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A NEW CLASS OF ALGORITHMS
FOR OPTIMAL SOLUTION
OF INTERVAL LINEAR SYSTEMS

Sergey P.Shary

In this paper a new class of sequentially guaranteeing algorithms is con-
structed for finding optimal solutions of interval linear algebraic systems.
Estimates of the computational complexity are given for the algorithms
developed.

HOBBIN KJIACC AJITOPUTMOB
JIJIA OIITVUMAJIBHOT'O PEHOIEHWNS]

VHTEPBAJILHBIX JUHEWHBIX CUCTEM

C.II.ITaprri

B paGoTe nocTpoeH HOBBIM KJ1aCC NOCAEC008AMEALHO 24D ARMUPYIOU,UT
AJITOPUTMOB [JIS HAXOyKIEHUA ONTUMAJILHBIX PellleHU i MHTEPBaJlbHBIX
CUCTeM JIMHEMHBIX aNrebpanyeckux ypaBHeHUii. Y Ka3aHbl OLleHKN BEI-
YUCJIATEJILHON CJICKHOCTH 3TUX aJITOPUTMOB.

Let the following objects be given: A an interval n x n-matrix and
b, an interval n-vector. The set of all possible solutions of real systems
Az = b where A € A and b € b, that is the set

X* = X*(A,b) = {z € R" | (3A € A)(3b € 1-)(Az = b)}

is called, as is well known, a united solution set (USS) to an interval linear
algebraic system (ILAS), formally written as

Az =b.
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The purpose of this paper is to introduce a new computational ap-
proach to the solution of the so called “outer problem” for ILAS (ac-
cording to the terminology of [4, 28] et al), stated traditionally in the
following form:

find an interval vector V that
contains the USS of the given ILAS.

Generally, here the nonsingularity of all real matrices 4 € A is as-
sumed. This guarantees the boundedness of the united solution set. It
is edsy to understand that the “outer problem” for ILAS is equivalent to
the requirement to find a lower estimate of min {z) | z € X*(A,b)} and
an upper estimate of max {z; | € X*(A,b)} fork = 1,2,...,n. Later,
we shall concentrate on the computation of min {z), | z € X*(A,b)} (for
an arbitrary but fixed component &, in what follows), since

max {zr |z € X"(A,b)} = —min {2} |z € X*(A, -b)}.

Of particular interest will be optimal (exact) estimates of the USS, since
these estimates are the most valuable both in theory and practice. The
“outer problem” for ILAS is one of the classical problems of interval
analysis, and hundreds of publications are devoted to different aspects
- of its solution, from the early 1960’s to now. Nevertheless, at present,
only a few practical algorithms (see [12,25,28]) guarantee the optimality
of solutions to the “outer problem” obtained by them in the general case,
and the complexity of these algorithms is very high.

Beeck in [12] seems to be the first to point out the remarkable fact that
the exact values min {z), | z € X*(A,b)} and max{z; | z € X*(A,b)},
k=1,2,...,n, are attained in the extreme values of the matrix A € A
and the vector b € b (see also [23]). Based on this result, Nickel in
[23] proposed a method for solving the “outer problem” for ILAS. He
used brute force to look over all possible combinations of endpoints of
elements of A and b and subsequently solved the real systems Az = b
resulting from this process. The practical significance of this algorithm
is not considerable because of disastrous growth of its computational
complexity as the dimension of the ILAS in question increases.

Thus, even for systems with a 5 x 5 matrix, in the general case, there
are 25%X(5+1) — 930 ~ 109 Lon] linear systems of the same dimension
to solve. Furthermore, Nickel’s algorithm is only finally gquaranteeing,
i.e., the algorithm is certain to give outer component-wise estimates of

)
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the USS only after it terminates, that is, after it examines all possible
combinations of endpoints of intervals of the ILAS Az = b. We shall
demonstrate below how one can transform this impractical approach into
an attractive computational procedure.

Let us fix some method E for solving the “outer problem” for the ILAS
(call it a basic method), and let E(U,v) be an interval solution vector
of the “outer problem” to the system Uz = v , E(U,v) 2 X*(U,v),
obtained by this method. Then the left endpoint of its k-th component,
denoted by Ey(U, V), provides a numerical lower estimate to the sought
for value min {z | z € X*(U,v)}. We can take any known algorithm for
the basic method. (See the books [1,4-6,18,19], the survey [20], which
is good but reflects the situation of middle 1980’s; the most significant,
in our opinion, recent works [13,16,17,21,26,27], as well as the excellent
book by Neumaier [22]). The only requirements for a basic method will
be low computational complexity (for example, the complexity of its re-
alization would be at most polynomial with respect to the dimension of
the problem), and that the condition

the estimate Fy(U,v) is monotone with respect

to inclusion in the arguments U and v, that is,

for all U’, U" € IR"*" , v/,v" € IR" for (C1)
U’ C U” and v/ C v”, the inequality

E (U, v') > Ep(U",v") is valid.

holds. For the most of the popular algorithms, solving the “outer prob-
lem” for ILAS, including the interval Gauss method [1,4,5], the interval
sweep methods [5], Gay’s methods [13] and various modifications of the
simple iteration method [1,4,5,16,17,27 and other], the feasibility of Con-
dition (C1) is easily deduced from the monotonicity property of interval
arithmetic with respect to inclusion [1,4,5,18,19].

If an entry a;; of the matrix A has a nonzero width, we denote by
A’ and A’ the matrices obtained from A by replacing a;; by a;; and
a;;, that is, the left and right endpoints of the interval a;; respectively.
By the Beeck-Nickel result,

min {zy | z € X*(A,b)} = (Ag'bo);
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for some Ao € R"*™ and by € R", composed of endpoints of compo-
nents of A and b. Furthermore,

Ei(Ao,bo) < (47 'bo),,
and Condition (C1) implies the inequalities
Ex(A,b) < Ex(A',b) < Ex(A,bo)

and

Ey(A,b) < Ex(A",b) < Ex(Ay,bo),

where Ay and A are real matrices obtained from Ag by replacing its
(,7)-th entry by a;; and a;; respectively. Therefore,

Ep(A,b) < min{E(A’,b), E,(A”,b)} < min{z) |z € X*(A,b)}.

Thus, solving two “descendant” ILAS A’z = b and A”z = b, we obtain,
in the general case, a more exact lower estimate for min {z | 2 € X*(A, b)}

of the form mln{Ek(A’ b), Ex(A”,b)}.

The partitioning of any interval component b; into b; and b; in the
vector b of the right-hand side has a similar result. Therefore, for uni-
formity, let us agree to denote henceforth by A’z = b’ and A"z = b”
the descendants of ILAS, obtained from Az = b by partitioning some
component of the matrix A or of the vector b into endpoints.

The procedure of improving the estimate for min {zy, | = € X*(A,b)}
by partitioning the original ILAS can be repeated with respect to the
descendant systems A’z = b’ and A”z = b”, to improve the estimate
some more, and so on. We shall arrange this procedure of successive
improvement of the lower estimate for min {z) | 2 € X*(A,b)} accord-
ing to the strategy of the well known in the combinatorial optimization
“branch and bound algorithm,” as in solving optimization problems in
8,11,15,24] and other works. First, we form the list L of all the systems
Uz = v, together with their estimates F}, (U, v) arising during the pro-
cedure of partitioning the original ILAS. Second, we shall partition in
cach step that descendant ILAS that gives the best current estimate for
min {z | z € X*(A,b)}.

Thus, during the work, the algorithm m'ajutains a list L composed of
records in the form of triplets (U, v, E(U,v)), where U is an interval
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n X n— matrix, U C A, v is an interval n-vector, v C b. In addition,
to work more effectively with the list L, we shall put its recerds in order
of ascending values of the estimate Ej(U,v) and shall refer to the first
record (Q,r, Ex(Q,r)) of the list, as well as the ILAS Qz = r and the es-
timate Ey(Q,r) (the least in L) leading at the given step. Before starting
the Algorithm, there is only one record in L, namely, (A, b, Ex(A, b)).
A sequence of steps (iterations of the Algorithm) is then launched. Each
such sequence consists of the following instructions:

1. If the leading ILAS Qz = r is a point, stop the computation.

2. Choose an interval component s of the matrix Q = (q;;) and the
vector r = (r;) that has the greatest width, that is, s = quy Or
s =r, and
width of s = max {max; ; {width of q; ;} , max; {width of r;}}.

3. Generate interval descendant systems Q'z = r’ and Q"z =r'":
if s = qy,,, for some p,v € {1,2,...,n} we let q;; = qj}; = q;; for
(69) # (V) o =, > G =Ty T' =17 =T
ifs=r, forsomev € {1,2,...,n} welet Q' = Q" =Q, r' =
r"=rfori#v, v, =r, r’=T,.

4. Compute the estimates Ey(Q’,r’") and Ex(Q",x").

. Remove from L the ex-leading record (Q,r, Ex(Q,r)).

6. Insert the records (Q',r’, Ex(Q’,r')) and (Q”,r", Ex(Q"”,r")) in
the list L in such a way that would preserve its ranking in as-
cending order of the third field.

ot

This and similar algorithms for solving the “outer problem” for inter-
val systems of algebraic equations based on adaptive partitioning of the
parameter set will be called, in abbreviation, PPS-algorithms, as opposed
to the PSS-algorithms from [28], which also use adaptive partitioning but
in the set of solutions of the interval system (i.e. adaptive Partitioning of
the Solution Set).

If T is the total quantity of interval components (with nonzero width)
of the matrix A and the vector b of the original ILAJ (in the general case,
T < (n+ 1)n), then the above PPS-algorithm stops after no more than
27 'steps and results in a lower estimate G for min {zr |z € X*(A,b)}.
The closerness of G and min {z) | x € X*} depends primarily on the way
the estimate Ey(U,v) is obtained, that is, on the basic method chosen
for solving the intermediate ILAS’s. In particular, for the estimate G
to be optimal in the general case (in other words, for the equality G =
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min {z}, | £ € X*} to be exactly true) it is necessary and sufficient that
the following condition hold:

the estimate Fj (U, v) is exact on real
linear algebraic systems, that is, Eg(U,v)
= (U '), forall U eR"™",
vER® det A#DO.

(C2)

Many solution methods for the “outer problem” for ILAS do not satisfy
this condition. In particular, (C2) is not valid for the well known Rump
method [26].

However, if the problem is sufficiently large, the PPS-algorithm will, as a
rule, never complete, and will be, in practice an iterative method. It gen-
erates a sequence of improving lower estimates for min {z | z € X*(A,b)},
converging in the long run to the exact value of this quantity, and the

- complexity of each iteration can be made low by an appropriate choice
of the basic method. Therefore, the PPS—algorithm splits into a series of
effectively computable stages, and each of them results in a solution of
the given “outer problem” for ILAS. This makes it fundamentally differ-
ent from the simplest exhausting algorithm. We shall express this fact

* by saying that the PPS—-algorithm is sequentially guaranteeing.

Relazation algorithms that provide an improvement of an estimate of
objective function at each step are popular in practical optimization.
We shall carry over this definition directly to the algorithms that solve
ILAS. Use of these algorithms is particularly attractive when it is known
a priori that the number of steps cannot be large, but some meaningful
result from the work of the algorithm is necessary. It is easy to see that,
for the PPS—algorithm to be a relaxation algorithm, Condition (C1) is
sufficient.

It is advisable to consider the prototypical PPS—algorithm described
above as a base that can be developed and extended by standard im-
provements (see [8,11,15,24] and other), which leads to more nearly per-
fect PPS—methods for solving ILAS. In this instance, we can successfully
realize at most the following modifications:

e one constructs an interval extension of the objective function that
is better that the original one (that is, in this case the estimate

Ew(U,v));
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e the monotonicity test: after detecting the monotonicity of the
objective function on the rectangles of the list L in some vari-
ables (usually, by estimating derivatives), the dimension of these
rectangles diminishes;

e on the basis of specific local properties of the objective func-
tion, one uses minimization procedures in appropriate rectangles
which are more efficient that the bisection;

e the partitioning strategy for the leading rectangles is modified
(taking account of the properties of the objective function);

¢ simultaneously with calculation of estimating parameters over
rectangles, values of the objective function are calculated in the
centers of these rectangles; they give the lower bound of the
desired global minimum; knowledge of this lower bound makes it
possible to clean the list L of records which cannot be leading.

Let us consider in detail the second, and seemingly the most important,
improvement in this list.

Let the ILAS Uz = v be given, and suppose we know 9zx(U,Vv)/du;;
and Oz (U,Vv)/0v;, the interval extension of the corresponding deriva-
tives. If the interval n x n — matrix U and n — vector ¥ are formed from
the components (here “int” is the symbol for the topological interior)

[u u, ] if 8$k(U,V)/auij > 0,

'l_]?

flz'j = [u”,u”], if ) 8xk(U,v)/8uij < 0 N (*)
u;;, if  intdzk(U,v)/Ou;; 50,
[vi.vi], if 8z(U,v)/0v; 20,
Vi = [Vi,vi], if 8az,c(U,v)/8v,- <0, (**)
Vi, if intdzy(U,v)/0v; 20,
then, clearly, min {z) | z € X*(U,v)} = min {:ck |z € X* } But

since the number of interval components (with nonzero w1dth) of U and
v.is in general substantially less than that in U and v, we will simplify
the problem of calculating min{z) [ z € X*(U,v)} When passing from

the original ILAS Uz = v to the solution of the system Uz =V.

How do we find the interval extensions of the derivatives appearing in
(¥) — (%x)? This is done in the usual way as follows. If Z = (z;;) is an
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inverse matrix for U = (u;;), the derivatives of the solution to the real
system Uz = v with respect to its coeflicients are given, as is known, by
the formulae:
Oz (U,v Oz (U, v
Gallv) _ _, o, 2200
8uij ;
(see [1,14]). Therefore, in the case where Z = (z;;) is an "inverse in-
terval matrix“ for U (that is, Z D {U~! | U € U}), and x; is the j-th
component of the interval vector x D X*(U,v), we can set

Oz (U, v) dz (U, v)
—a " = —ZpiXj, =

811,1'3'
Usually, to compute Z and x, one uses some cheap approximate algo-
rithm (like Hansen’s method [18] for localizing the “inverse interval ma-
trix”). However, the procedure of interval estimating the derivatives from
(%) — (**), nonetheless remains expensive on the wholet. Therefore, for
reasons of efficiency, it is not wise to do this estimating at each step of the
algorithm. We shall “freeze” the inverse interval matrix over a fixed num-
ber of steps (as is done with the Jacobian in a number of quasi-Newton
methods for solving algebraic systems [3]). In doing so, the access to in-
verse interval matrices and their treatment becomes more complex, since
the PPS-algorithm is essentially a branching process.

It is advisable to store inverse interval matrices in the form of a heap
H , and to access them by pointers (or references) (see [2]). For this, we
add one more field p to the records in the form of triplets (U, v, Ex(U, v))
constituting the list L. This field is the pointer to the interval matrix Z
from H which envelops U™!. In this case we shall say that the record
(U,v, Ex(U,v)) is served by the matrix Z. Two more natural parameters
o and 3 will be associated with each inverse interval matrix Z so that the
heap H actually turns out to consist of records (Z, o, ). The parameter
« 1s a counter of algorithm’s steps on which an access to Z took place;
and 3 counts the number of records in the list L which are served by
Z. If « is large, this demonstrates that previously the algorithm made

tSome authors (for example, [15]) recommend using second derivatives (the Hes-
sian) of the objective function in similar global optimization method. However, for
our problem such an improvement seems to be unreasonable, since it will only lead to
cxcessive complexity of the algorithm.
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a long use of the matrix Z, that is, it is necessary to replace it by new,
narrower interval matrix. On the other hand, if 8 = 0, the corresponding
inverse matrix does not serve any record of the list L, and hence the
triplet (Z,a,8) can be removed from H without any influence on the
work of the algorithm.

The parameter o varies in the evident manner. The parameter 3 is
set to 2 when the record (Z, o, ) is inserted in H, and later, as is easy
to understand, it is recomputed as follows:

e if the record served by Z is partitioned into descendants without
recomputing the inverse matrix, then we augment 3 by one;

e if the record served by Z is partitioned into descendants and the
inverse matrix is recomputed, then we decrease 3 by one;

e if the record served by Z is deleted from L, then we decrease (3
by one.

As computational experiments show, introducing the above mecha-
nism, that takes account of monotonicity as well as the other modifica-
tions into the simplest PPS-algorithm, and careful choice of the basic
methed lead to efficient computational procedures for finding optimal
and near optimal solutions of the “outer problem” for ILAS. Their ap-
plication is especially attractive for systems that have only a few interval
(nonzero width) elements.

To conclude, it is useful to outline the relation the algorithms proposed
here have with other methods for solving ILAS. We have already observed
a close connection (actually, a duality) between PPS-algorithms and the
class of PSS-algorithms introduced in [28]. But we can arrive at the
idea of constructing PPS—algorithms for solving interval linear systems
in a somewhat different way, bringing to a logical conclusion some of the
.widespread interval analysis approaches to the solution of ILAS.

The procedure of Kupermann and Hansen [1, 14] may be considered
as one of the predecessors of the modified PPS—algorithm. In fact, the
PPS-algorithm is obtained by adding to this procedure the technique of
partitioning and branching similar to that which is used in the “branch
and bound” algorithm.

Next, starting from the result by Beeck-Nickel mentioned above, a
semi-heuristic algorithm was proposed by Manusov, Moiseev and Perkov
7], for solving ILAS. This algorithm was based on the detecting, by trial
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computations, the dependency between a solution of the system and its
coefficients in the bounds of corresponding intervals. In the sequel, similar
methods, based upon the results of Kupermann and Hansen [1,14], were
developed by Senashov and Yuldashev [9,10]. (They also proposed the
name “interval trial method”.) But in spite of their high attractiveness,
the algorithms of this type suffer from a serious shortcoming: in general,
they don’t assure guaranteed results.

In our case, this means that the resulting estimate G' given by the
algorithm does not necessarily satisfy the inequality

G < min{zx |z € X*(A,b)}.

This weakening of the properties of the result contradicts the very spirit
of interval analysis, and may be intolerable for some practical problems.

In our opinion, the Manusov-Moiseev-Perkov-Senashov-Yuldashev ap-
proach may receive further development only through recognition of the
fact that it is impossible to make the dependency of a solution from coef-
ficients completely and finally determinate, if for solving ILAS, methods
that do not give an optimal solution are applied. The search for an opti-
mal solution requires too much computational complexity, and does not
simplify the original problem.

Nevertheless, recognition of the fact that complete determinism is im-
possible does not mean, in our opinion, that the basic idea of the ap-
proach developed in [7,9,10] is useless. One of the possible ways to save
the situation is to refuse to reject variants “condemned” by incomplete
determining, but to store them during the computations, together with
promising ones, since, under more detailed determining, previously con-
demned variants would turn out to become promising. .

Actually, the PPS-algorithm does this. The list L stores all variants
occurring during the work (except the clearly hopeless ones), and at each
step of the algorithm the “most promising” variant is processed, if this
“promise” is measured by the values of the estimate Ey(U,v).
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