completion of the common interval arithmetic. The elements
of IIIR are the pairs [ x, x ] of reals, that are not connected by the obliga-
tory condition x ≤ x. Thus, IIIR is obtained by adding improper intervals
[ x, x ], x > x, to the set { [ x, x ] | x, x ∈ IR, x ≤ x } of the proper in-
tervals and the real numbers. The proper and improper intervals, the two
halves of IIIR, can change places as the result of the dualization mapping
dual : IIIR → IIIR, such that

dual [ x, x ] = [ x, x ].

As in classical interval arithmetic,

x ⊆ y
def
⇐⇒ x ≥ y and x ≤ y,

but Kaucher interval arithmetic IIIR is a distributive conditionally complete
lattice with respect to this inclusion order, in contrast to classical interval
arithmetic. In other words,

∨

γ∈Γ

xγ :=
[

inf
≤
{xγ | γ ∈ Γ } , sup

≤

{xγ | γ ∈ Γ }
]

—
maximum with
respect to “⊆”,
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∧

γ∈Γ

xγ :=
[

sup
≤

{xγ | γ ∈ Γ } , inf
≤
{xγ | γ ∈ Γ }

]

—
minimum with
respect to “⊆”

are elements from IIIR now, if {xγ | γ ∈ index set Γ } is a bounded family
of intervals from IIIR.

The addition is defined upon IIIR by

x + y :=
[

x + y,x + y
]

.

Each element x from IIIR has thus the only opposite element [−x,−x ], the
consequence of this being the usual possibility to rearrange terms from one
side of equation (or inequality, or inclusion) to the other side “with the
opposite sign”. The following lattice operation distributivity will be useful
for us:

x + (y ∨ z) = (x + y) ∨ (x + z). (6)

The connection between the result of the interval arithmetical operation
x ∗ y, ∗ ∈ {+,−, · , /}, and the results of separate point operations x ∗ y
for x “from” x and y “from” y is expressed in Kaucher arithmetic by the
fundamental representation:

x ∗ y = ����������
x

x∈pro x

����������
y

y∈pro y

(x ∗ y), (7)

where

����������
x

:=

{
∨

, if x is proper,
∧

, otherwise,
—

conditional
lattice operation,

pro x :=

{

x, if x is proper,

dual x, otherwise,
—

proper projection
of the interval.

In Kaucher interval arithmetic, the operations with vectors and matrices are
defined similar to those in classical interval arithmetic. Further, inclusion
ordering on the sets of interval vectors and matrices are direct products of
one-dimensional inclusion orders, so we shall understood the operations ∨
and ∧ applied to interval vectors in a componentwise manner. This will be
valid for the operations “dual” and “pro” too.
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5 Inner estimation by algebraic solutions

The main result of the algebraic approach developed is the following

Theorem 2. If the proper interval vector x is an algebraic solution to the
equation

(A∀ + dual A∃) x = dual b∀ + b∃, (8)

then x ⊆ Σαβ(A,b), that is, this interval vector is a solution to the problem
(5).

Definition 3. For the interval system Ax = b, we will call the equation
(8) the dualization equation that corresponds to its αβ-solution set.

Proof. Let a proper interval vector x be algebraic solution to the system (8)
and x̃ ∈ x. Then, in view of inclusion monotonicity of interval arithmetical
operations in IIIR, we have

(A∀ + dual A∃) · x̃ ⊆ (A∀ + dual A∃) · x = dual b∀ + b∃.

Since the matrices A∀ and A∃ form a disjunct decomposition of A, we may
avail ourselves by distributivity (6) in the above formula:

A∀ · x̃ + dual A∃ · x̃ ⊆ dual b∀ + b∃.

After rearranging the terms with dualizations to the opposite sides of the
inclusion we finally get

A∀ · x̃ − b∀ ⊆ b∃ − A∃ · x̃,

that is, x̃ ∈ Σαβ(A,b) by Theorem 1. �

Theorem 3. If the proper interval vector x is an inclusion-maximal al-
gebraic interval solution to the dualization equation (8), then it is also
an inclusion-maximal interval vector contained in Σαβ(A,b), i.e., gives an
inclusion-maximal solution to the problem (5).
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Proof. We need the following auxiliary representation: if v is a proper
interval n-vector and A is an (arbitrary) interval m × n-matrix, then

A·v =
∨

v∈v

A·v. (9)

Indeed, if A·v = ( (A·v)1, (A·v)2, . . . , (A·v)m)⊤, then, using (7) and dis-
tributivity of the operation “∨” with respect to addition (6), we get

(A·v)i =

n
∑

j=1

aijvj =

n
∑

j=1

∨

vj∈vj

aijvj =
∨

v1∈v1

∨

v2∈v2

· · ·
∨

vn∈vn

n
∑

j=1

aijvj

=
∨

v∈v

n
∑

j=1

aijvj =
∨

v∈v

(A·v)i.

Let us turn to the proof of the theorem. Denote the proper maximal alge-
braic solution of (8) by x and assume that, contrary to the assertion of the
theorem, there exists a proper interval vector y, such that

Σαβ(A,b) ⊇ y ⊃ x.

Utilizing inclusion monotonicity of the arithmetic IIIR one obtains

(A∀ + dual A∃) · y ⊃ (A∀ + dual A∃) · x = dual b∀ + b∃,

the exact equality instead of inclusion being impossible due to the maxi-
mality of x. Further, the representation (9) results in

∨

y∈y

(A∀ + dual A∃) · y ⊃ dual b∀ + b∃, (10)

and we can conclude that there must be

(A∀ + dual A∃) · ỹ 6⊆ dual b∀ + b∃

for some (at least one) ỹ ∈ y. Otherwise, if we had (A∀ + dual A∃) · y ⊆
dual b∀ +b∃ for all y ∈ y, then the inclusion that is opposite to (10) would
be valid. However, owing to Theorem 1, the relation (10) is equivalent to
ỹ 6∈ Σαβ(A,b), so y 6⊆ Σαβ(A,b). �
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6 Numerical methods

The summary of what we have expounded may be formulated as follows: it is
very useful to find algebraic solutions to interval linear systems in Kaucher
arithmetic. But how can one get them in practice? The paper [7] gives
partial answers to these questions. In that work, we investigate existence
and uniqueness of the algebraic solutions to interval linear systems, propose
an efficient numerical algorithm for their computation — the subdifferential
Newton method — and prove its convergence. In the nearest future, the
author hopes to issue a separate detailed paper on the computational aspects
of the approach proposed.
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