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Abstract

For the interval linear system A x = b, the linear tolerance problem is considered that requires inner evaluation of
the tolerable solution set 3,5(A, b) ={x € R"|(VA € AX Ax € b)} formed by all point vectors x such that the product
Ax remains within b for all possible 4 € A. Along with the simple incompatibility criterion, we develop comprehen-
sive solvability theory for the linear tolerance problem that not only settles whether 3y is empty or not, but also
enables modification of the problem to ensure its desired properties. To conclude, we advance several numerical
methods of various accuracy and complexity for construction of an interval solution to the linear tolerance problem
around a given center.

1. Introduction

This paper deals with both mathematical and computational aspects of the linear static
systems under uncertainty. However, we shall not consider them in the context of probabilistic
or fuzzy models as is fashionable among modern system analysts. The uncertainty our paper is
devoted to is interval, that is, the bounds of possible variations of the parameters, both those
prescribed by our will and those resulted from our ignorance, are the only information about
the system we have at our disposal. If need be, one may take as a fact that the parameters of
the system have bounded uncertainty (similar to what was done in the works [8,33,34]), but it is
described by interval analysis tools in our case.

The natural mathematical model for deterministic linear static systems is the linear algebraic
equation

Ax=b, (1)
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where A4 is an m X n-matrix and b is an m-vector. We shall restrict our attention to the real
case and assume that we only know that the elements of (1) may independently vary within the
intervals [a;; a;1=a;; and [b; b,]=b, respectively. Put otherwise, we formally have the
interval system of linear algebraic equations

Ax=b (2)

with an interval m X n-matrix A and an interval right-hand side m-vector b. The solution set to
(2) has been defined in a variety of ways: aside from the united solution set

335(A,b) = {x€R"[(34 € A)(Ib € b)( Ax = b))}
commonly used in applications there exists, for example, the controllable solution set
23y(A,b) ={xeR"|(Vbeb)(34 €A)(Ax =b)}

(see [26]) among many others. But the subject matter of our paper will be the tolerable solution
set formed by all point vectors x such that the product A4x falls into b for any 4 € A, i.e., the
set

sometimes written out as
Sy3(A, b) ={xeR"|[(VA € A)(Ax €b))}.

Neumaier in {10,11] introduced the term restricted solution set for (3), and other authors
followed; they denote the set 3,(A, b). Others speak of “inner solutions”, but I prefer the more
adequate term — tolerable — that used in Russian works. The history of the set (3) and of
some related problems was described comprehensively in the papers by Neumaier [10] and by
Kelling and Oelschlagel [4].

To clarify what the tolerable solution set has to do with the mathematical modelling and the
system analysis, it is very instructive to consider its practical interpretation. Let the ‘“black box”
be given with the input subjection vector x € R” and the output response vector y € R™, where
the input-output relationship is linear, i.e., y = Ax with a real m X n-matrix A = (a; j). Suppose
that the parameters of the black box are not precisely known, but are given only by intervals
a;, a;; € a;;, which constitute the interval m X n-matrix A = (a, ].). For example, these parame-
ters may vary in an unpredictable way (drift) within a;;, or the interval uncertainty may be
intrinsic to the very description of the mathematical model.

Also assume that the set of the black box output states is specified as an interval vector y and
we must ensure y to arrive at it no matter what the exact values of a; j from a,; are (see Fig. 1).
Our interest is in finding input signal X such that for any values of the parameters a;; from a;;

. y = Az —

Fig. 1. A model for interpretation of the tolerable solution set.
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Fig. 2. The solution sets to (5).

we altogether get the output response y within the required tolerances y. The tolerable
solution set X5(A, y) is just the set of all such X’s. That general scheme is known to be
successfully applied to specific problems in mathematical economics by Rohn [20,21], in
automatic control by Khlebalin [5,6], Skybytsky and Yuping [32], Zakharov and Shokin [35] and
SO on.

The ideas developed above are straightforwardly transferred to the general case of interval
nonlinear system

F(x,a)=b, (4)

with F(x, a) =(f(x, a), fy(x, a),..., f,(x, a)) and a, b being interval vectors of the same
dimension as a, b, respectively. Let us call

3y3(F;a,b)={xeR"|(Va €a)(Ab €b)(F(x, a) =b)}

the tolerable solution set to the interval system (4). If for the considered “black box” the
input-output relationship has the form y = F(x, a), then the regimes that correspond to the
points of 2y 5(F; a, y) (and no one else) ensure functioning of the device within the required
output state corridor y irrespective of the input subjection a from a. In our work, however, we
shall study only the linear case at length.

In general, the tolerable solution set to interval linear system is easily proved (for instance, in
[4,22,23] or in Section 3 of our paper) to be a convex polyhedral set in R”. The Fig. 2 depicts,
for example, the set X 5(A, b) for the system

[1; 2] [»g; %] _([—1;11]’

[—%%] [1:2] RisE
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from the work [27]. Nevertheless, if the dimension of the interval system is large, then the direct
description of its tolerable solution set becomes laborious and practically useless (its complexity
is proportional to m - 2"). For this reason it is expedient to confine ourselves to finding some
simple subsets y C3y5(A, b), since for any x € x the characteristic condition

(VA € A)(Ax € D)
remains valid. In other words, we change 3,5(A, b) by its inner approximation, usually
formulating the problem to be solved in the following form:

Find an interval vector that is contained in the tolerable (6)
solution set (if nonempty) of the interval linear system.

This linear tolerance problem (LTP) is the subject of the present paper, and its principal
practical significance lies in the fact that it is a generalized stabilization problem for the static
systems with disturbances.

Sometimes (6) is referred to as inner problem for interval linear systems [2,23,25] and the
points of the tolerable solution set as inner solutions [22,32]. The main mathematical results of
our work are new techniques for the investigation of solvability of the linear tolerance problem
(Sections 3-5) as well as methods for inner approximation of the tolerable solution set
(Sections 6—8). Previously, some results of the present paper have been published in the
separated and abridged form in [23-25,28].

2. Discussion of the problem statement

In this paper, intervals and other interval objects are denoted by boldface letters, for
example, A, B, C,...,x, y, z, while non-interval (real) objects are not distinguished in any way.
Also, we need the following notation:

IR — the set of all real intervals [x; X] on R, x <X,

IR" — the set of n-dimensional interval vectors,

int X — topological interior of the set X in R” with the standard topology,

X, x — upper and lower bounds of the interval x, respectively,

mid x = (X + x) /2 — mean value (midpoint) of the interval x,

rad x = (X — x) /2 — radius of the interval x,

vert x — vertex set of the interval (interval vector, matrix) x,

|x| =max{|x], |[x|} — absolute value (magnitude) of the interval x,

(x) = min{|X], [x|}, if 0 & x,
0, otherwise

points of x and zero, in some sense the opposite of the absolute value.

If x = (x;)"_, is an interval vector, then all of the operations defined above are to be understood

componentwise, so that rad x, for instance, is the real vector (rad x,)"_,

The interval x is said to be symmetric if mid x =0, that is, if X = —x.

Throughout the rest of this paper, all arithmetic operations with intervals and interval
objects are those of classical interval arithmetic [1-3,9,11,17]:

[X'f]+[y-i]=[x+y-X+i]

(5551 =[5 =[5 5],

— mignitude of the interval x or the least distance between
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Besides, the endwise interval subtraction
[x;%] © [y; 9] =[x ~y; X 7]

will be necessary in our work. The result of this operation is an interval only if rad x >rad y.

Notice that the tolerable solution set may turn out to be empty even for “good” interval
data, as, for instance, it does in the one-dimensional case A =[2; 3], b =[1; 2]. The two-dimen-
sional system

1;2 -1;1 1;3
2 [ty (1153 -
[-1;1] (1; 2] [1; 3]
gives a more complex example with the empty tolerable solution set. In such cases, we shall
speak that the linear tolerance problem is unsolvable (incompatible), since then the initial
problem statement (6) becomes empty. In our paper, much attention will be accordingly paid to
development of the technique for detailed solvability examination and correction (Sections
3-5).
It is pertinent to note that the inclusion of a vector x to the tolerable solution set is
equivalent to

A-xCbh,

6,

where means the standard interval matrix-vector multiplication, since {Ax| A €A} =A-x
[1,11]. The equality

{Ax|A€A, xe3 5(A, b)) =D

may appear to be valid. This is not so, however, as the tolerance problem with the data
A=[-1;1], b=[0; 1] shows. Here, only zero may belong to 3,5(A, b), since otherwise,
multiplying y #0, y €3,5(A, b) on (—sgn y) from the interval [—1; 1] = A, we would get a
negative number — |y | & [0; 1]. Therefore,

{Ax| A€ A, x€3,5(A, b)) =0+[0; 1] =b.
On its turn, if a set € C R" has the property
{Ax| A€ A, xe&)=b, (8)

this does not necessarily imply that @ = 3,,5(A, b). To illustrate, let us consider the one-dimen-
sional example of the lincar tolerance problem with A=b =[—1; 1]. Now X, 5(A, b) =[—1; 1],
but for each of intervals [«; 1] or [-1; k], —1 <« <1, (8) holds too. Hence, the property (8)
does not entirely characterize the tolerable solution set of interval linear systems, but it is fairly
simple to realize that 35(A, b) is the most inclusive of the sets & satisfying

{Ax| A€ A, xe&)Ch.
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One of the classical interval analysis problem that has numerous and significant applications
is known to be the outer problem, that is, the problem of outer component wise estimation of
the united solution set

3a5(A, b) ={x€R"|(34 € A)(Ab €b)( Ax =b)},

the set of solutions to all point linear systems Ax = b contained in (2) (see e.g. [1,2,9,11,27] and
the extensive references there). Usually, it is formulated as follows:

Find an interval vector that contains the united solution set of the interval linear system.
The inclusion
Sya(A, b)={x €R"|(VA € A)(Ab € b)( Ax =b)}
c{xeR"|(A4 €A)(3beb)(Ax =b)} =335(A, b)

is quite obvious and so, if the interval vectors U and V are solutions, respectively, to the linear
tolerance problem and to the outer problem for the interval linear system, then

Uc3y3(A, b)c255(A, b)CV,

that is, each solution of the linear tolerance problem is contained in every solution of the outer
problem. Fig. 2 demonstrates that the sets ¥,5(A, b) and 235(A, b) may greatly differ in size
and this is especially telling for the corresponding interval solutions U and V.

In general, the tolerable solution set may be unbounded, but if the interval system is square,
that is, m = n, and at least one point matrix 4 € A is nonsingular, then ¥ 5(A, b) is a bounded
set, since

Sys(A,b)c{A 'bIbeb).

In this case the solution process for the linear tolerance problem has a pictorial geometrical
interpretation, as inscribing a rectangular box with the sides parallel to the coordinate axes in
the convex polyhedron 3 5(A, b).

Although throughout this paper we consider the inner approximation of the tolerable
solution set by interval vectors, that is, by rectangular boxes whose sides are parallel to the
coordinate axes, one should be fully aware of possible advantages and disadvantages of such a
way of estimation. It may turn out bad (see Fig. 3) in the sense that the ratio of volumes of
Yy5(A, b) and of its best inner interval approximations can be arbitrary large (for ill-condi-
tioned A).

It is amply clear that

2y3(A, b) = N 2y3(A,b), 9)
and
Sva(A,b)y= N [A_’blbeb}, (10)
AcA

if A is square and nonsingular, that is, all point matrices 4 € A are nonsingular. Though the
definition of the tolerable solution set requires the product Ax to get into the right-hand side
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Fig. 3. The inner estimation by interval vectors may turn out bad.

vector b for every A € A, we show that in the linear case it is sufficient for the inclusion Ax € b
to be fulfilled for each A from a finite subset of matrices within A. Namely, there holds

Lemma 1. 3, 5(A, b) = {x € R" (VA € vert A)X Ax € b)}.

It too implies in particular that

ya(A, b) = N “\:VE(A~ b), (11)

Ae€vert A

and if A is square and all point matrices 4 € vert A are nonsingular (and not necessarily all
AEA),

Jva(Ab)= N {4 'blbeb},

Aevert A

that is, we substantially refine the representations (9) and (10).

Proof of the Lemma actually boils down to the verification of whether
2y3(A, b) 2 {x e R"|(VA € vert A)( Ax € b)},

since the inverse inclusion is obvious.
Suppose some vector x € R” satisfies

Ax€b

for all A € vert A. Let E be a matrix from A. According to the definition of vert A, there exist
coefficients A , > 0, with their number equal to 2™”", such that

Y A,=1 and E= Y A, A,

AEvert A Acvert A
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or, put otherwise, £ is represented as a convex combination of the extreme matrices from A.
Then

Ex=( y /\AA)-x= YA, Ax (12)
A€vert A AEvert A

But all Ax € b in virtue of the statement of the Lemma. Therefore, their convex combination,
such as the sum (12) is, also belongs to the convex set b. O

In this work, we shall follow the approach to the linear tolerance problem that may be called
“center””: first one finds a point of the interior int ¥,5(A, b) — the “center” — and then, if
succeeded, an interval solution is constructed around it. There exists the other, “algebraic”,
approach to the linear tolerance problem, first formulated by Zyuzin [36] (though in the very
vague form). Its essence is the change of the original linear tolerance problem for the problem
of finding an algebraic interval solution to the interval system, that is, the interval vector x,
such that its substitution into the system (2) and execution of all interval arithmetic operations
results to the valid equality Ax, =b. Then, due to inclusion monotonicity of the interval
vector-matrix operations [1,11], there holds

AxCAx,=b

for any x € x,,, and so x, €&, 5(A, b). The linear tolerance problem thus reduces to a purely
algebraic one: solve a system of equations in the interval space IR”. This is a very attractive
circumstance, notwithstanding one can not perform complete solvability examination for the
linear tolerance problem using the algebraic approach (see the next Section). The numerical
procedures initially proposed to implement the algebraic approach in [35-37] were not
sufficiently elaborated, but recently Shary [29,30] has advanced very efficient computational
algorithm based on imbedding of the equation into Kaucher extended interval arithmetic and
further application of subdifferential Newton method. It is intended primarily for quick calcula-
tion of the solutions to (6) when its “good” solvability is given a priori (in real-time devices, for
example).

3. Quick examination of solvability

The results concerning solvability of the linear tolerance problem have been appearing long
ago in the publications on the subject. Rohn turned to the linear tolerance problem in [20,21]
when studying linear economic input-output models (the interval Leontiev-type equation). In
those his works, explicit formulae are written out that enable to examine solvability of the
linear tolerance problem, but for a special type of the interval matrix A and nonnegative b. In
the work by Khlebalin [5] as well as in [10,23], the following simple heuristic LTP solvability test
was proposed: the solution x of the “middle” point system

midA-x=mid b

is taken as the most probable representative of the tolerable solution set, and if AX b we
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infer “practical unsolvability” of the linear tolerance problem, though, strictly speaking, no
definite conclusion may be done in this case. This criterion is easily seen to work only when the
matrix A is “sufficiently narrow” as compared with the right-hand side vector b and is not able
to distinguish boundary situations. The examples below demonstrating its fault were first
presented by the author in [25].

Let A=[-1;2], b=[-2;6]. Then X 5(A, b)=[—1; 2], but the solution to the middle
system is 3 and it does not belong to the tolerable solution set. The two-dimensional
counterexample is very interesting, with the data

3 [1:2]) [5: 7]
[1; 2] 3)’ _([7;9])'

A:

Here 3 5(A, b) consists of the single point (1, 2)" while the solution of the “middle system” is
8, 2)T. The feature of this example is that the matrix of the problem is strictly positive and
contains only nonsingular point matrices.

In algebraic approach to the linear tolerance problem developed in [30,35,36], the conclusion
on whether X 5(A, b) is empty or not is taken while constructing an algebraic interval solution
to the interval system. Sometimes this enables to recognize solvability of problems for which the
“middle system” test fails. Unfortunately, the algebraic interval solution does not need to exist
even when the linear tolerance problem for the original interval system is compatible. It is
illustrated by that same one-dimensional example with A =[-—1; 2], b =[—2; 6]. The algebraic
interval solution of the equation [—1; 2] - x =[—2; 6] does not exist, but 3, 5(A, b) =[—1; 2] #
g

As we have already mentioned, the tolerable solution set is a convex polyhedral set in R”, the
equations of bounding hyperplanes being straightforwardly written out explicitly. Hence, the set
3y3(A, b) may be represented as the set of all feasible solutions of a linear programming
problem, and the question of whether it is empty or not (that is, solvability of LTP) can be
resolved through applying the initial stage of the standard simplex-algorithm (entering into the
basis). The corresponding linear program was first presented by Rohn [22]. Afterward, Khle-
balin [6] came to the similar results, having reduced inscribing the maximal perimeter hyperbar
included in 3 5(A, b) to the solution of a full linear programming problem.

We shall conduct comprehensive investigation of solvability of the linear tolerance problem
and of some other related questions in the next sections, using a special ‘“identifying functional”
technique. At the same time, that approach, though the most informative, requires much
computational labor. The aim of this section is to give a simple sufficient unsolvability criterion
for the linear tolerance problem, based on comparison of the relative narrowness of elements
of its interval matrix and right-hand side vector. It is intended for the preliminary quick
examination of the linear tolerance problem under solution.

First, note that if the /-th row of A contains only zero elements, it is necessary that b; 2 0 for
the tolerable solution set to be nonempty. If this condition holds, then the property of
3y3(A, b) being empty or nonempty depends upon the other, not the i-th, rows of A and
components of b. Thus, without loss of generality. we may assume in the rest of this paper that
A does not have zero rows.
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To characterize “relative narrowness” of nonzero intervals, Ratschek introduced in [16] the
functional
x/x, if [x| < IX],
x(x) =1tz .
X/x, otherwise.

Clearly, —1 < x(x) < 1, and y(x) = 1 if and only if x € R. Moreover, it is proved in [16] that

x(x)=x(y)ifand only if x=Ay, A €R, A #0, (13)
if x +y+0, then y(x +y) < max{x(x), x(¥)}, (14)
if x Dy and x(y) >0, then x(x) < x(y). (15)

Now we are able to formulate and to prove the

Theorem 1. Let the interval m X n-matrix A and the interval m-vector b be such that for some
kel{l,2,...,m} the following conditions hold:

(D0&b,,

(i) max{x{(a, ) |1 <j<n,a,;#0} <x(b,).

Then the tolerable solution set % 5(A, b) is empty.

For example, using this criterion one can verify that the one-dimensional system with
= [2; 3], b =[1; 2] considered in the beginning of the Section 2 has empty tolerable solution
set.

Proof of the Theorem [24] will be conducted ad absurdum employing a technique similar to
that developed in [18]. Let us assume that the tolerance problem nonetheless has a solution
t €3,5(A, b) # @, that is, At Cb, the condition (i) making it impossible for the interval (Az), to
equal zero. Then the following inequalities are true:

(80 x| oy )

N

max{x(a,t;)|1<j<n, a,t;#0) by (14)
= max{x(a,;)|1<j<n,a#0} by (13)
<max(x(a,;) 1 <j<n, a,; #0}.
We have found
x((At),) <max{x(a,;) |1 <j<n,a,;#0}. (16)

On the other hand, by virtue of our assumption, (A¢), b, which because of (15) implies

x((At)) = x(by).
Combining this with (16) now gives

max{,\/(akj)ll <j<n,ay #O} > x(b,)

which is contrary to (ii). O
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The importance of all the conditions of Theorem 3 may be exhibited on the one-dimensional
example with A =[—1; 2], b =[—2; 6] mentioned above. Here 3y 5(A, b) =[—1; 2] # §, though
x(A)= —1/2 < —1/3 = x(b). The more profound explanation is that the property (15) of the
functional y does not hold for intervals containing zero in their interiors:

1
[~ e(-12] (=22, butx([-1 1) =x([-2:2])= -1, x([-1;2])= - 5.
At the same time, if the conditions of Theorem 3 fail, this does not necessarily mean
compatibility of the linear tolerance problem. For instance, (ii) is not true for the system (7),
but even so its tolerable solution set is empty.
If one concludes from Theorem 3 that some LTP is incompatible, then

(= min { max x(a;) _X(bi)} <0,
I<ism\1Igign

and this value to some extent characterizes the degree of unsolvability of the tolerance
problem: it is less, the farther problem from solvable, and vice versa. Besides, the indices
k{1, 2,...,m} for which the condition (ii) of Theorem 3 fails point to those rows of the
matrix A and the respective components of b that make the dominant contribution to the
incompatibility of the given LTP. To lessen its deflection from a solvable one (to approach to
solvability), one should either narrow the widest elements of these rows of the matrix A, that is,
to increase max, _; ., x(a,;), or to widen the right-hand side, that is, to decrease x(b,).

4. Detailed examination of solvability

The basis of the solvability theory developed below for the linear tolerance problem is a new
analytical characterization of the tolerable solution set. Along this lines, the most important
result was obtained by Rohn who had shown in [22] that x € 3,5(A, b) is equivalent to

lmid A-x —midb| <radb—rad A- | x|

(analogue of Oettli-Prager criterion for the united solution set [11]). In [13], Nuding gave the
other proof of this statement. But the starting point of our considerations is

Lemma 2. Let an interval m X n matrix A and an interval right-hand side m-vector b be given, so
the expression

defines a functional Tol: R" — R. Then the inclusion x € 3y3(A, b) is equivalent to Tol(x; A, b) >
0, ie., the tolerable solution set of the relevant interval system is the Lebesgue set {x &
R" | Tol(x; A, b) > 0} of the functional Tol.

Tol(x)=Tol(x; A, b)= min <rad b, — [mid b,— ) a,x;

l<i<m

Jj=1
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Proof. As we have previously stated, x € 35(A, b) holds iff Ax Cb. We rewrite the latter in the
following form

n
midb,— ) a, x,C[—radb;radb], i=1,2,...,m,
j=1
which is equivalent to

mid b, — )_ a;x;

ji=1

<radb;,, i=1,2,...,m.
Therefore, x actually belongs to 3\ 5(A, b) if and only if

n

I<i<sm j=1

Tol(x; A, b) = min {rad b, —

Js0. o

Notice that the functional Tol(x; A, b) is continuous (even Lipschitz-continuous) on all of its
arguments.

Lemma 3. The functional Tol(x) is concave.
Proof. The functional Tol(x) is the lower envelope of the functionals

¢(x)=rad b,-—4mid b,— Y a,x;|, i=1,2,...,m,

=1

and we need only to establish the concavity of each £(x).
Let x, yeR", A €[0; 1]. The subdistributivity of the interval arithmetic [1-3,9,11] then
implies

mid b, — ) a,(Ax; + (1 -1)y,) g)t(mid b,— ) ax;

j=1

+(1 —)\)(mid b,— Y, a,-jyj).
j=1 j=1
The magnitude |- | is isotonic with respect to the inclusion ordering of intervals and the
standard linear order on R [11]. Hence,

j=1

<

n

j=1

+(1 —/\)(mid b, — i a,.jyj)

j=1

n
mid b, — ) a;x;
j=1

mid b, — } a;x;

j=1

<A +(1-21)

2

and the assertion of the Lemma follows. O

Thus, the ordinate set
hyp Tol = {(x, z) eR"*'|x €R", z €R, Tol(x) < z}

of the map Tol: R” —» R is a convex set. We shall show that hyp Tol is the intersection of a
finite number of half-spaces of R”*', ie., it is a convex polyhedral set according to the
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terminology by Rockafellar [19]. Indeed, expressing the absolute value in terms of maximum,
we get foreach i=1,2,... . m

rad b, —

mid b, — Za,j x|

J=1 |

n
mid b, — ) a;x;

i=1

=rad b, — max
a

i

=rad bi—max{max{mid b,— Y. d,x,, ) 4;x —mldb}}

%
a4 j=1 j=1

s J
a;;

= min {mm{rad b, — mid b, + Za” x;,rad b, + mid b, — }_ éijx.}},
j=1 j=1

where the n-tuple (d,,, @,,...,4,,) runs over the finite set vert (a,, a,,,...,a,,), that is, over

all vertices of the i-th row of the 1nterval matrix A. Owing to this, the functional Tol is the lower
envelope of at most m - 27 *! affine functionals of the form

n

midb, - ) a;x

/=1

rad b; +

UI’

i=1,2,...,m, and the set hyp Tol is intersection of these functionals’ ordinate sets.
As a consequence we get the following well known result: tolerable solution set is a convex
polyhedral set.

Lemma 4. The functional Tol(x) attains a finite maximum on all of R".
Proof. Being a convex polyhedral set, the ordinate set hyp Tol is the convex hull of a finite set

of points (¢, y,), k=1,2,..., p, and directions (c,, v,), k=p +1,...,q, of R"*! (excluding
the direction (0,...,0, 1) since Tol (x) is defined everywhere) [19]. More precisely,

q
hyp Tol = { Z Aces ve)
k=1

p
CkERna ‘Yk’AkER’ A1(20’ ZAk:l}
k=1

Inasmuch as Tol (x) < min, _;_,, rad b;, we must conclude that v, <0, k=p +1,...,4, since
otherwise the functional Tol would be unbounded from above. For this reason,

max Tol(x) = max{z |(x, z) € hyp Tol, x e R", z € R}

xeR”

q
= max{ Y A

k=1

yod
A, >0, Z/\k=1}

P
max{ 2 Aevi

AkOZ=}

k=1

[

max vy,
Il <k<p
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The sought-for maximum thus coincides with that over a finite number of the functional’s
values, and max , _g- Tol (x) is attainable together with all v, k=1,2,...,p. O

Lemma 5. If the interval matrix A does not have zero rows, then t € int3y(A, b) implies
Tol (¢; A, b) > 0.

Proof. Let 35(A, b) # @ and max Tol (x) is reached at some point 7 € 3y3. If t € int3 5, then
t is an interior point of a segment [7; y]C 35, i.e. t=A7 +(1 —A)y for some A €(0; 1),
y € 3y3. Therefore

Tol(¢) > A Tol(7) + (1 —A)Tol(y),
because the functional Tol is concave.

Suppose Tol(¢) = 0. Then the above inequality holds only when Tol(7) = Tol(y) = 0 and the

functional Tol must equal zero on the entire set 3,5(A, b). Furthermore, let R" = U, _; .,,&;

2va= U (2vanag),

with
I<igsm

all the sets 3y5N&, i=1,2,...,m, being closed. Hence, int (3y3N &)+ @ for at least one
ke(1,2,...,m} and we have

ﬁi= (xeR"ITOl(x) =rad bl—lmid b,-_ Z a,—,-x]-

j=1

It is fairly simple to see that

n
mid b, — )" a,;x;|=0=const

=1

rad b, —

for all x € int(3y5N&,). The latter may occur only when all a,,,...,a,, are zeros, which
contradicts the assertion of the Lemma. O

Lemma 6. If Tol (z; A, b) >0, then t € int3,5(A, b) = .

Proof. The map Tol: R” — R is continuous, so the set Y ={y € R”|Tol(y) > 0} is open. Also, it
is nonempty — t € YC 3,5 — and Y Cint3, 5. Hence, x €int3,5(A, b) =§. O

To summarize, we come to the following technique to investigate solvability of the linear
tolerance problem, i.c., to the criterion for the tolerable solution set to be nonempty:

Solve the unconstrained maximization problem for the concave functional

}.

Let T=max, ., Tol(x; A, b) and let T be reached at a point 7. We have

e if 7> 0, then 7 €35(A, b) #, i.e., the linear tolerance problem is compatible, and if
T> 0, then 7 € int3,5(A, b) #§;

e if 7<0, then X 5(A, b)=, ie., the linear tolerance problem is incompatible.

n
mid bi - Z a[jxj

i=1

Tol(x; A, b) = min {rad b, -

I<ism
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It is worth noting that Lemmae 1-4 as well as the above solvability criterion would remain
valid if the functional Tol was defined by the expression

)

where {,, i =1, 2,..., m, are positive reals. Below are some examples in which such functionals
naturally come into existence and then are employed fruitfully.

Maximization of nonsmooth concave functions has been much studied during the last few
decades. A good many efficient numerical methods have been proposed to solve this problem
(see [7,31] et al) and this is reason to hope that the solvability criterion developed above is quite
practical.

J=1

min {{,(rad b, —imid b,— Y a,x,

lgigm

5. Correction of the linear tolerance problem

Imagine solving an actual practical problem. Usually, the effort does not terminate even after
we reach the conclusion that the problem has no solutions (unsolvable). A client is very likely to
be interested in an information about

® how unsolvable the problem is,

® how one must change the input data to make the problem solvable, and so on.

Alternately, if the original problem proves to be solvable, then, frequently, the region of
variations of input data within which the problem remains solvable is to be outlined. We are
able to give quite expanded answers to some of these questions.

If A and mid b are unchanged, increasing the radii of all the components of b by the same
value K is easily seen to lead to adding the constant K to the functional Tol (x). Therefore,

max Tol(x; A, b+ Ke) =K + max Tol(x; A, b),

xeR" xeR”

where e =([~1; 1],...,[—1; 1D7. If the linear tolerance problem is unsolvable and
max Tol(x; A, b)=T<0,
xeR"

we can make it solvable with the same matrix A through widening the right-hand side vector by
Ke, K> 0, and the points 7 € Arg max Tol(x; A, b) will certainly belong to the nonempty set
3y3(A, b + Ke). Conversely, if

max Tol(x; A, b)=T2>0,

reR”
that is, the linear tolerance problem is solvable, it will remain so even after we decrease the
radii of all right-hand side components by K, K < T.

Sometimes, such uniform widening of all the components of b may prove unacceptable in
practice. So, let us assume that a vector v ={(v,, v,,...,0,,), v; >0, is given such that the
increase of the width of b, is to be proportional to v,. Now, calculate
T = max Tol (x;A,b),

i
xeR"
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where

n
mid b, — ) a,x,

Tol,(x) = min {u‘l(rad b, —
i=1

. i
1<i<m

}. )

If, for instance, initially, the linear tolerance problem with the matrix A and the right-hand side
vector b had no solutions, then the problem with the same matrix A and the expanded vector
(b, + Kv[—1; 1D/, in the right-hand side becomes solvable for K > | T, |.

The most important particular case of the above construction is that of ensuring equal
relative (proportional to the absolute values) increases of the radii of the right-hand side
components, when v; = |b, | for nonzero b, i =1, 2,..., m. Denote

J

The magnitude of T, is the far more subtle quantitative characteristic of compatibility of the
linear tolerance problem than

2 = min {max X(aij)*X(b")}

I<ism\lgjgn

mid b, — ) a;x;

j=1

rad b, —

Toly(x) = min {Ib,l"‘
and let

o = max Tol,(x; A, b).
xeR”

introduced in Section 2. Judging by the absolute value of 7|,, one can precisely estimate the
degree of unsolvability in the case T, < 0 and the reserve of solvability (stability of the solvable
state) in the case T, 0. Naturally, all this is attained at the price of more laborious
computation.

We have demonstrated some capabilities to correct the linear tolerance problem by modifi-
cation of only the right-hand side vector b. In fact, the tolerance problem can also be corrected
through varying the elements of the matrix A as well, and the basis of the corresponding
technique is

Lemma 7. Let x be an interval and s be a symmetric interval such that rad x > rad s. Then x© s
is also an interval and |x ©'s| = x| —|s|.
Proof. Denote for brevity s :== |s| = rad s. Also, assume for definiteness that

Ix| =max{lx},|x1} = %],

i.e.,, |X| > |{x|. In particular, this means X > 0.
It turns out that under our assumption

IX—sl>|x+sl. (18)
Indeed, the statement of the Lemma implies
X—Xx

2

rad x = >S5,
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that is,
X—8§>=X+s.

If x +s > 0, then the inequality (18) is obtained from that by taking the absolute values of both
sides. Otherwise, if x +s <0, then x <0, |[x| = —x and we again have

X—s|=X—s>|x|—s=—x—s5=|x+s].
Finally, in view of (18)
Ix©s| =max{|i—s|,[3_(+s|}= IXx—s|=x—s=|x|—]s|

as required. For |x| = [x|, the proof is conducted in the similar way. O

Assume that we are given an incompatible linear tolerance problem with the interval matrix
A and the interval right-hand vector b. Accordingly the unconstrained maximum of its
identifying functional Tol (x; A, b), which we suppose to be attained at the point 7, is negative,
ie.,
max Tol(x; A, b) =Tol(7; A, b) =T <0.
xeR”
How can one diminish unsolvability measure of the linear tolerance problem through narrowing
the matrix A?
In doing so, we shall take the following natural assumptions:
(i) all the components of the right-hand side vector b are thick intervals, that is, rad b, > 0,
i=1,2,...,m,
(i) min, _, (X7 7, rad a;;} =4 > 0.
Let us choose an interval m X n-matrix E =(e,;;) with symmetric interval elements e;; =
[—e,; e;] so that

n
Yem=K, i=1,2,....m, (19)
j=1
where K is a positive constant < A and, of course,
rada;; >e; >0 (20)

for all i, ij. Then the linear tolerance problem with that same right-hand side vector b and the
interval matrix A © E is ““less unsolvable” than the initial one.
Indeed, evaluating the identifying functional of the new tolerance problem, we have

n n
min {rad b,—imid b, — Zaijxje Ze,-jx}-}
Le,x,

l<is<m
i=1

n

Tol(x; A©E, b)= min {rad b,—midb,— ) (a;0e;)x;

I<i<m

i=1

I

j=1 i=1

_+_

1i

| <ig<m

min {rad b,—|midb,— } a,x;

|

/=1
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by Lemma 7. Hence, since (19) is equivalent to

Z €, =K,
j=1
we get
max Tol(x; A©E, b) > Tol(r; A E, b)
xeR”"
n n
= min {rad b, —|mid b, — 3 a,7;|+| ) e, )
I<is<m P =
ji=1 ji=1
= min {rad b, —|mid b, - }_ a,x; +K}

K +Tol(7; A, b)
=K + max Tol(x; A, b)
xeR”

=K+T.

If K> |T | then the linear tolerance problem with the matrix A © E and the right-hand side b
becomes compatible, and moreover, we may assert for sure that 7 € 3,5(A © E, b).

The crucial point of the matrix variation correction procedure is the solution of the
underdetermined system of equations (19)—(20). As one can see, sometimes the correction
obtained through our prescription may turn out insufficient to make the tolerance problem
certainly solvable (if A < |T|), but one should perceive that rather as a drawback of our
technique or as a consequence of the estimate’s roughness. In principle, every linear tolerance
problem with a nonsingular interval matrix A can be made compatible by appropriate narrow-
ing the matrix, since for nonsingular thin A the problem always has a solution. To turn the
initial problem into a compatible one for large |T |, we thereby recommend to apply the
proposed expedient repeatedly, combined with recalculations of the identifying functional’s
maximum.

In the above consideration, we decreased the weighted (with the coefficients ’Tj) width of
each row of the interval matrix A by the same value K. Similar to the preceding case, one may
need to decrease those widths to a variable degree. The way out of the situation is standard: we
introduce the positive vector v = (v,, v,,...,0,,) such that the decrease measure (19) of the i-th
row’s weighted width should be proportional to v; and then operate with the modified
functional Tol (x; A, b) which is defined by the expression (17).

6. Formula for the size of an interval solution

Once the compatibility of the linear tolerance problems is established and a point of the
tolerable solution set has been found, we may turn to the actual construction of the interval
solution to the problem. To do so, we follow the so-called “center” approach adopted by
Khlebalin [5], Neumaier [11], Shaidurov [2], Shaidurov and Shary [23] and others, in which the
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point of the tolerable solution set found earlier is taken to be the center of the interval solution
under construction. Taking the minimum on a hyperbar plays a leading part in the formula
derived below, so that the further solution of the linear tolerance problem amounts to a
finite-dimensional constrained optimization problem on a hyperbar. In what follows, we do not
discuss optimal choice of the interval solution’s center since that question is closely connected
with the practical needs of those who solve specific problems.

In applications, the statement of the linear tolerance problem is often more rigid than (6).
Like Shaidurov in [2,23], in addition to (6), we take the ratio of the tolerances of the separate
components to be determined by a real vector w =(w,, w,,...,w,), w; >0, i.c., we introduce
weighting coefficients for the widths of the tolerances so that

rad U,/rad U, =w,/w,.

Through scaling by the diagonal matrix diag{w,, w,,...,w,} all such cases are easily reduced to
a standard one, when w=(1,1,...,1) and we are to inscribe a hypercube in the properly
modified set y5(A, b).

Indeed, we introduce matrices D = diag{w,, w,,...,w,} and A=AD. Let the interval vector

fJ, rad U = const, be a solution to the linear tolerance problem with the matrix A and the
right- hand side vector b. Then U = DU is a solution to the original problem, since

{(Ax|lxeU}={ADD 'xixeU}={AZ|icU}cCh,

and moreover rad U, /rad U, = w,/w; as required. That is why from now on the linear tolerance
problem will be referred to as a problem of finding an interval vector U with components of
equal width and such that {Ax|x € U} Ch.

The basis of all our further account is the following
Theorem 2. If t € 3,5(A, b) then for
rad b; — |mid b, — L?_,a,;¢, I}

riilay;l

r= min min
1<i<m A€vertA

(21)

the interval vector U =(t +re) is also entirely contained in 3y5(A, b).
Proof. First assume that in the linear tolerance problem the matrix A is thin, i.e., A=A and
vert A =A. We represent each x € U in the form x =¢ +y, where max, _; _,|y;| <r, and

) rad b, — mid b, — X7_,a,;¢; |
= min ,

;o=
! Yiala,l

(22)

lgism
so that the following holds for i =1, 2,..., m

n
Zai}yj

J=1

|(AY),'] =

< Y lagllyl <ry X la,l <radb, —‘mldb - Za 1

j=1 j=1 i=1

Therefore, since Ax = At + Ay, we obtain
(A1), —rad b, + [mid b, — (At),| <(Ax), <(At), +rad b, — |mid b, — (At),]
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or, equivalently,
b, — (mid b, — (At),) + Imid b, — (At); |
< (x), (23)
<b, — (mid b, — (At);) — |mid b, — (At),].
By virtue of the fact that
—z+1]z|>0 and —-z-1]z|<0

for any real z, the inequality (23) implies
b, < (Ax); <b,,
that is, 4Ax € b as was expected.

Now, let the matrix A of the problem be a thick interval matrix, and ¢ € 3, 5(A, b) = . We
consider the totality of all linear tolerance problems for systems Ax =b with 4 € A. According
to the representation (11),

ZVEI(A’ b) = N 2y3(A,b),

AEvert A

and if for each A4 € vert A the corresponding interval solution vector is U,, U, C¥,5(A4, b),
then the interval vector U such that

U= N U,
A€vert A

is also included in X, 5(A, b). In particular, when all U, have a common center and their radii
are defined by formula (22), we have

U=t+re,
where
. ) ) rad b, — [mid b, — X7_,a,;¢; |
r= mmn r,= min min 7 .
Acvert A Igi<m Acvert A Zj=1laij|

The Theorem is completely proved. O

Despite outward simplicity of that proof, the statement of Theorem 6 is the most subtle of
that kind of results. Previously, Shaidurov has established in [2,23] that if ¢ € 3,5(A, b) then for

rad b;|mid b, — £}_a,;t,| (24)
i la;l

the interval vector (¢ +re) is included in 3y 3(A, b). As is seen, his formula coincides with ours
except for the internal minimum is taken over all matrices A € A and not over. the finite set of
extreme matrices. That, nevertheless, in no way affects the final results which are completely
identical for both formulas. Indeed, one can easily show quasiconcavity of the functions in the
braces of (24) (that was done by Shary in [25,28]), and a quasiconcave function is known to
reach its minimum in extreme points of its convex domain of definition. Thus, for each

r= min min
l<i<sm A€A
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i=1,2,...,m, the expressions in braces of (24) attain their minimal values on A4 € A in vertices
of the interval vectors (a,;, a,,...,a;,) and the formula (21) follows. In this work, we achieve
the same objective by the more elementary means.

The simplest way to estimate (24) and (21) is to take the left endpoint of the natural interval
extension over A [9] for the expressions in the braces of (24), that is, to replace the variables by
the corresponding intervals of their domains and to replace the arithmetic operations by the
corresponding interval arithmetic operations. The following algorithm by Shaidurov [2,23] does
exactly so.

Algorithm 1.
For a given ¢ € 3,5(A, b), calculate the intervals

rad b, — [mid b, — L7 _,a; ¢,
o b xyoagh | (25)
7 ia,‘,'

1=1

i=1,2,...,m, and then put p == min, _, _,.r,. The interval vector (¢ + pe) is a solution to the
linear tolerance problem.

Since both numerator and denominator of the minimized expression contain only one
occurrence of cach variable in the first power, Shaidurov’s algorithm is actually equivalent to
estimation of a fraction as the quotient of the numerator’s minimum and denominator’s
maximum. The relative accuracy of such estimation is proved in [2,23] to be higher, the more
narrow the matrix A.

The other important result on construction of an interval solution to the linear tolerance
problem is due to Neumaier [10], who has proposed the following simple method.

Algorithm 2.
For a given ¢ € 3y 5(A, b), calculate the [argest nonnegative n such that
n-AeCboAr. (26)

The interval vector (¢ + me) is a solution to the linear tolerance problem.

The latter is evident from the fact that
Ax CA(t+me)CAr+A(ne) CAr+bOAr=b
for each x €1t + ne.
Lemma 8. The results obtained by Neumaier’s algorithm are completely identical to those given by
Shaidurouv’s algorithm.
Proof. In fact, condition (26) means

n-(Ae),>(beAr), and n-(Ae),<(bOAL),, i=1,2,....,m,



74 S.P. Shary / Mathematics and Computers in Simulation 39 (1995) 53-85

where Ae is a symmetrical interval vector in which
—(Ae), = (Ae), = |(Ae);l, i=1,2,....,m.
Moreover, for ¢t € 3,5(A, b)
(bo A1), <0< (FEAL,
and thus the following chain of transformations is valid for each i:
(be At), (bSAl),
(Ae), " (Ae),

min( —(mid b, —rad b,) + (A¢),, (mid b, +rad b,) — (K?)l}

7 < min

|(Ae), |
min{rad b, — (mid b, — (A¢),), rad b, — ((At), — mid b,—)}
|(Ae); |
rad b, — max{mid b, — (A1), (At), — mid b,-}
|(Ae), |
rad b, — {mid b, — (A¢),|

|(Ae), |

For i=1,2,...,m, the last expression coincides with the lower bounds of the respective
interval (25), and so taking the minimum on all { leads to the equality n =p¢. 0O

Both these algorithms, by Shaidurov and by Neumaier, are simple and easy to implement: if
a point ¢ € 3,5(A, b) has been already found, then the construction of an interval solution
requires as low as O(mn) arithmetical operations. This is achieved, however, at the price of
considerable coarsening of the final result, especially for wide interval A.

In the expression (21), taking the minimum on { € {1, 2,...,m} involves no difficulties, so the
central problem is computation of the internal min .., O its estimate from below. As a
matter of fact, the rest of the paper will be devoted to solving this problem.

For the sake of convenience, we denote

(a,,a,,...,a;,)=(d,,d,,...,d,)=D

regardless of the index i, while the objective function will be the expression in braces (21) and
(24), that is,

R~ IM~-X_x1]
i tbx,l

P(x)=

Thus, the problem to be solved is
Find min{®(x)|x € vert D}.
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7. Exact exhaustive algorithms to construct an interval solution

When algoritmically implementing the exhaustion of vert D, one usually indexes the vertices
with the n-digit binary numbers from 00 - -- 0 to 11 - - - 1, the k-th digit being equal to O if the
k-th coordinate of the respective vertex coincides with the left endpoint of the interval d,, and
1 if it coincides with the right one. Then item-by-item examination of the vertices of
(d,, d,,...,d,) can be organized, for instance, as a successive passage, starting from the vertex
with the number 0 and further on, each time to the vertex that has the next binary number. If
the steps of the exhaustion are also numbered, then the process we have considered is formally
described in the following form.

Algorithm 3.
We examine the vertex with the binary number v at the v-th step.

We shall show how to considerably decrease the complexity of this algorithm (which is
proportional to 2”). At each step of the exhaustion, we have to calculate the sums
T(d)=M — Zdjz/ and O(d)= ) ld,|
=] j= ]

Je= Jj

for the examined vertex (d,, d,,...,d,), so that @(d) = (R — [ T(d)|) /©(d). If the item-by-item
examination of the vertices is carried out in a special manner, passing at each step to an
adjacent vertex (that has only one different component), then only one summand will change in
each of the expressions 7" and @. So, to compute their new values, one does not need to sum all
n terms anew. It is much more saving to recalculate 7" and @ through the following recurrent
formulae: if the new examined vertex is different from the preceding one in its j-th coordinate
only - it is equal to df instead of 4 - then

the new value of 7" = the old value of T + (a’j’ — d;) -t

j;
the new value of ® = the old value of @ + | di|—1d;l.

Algorithm 3 does not possess the desired property of “passing to an adjacent vertex”. For
example, the subsequent binary numbers 011 and 100 differ in three digits and not in one as it
should be for the neighboring vertices. So, to put the above idea to practice, one needs a
special algorithm, which is actually a renumeration of the rectangle’s vertices. We shall describe
it recurrently, indexing the algorithm’s steps by n-digit binary numbers as before.

Algorithm 4.

We examine the vertex with the number 00 - - - 00 at the first step of the algorithm (that has the
number k = 0). Let the number of the vertex u, be already determined. We denote the most
significant digit’s index in which the binary numbers k and k& + 1 differ by j. As the number
M . of the vertex examined at the (k + 1)-th step, we put the binary number which is obtained
from u, through replacing its j-th digit by the complimentary one (that is, 0 by 1 and 1 by 0).

Lemma 9. Algorithm 4 passes just once through cach vertex of the rectangle D, and any two
vertices with the numbers , and wp, , , are adjacent.
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Proof. The property of Algorithm 4 to perform the complete exhaustion of the vertices also
remains valid if any other vertex is taken as the initial one and not only 00 - - - 00. We shall
prove this more general fact by the induction on the dimension »n of the rectangle.

Indeed, if n = 1 the statement is evident for both binary sequences {0, 1} and {1, 0}. Suppose
it is already substantiated for the dimension (n —1). We consider the renumeration of the
vertices produced by Algorithm 4 for the dimension n:

Foo. 005 Moo 015 K11 11 (27)

It is significant that in this sequence the n-th digit changes only once, namely, when the step
number passes from 01...11 to 10...00. So, no one of the numbers from the first half of the
sequence (27) may be equal to a number from its second half because of the different n-th
digits. Dropping the n-th digit from the numbers in (27), we get the two sequences that
renumerate the vertices of the (n — 1)-dimensional rectangle:

I“L,D--»[)O’ M,D---Dlw"’#llv-- 11>
Ko 00> K0 o015+ M1 g1
They are produced by Algorithm IV, but with the different initial numbers wy, ..., and wfy, ..,
while ', ..o =}, ;. By the induction assumption, each such sequence contains only different
(n — 1)-digit binary numbers from 00 ---0 to 11 --- 1. Therefore, all the numbers from the
sequence (27) are different from each other too. They are 2" altogether and so each one of
them occurs only once in (27).

The sequence (27) is thus an enumeration of vertices of the n-dimensional rectangle D.
Besides, it is straightforwardly seen from the very description of Algorithm 4 that the vertices
with the numbers v and v + 1 are adjacent. The Lemma is completely proved. 0O

In Algorithm 4, the reduction in complexity is large, the larger dimension of the problem, but
the exponentiality is still not overcome. For this reason the practical significance of the
exhaustive algorithms described in this section are limited only to the problems of moderate
dimension.

8. Algorithms based on the “branch-and-bound” strategy

As is seen, we need a more advanced algorithm having precision better than that of
Algorithms 1-2, but with complexity less than that of the exhaustive Algorithms 3-4 rested on
Theorem 6. The algorithms presented below, with the well known “branch and bound method”
as a basis, occupies an intermediate position between the simplest Algorithms 1-2 by
Shaidurov—Neumaier and the exhaustive algorithms of the previous section. Its running time is
exponential with respect to the dimension only in the worst case (as in all methods of this kind),
but, due to the flexible computational scheme, it can be successfully applied to the problems of
any size, though the precision to which the value (21) is found will be limited by the computer
resources available.

It is common knowledge that a natural interval extension of the rational function
F(x,, x,,...,x,) in which each variable occurs only once and to the first power only gives the
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exact range of values provided that no division by a zero-containing interval takes place
[1-3,9,11,17]. Thus, for D€ IR", D =(d,, d,,...,d,) =[d,; d,1X[d,; d,1 X --- X[d,; d,], the
left point of the natural interval extension f@ is the global minimum of F over D, and its
right endpoint F(D) is the global maximum of F over D. The point is that we can find not only
the values min {F(x)|x € D} and max{F(x)| x € D}, but also the arguments of F that provide
them, that is, the sets Arg min{F(x)|x € D} and Arg max{F(x)|x € D}. Henceforth we shall
designate them as Arg ﬂ_]g) and Arg F(D) for brevity.

Indeed, if each variable has the only occurrence in the first power in the rational expression
F, then the dependence of F upon x,, for example, looks as follows:

1
ax, +B’

either F(x;)=ax,+B or F(x,)=

where a, B are constants independent of x,. In any event, F(x;) is a monotonic function of x;,
(as for the second opportunity, this is true for 0 €a-[d; d,]+B), and so, for fixed
Xipsenos Xi_1> Xipps+--» X,, the values min F(x,) and max F(x,) are attained at the endpoints of
[d;; d;lor, if a =0, at any point of [d; d, 1 Smce such a reasoning holds for any variable x; no
matter what the values of the other vanables are, then the sets Arg F(D) and Arg F (D) are
either vertices of the rectangle D or its entire faces. How can one find them?

When executing any one of the four arithmetical operations with intervals, that is, addition,
subtraction, multiplication or division, we can find out, simultaneously with the resulting
interval, which endpoints of the initial intervals give, adding (subtracting, multiplicating or
dividing), one or the other endpoint of the interval result. In subtracting, for instance, the
maximum of the difference, i.e., the right endpoint of the resulting interval, is reached when
the minuend is equal to the right endpoint and the subtrahend is equal to the left endpoint of
the respective intervals. _

To compute the product [d;; d J-1d,; d,], one has to perform four multiplications, that is, to
find {d,d,, d \d,, did,, d,d,} and to select minimum and maximum from these numbers. Let,
for example, they be d, d and d d We have thus found that

) _ d
Argmin<x1'x2|xle[‘—11;d1]’x2€[42;d2]>: ;il ,

2

_ - d,

Argmax{xl'lex1€[‘_11§d1]axze[‘_jz;dznz d

2

If the minimal values over the set {d,d,, d,d,, d,d,, d,d,) were two products simultaneously,
say, d\d, and d,d,, then we would conclude the following:

d,

Arg min{x, Xyl x, € [41; J]}, X & [Q’z§ le} = [d; gz]

that is, the set Arg minx, -x, consists of the whole face of the rectangle [d; d,] X [d,; d,] of
“input data” in this case.
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Further, the value of any rational expression on an interval vector may be computed by a
finite number of interval additions, subtractions, multiplications and divisions. If each variable
appears only once in F(x) and only to the first power, then, recurrently tracing evolution of the
intervals’ endpoints, we can reveal that collection of endpoints of the initial intervals
[dy; d11,{dy; d,),...,[d,; d,], in which F(D) and F(D) are attained.

1t is fairly simple to realize that all stated above holds true when the expression F(x) that
has single occurrence of each variable is constructed not only of the four arithmetic operations,
but contains occurrences A,, A,,... of any other functions as well. We only need, when taking
the “natural interval extension” of F, to change Ay, A,, ... for occurrences of the respective
optimal interval extensions. For example, if, in the expressions

and  O(x)= ) [xl,

j=1

M~ Zx}-tj

i=1

¥(x)=R-

one changes all arithmetic operations by their interval counterparts and instead of the absolute
value function its optimal interval extension

abs([d; d]) = [([&; a]);1[d; d]|]

is taken, then the substitution of the variables x,, x,,..., x, for the intervals of their possible
variations [d;; d,],[d,; d,],...,[d,; d,] gives the exact ranges of values for ¥(x) and @(x)
over any rectangle D =[d,; d,1 X [d,; d,]x --- X[d,; d,] € IR".

Below, we shall be interested mainly in the sets Arg ¥ (D) and Arg @(D) for an interval
vector D € IR". The problem of their computation is by no means harder than that for purely
rational expressions, since we know how to find Arg min and Arg max of the absolute value
function which occur in ¥(x) and ©(x) aside from the basic arithmetical operations. It can be
solved by that same “tracing endpoints” technique. For example, the algorithm for computing
©(D) and Arg @(D) written in informal ALGOL looks as follows.

max = (;
for j =1 step 1 until n do
if d;| < ld;| then begin max := max+c?j; (Arg © D)),:==d; end
else begin max == max +d;; (Arg (D))

(D):= max;

Of course, this algorithm is simplified for the sake of obviousness and does not take into
account the fact that in reality the set Arg @(D) may have quite nontrivial structure. In
particular, it may be disconnected if d;= —d;# 0 for some j€{1, 2,...,n}. The set Arg ¥ (D)
is also disconnected if

n _ n _
M- Y ld;d],=% d;: )]t —m.
j=1 j=1
In any case, separate connected components of the sets Arg ©(D) and Arg ¥(D) are
represented as direct products ¥, X %, X -+ X Z,, where %, is either a vertex of the rectangle
D or its entire edge.
Let us agree to take from now on as Arg ¥(D) (or Arg @(D)) a connected component of the

set of points furnishing with ¥ (D) (@(D) respectively) and it does not matter which one
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exactly. Also, it is worth noting that for sets &, # c R" with the direct product structure, that
is, when =% X%, X - X%, ZCR, and Jf KX Hy X ... XH,, #; CR, the condition
(£N#=%) is equivalent to (% ﬂ/?’ #) for at least one of ]E{l 2 ,n}. We shall
substantially avail ourselves of thls property later.

After such preliminary preparations, we turn to the actual computation of

in{®(x)] D ol T D
€ vert = € vert
min{®(x)| x € vert D} = min o0x) x € ver
R—IM~-Yr_ xit,
= min i . j=17j%) ) (28)
x,€(d;, d) Zh ol

where R, M, t,, t,,...,t, are some known constants. As we have already noted, the simplest
way to estimate (28) from below is to construct the natural interval extension (D) for the
minimized function ®(x) over entire D. Its left endpoint @(D) that coincides with

¥(D) B min{¥(x)| x € D}
O(D) max{O(x)|x < D)

gives the required lower estimate for min{®(x) |x € vert D}.

We find the sets Arg ¥ (D) and Arg @(D). One may come across the following mutually
exclusive situations: o

(i) Arg ¥(D) N Arg O(D)#@ or

(i) Arg ¥(D) N Arg O (D) ) .
In the first case, any point of the intersection Arg W!D) N Arg @(D) must contain a point of
vert D that provides the fraction ¥(x)/@(x) with the global minimum over D, and so the
minimization problem for (28) is successfully solved. If Arg ¥(D) N Arg @(D)=4¢, then

min{¥(x)| x € D} _ {W(x) GD}

~ max{@(x)|x €D} > min

O(x)
and there_e_xis_ts an index k € {1, 2,..., n} such that the k-th components of the sets Arg Z(_D_)
and Arg ®(D) have no common values:

(Arg ¥(D)), N (Arg (D)), =
Henceforth we shall refer to such components of the rectangle D as incidental.

If k is the index of an incidental component (so, in particular, d, # Jk), put

Sl @)% xdox e x [y d)

=[41;J]]><~-~><Jk>< x|d, d,].

We will speak that the rectangles D’ and D” are descendants of D and call the very procedure
of their generating the subdivision of the initial rectangle D. Inclusion monotonicity of the
interval arithmetic [1,2,3,9,11,17] implies

(D) < (D) and (D)< d(D"),
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and therefore

@(D) < min{®(D'), $(D")}.
In fact, this inequality is strict under our assumption, since the sets Arg ¥ (D) and Arg & (D)

get into different rectangles-descendants as the result of subdivision of D (if they may be
represented as direct products). For example, if we set for the sake of definiteness that

Arg#(D)cD’" and Arg®(D)cD”

then

¥(D)=¥([D') and 6(D)=06(D")
while

¥(D")>¥(D) and O(D) <O(D).
Consequently,

v({D) w(D) v(D) ¥(D)

om) oD ™ B oD’
that is, in reality
@ (D) < min{®(D’), #(D")}.
Let
min{®(x)| x € vert D} = @(IT)

for some vertex II € vert D, II € R". If II' and II” are points obtained from IT by substituting
its k-th component for d, and d, respectively, that is, for the left and right endpoints of the
interval d,, then again making use of the inclusion monotonicity of the interval arithmetic, we
find out

&(D') <P(IT') and P(D") <P(II"),

so that

min{@(D), @(D")} < min{®(11'), P(I1")} = P(IT).

Because of this,

O(x)

The presented reasoning is thus a practical prescription for sharpening the lower estimate of
(28). The subdivision procedure may be repeated with the rectangles-descendants D’ and D" to
get refined approximation of min{@®(x)| x € D} as the minimum of all obtained estimates, then
to subdivide again the descendants of D’ and D” and to further sharpen the estimate for (28)
and so on. It advisable to arrange this process of successive refinement utilizing the general
scheme of the “branch-and-bound” method (see, e.g., [15]): bisection of a rectangle D is
nothing but a decomposition of the problem into subproblems, that is, producing “branches”,

o0 <o), 601 <] 12 |
@ (D) < min{®(D’), (D)} < min x Evert D).
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while calculations of @(P), P C D, are simply estimations of the objective function’s “bounds”
over these “branches”.

We shall keep the set of all rectangles P resulted in subdividing (that is, actually, of all active
subproblems of the original problem) together with all their related estimates in the form of an
ordered list L consisting of sextuples

(P, 2(P), ¥(P), O(P), Arg ¥(P), Arg O(P)),

P € IR", P € D. As usual, the first record of the list L, that has the smallest estimate @(P) to
the beginning of the current step of the algorithm, is referred to as the leading record. At the
start of the successive refinement algorithm,

L ={(D, (D), ¥(D), B(D), Arg ¥(D), Arg O(D))}
and then the list is modified at each step according to the following instructions:

Algorithm §
1. If

Arg ¥(Q) N Arg O(Q) + ¢

in the leading rectangle Q, then stop computation.
2. Choose an incidental component Q, in the leading rectangle. Bisect Q to descendants Q'
and Q" so that Q;, and Q7, are the opposite endpoints of the interval Q,, and

Arg ¥(Q) Q' and Arg ®(Q) cQ".
3. Delete in the list L the late leading record

(P, (P), ¥(P), O(P), Arg ¥(P), Arg O(P)).
4. Calculate @(Q’) and Arg @(Q’'), ¥(Q") and Arg ¥(Q").
Put 2(Q')=¥(Q)/©(Q’) and @(if"): ¥(Q")/0(Q).
6. Enter the records (Q’, P(Q), ¥(Q'), 6(Q'), Arg ¥(Q'), Arg @(Q')) and (Q",
P(Q"), ¥(Q"), 6(Q"), Arg ¥(Q"), Arg @(Q”)) into the list L in the proper order (of

increasing the second member).

w

As the result of this algorithm’s fulfillment, a nondecreasing sequence of estimates ¢(Q) for
the leading rectangles Q is obtained, that better and better approximates the sought-for
min{@(x)| x € vert D} from below. It is finite: if 7 components (T < n) have nonzero width in
the initial rectangle D, then, as is easily seen, the leading rectangle will become a singleton I1
after at most 27 steps of Algorithm 5 and ®(I1) = min{®(x)| x € vert D}.

The idea of such algorithms for global optimization is undeniably not new, the similar
methods were studied in [3,9,17] and many other works. However, when designing Algorithm 5
we tried to make the best use of the problem’s structure, namely of the fact that the sought-for
min{®(x) | x € D} is reached in a vertex of the rectangle D. In particular, we subdivide the
leading rectangle to descendants which are not even its halves, but mere two its opposite faces
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with the smaller dimension. The other original feature of Algorithm 5 is that the subdivision
(bisection) of the leading rectangles is executed not in all components, but only in incidental,
that is, in such ones whose shortening solely refine the estimates of the objective function. In
other words, we do not slip to disordered partitioning of the leading rectangles, but subdivide
them so as to ensure a guaranteed sharpening of the estimate for (28). Finally, Algorithm 5
more completely utilizes the information about its preceding work, at the price of some
extension of the records kept in the list L. Thanks to the last expedient, we calculate the
objective function’s estimate really only once for two rectangles-descendants.

Let us proceed to elaborate a more practical computational procedure on the basis of
Algorithm 5. In principle, we may improve the simplest algorithm along the following standard
list of modifications (see, e.g., [3,17] and others):

® tracing values of the objective function at some points of boxes along with evaluating over
entire boxes enables one to control the precision of the current approximation to the sought-for
optimum and to delete useless pairs (that never become leading) from the list L,

@ after revealing monotonicity of the objective function in some variables, one reduces the
dimension of boxes from the list L,

® based upon local characteristics of the objective function, one employs minimization
procedures in appropriate boxes which are more efficient than bisection,

® one construct a higher quality (more accurate) inclusion function for the objective function
and so on.

We shall apply only the first (“‘midpoint test”’) and the second (“monotonicity test”) of all
the presented advances the more so, that they turn out to be aptly mutually complementary.
Besides, to make improvement of the estimate of the sought for minimum more weighted, it is
advisable to make use of the well-known heuristic recommendation: the leading rectangle is
bisected only upon the longest of the incidental components at each step of the algorithm.

The classical “midpoint test”” scheme as applied to Algorithm V is implemented as follows.
Each time one calculates @(mid P) a long with @(P) and a real parameter ¢ is connected with
the algorithm which is equal to the smallest one among the values ®(mid P) for all rectangles P
ever been generated by the algorithm up to the current step. Then

min{®(x)|x €D} < ¢,
and all records (P, ®(P), ¥ (P), O(P), Arg ¥(P), Arg O(P)) that satisfy
¢ <P(P) (29)

may be removed from the list L. without any effect on the algorithm’s performance. However,
substantial difficulties obstruct the realization of this idea. The thing is that the leading
rectangle’s diameters does not necessarily tend to zero in Algorithm 5, since the rectangles are
partitioned only in incidental components. Such a peculiarity of Algorithm 5 is undoubtedly
positive inasmuch as it is this property that ensures economy and purposefulness of computa-
tion. On the other hand, it causes that the difference (@(mid P) — ﬂﬂ) may remain greater
than some positive number even for the leading rectangles Q. The numerical experiments show
that then, as a rule, the inequality (29) never holds and we may recognize no one of the records
of L as useless. Thus, there is a necessity to supplement Algorithm 5, apart from the “midpoint
test”, with a procedure that reduces the component’s size whenever it is incidental or not. In
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the point at issue, this can be a “contraction” of the rectangle on the components, in which the
monotonicity of the objective function is revealed.

The objective function @(x) is nonsmooth, but continuous and almost everywhere differen-
tiable. So we examine its monotonicity in separate variables over rectangles P C IR” by the
standard way, that is, through evaluating the sign of interval extensions of the derivatives
d®(x)/dx; over P. Since @(x) = ¥(x)/O(x), we have

V' (x)0(x) — ¥(x)0'(x)

b
)= (O(x))’

Furthermore,
oo o
ax; 0x;

f

n a n
_sgn(M th) a—(M— ijzj)
J=1 J=

= tj-sgn(M— ) xjtl.),

i=1

O x) 3 "
T ; =8 X,
ax aXJ ( Z I xll) gn J

J J=1

and so

V' (x)0(x) - ¥(x)0'(x)

=t,-~sgn(M— Y Xt

J=1

-( ii ixjk)-— (AJ—— ji.x,g) “sgn Xx;. (30)

j=1 i1
Since the optimal interval extension of the sign function is
1, if0<d,
[0;1], ifd=0<d,
sen([d; d]) = { [~ 1:1], ifd<0<d,
[-1;0], ifd<0=d,
-1, if d <0,

one can easily find the natural interval extension for the expression (30), whose sign coincides
with that of the natural interval extension of the derivatives a(D(x)/axj, j=12...,n

Finally, for practical calculations of the size of interval solutions to the linear tolerance
problem, we recommend the following
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Algorithm 6. Put ¢ := ®(mid D) and

N e

S

10.
11.

L ={(D, &(D), ¥(D), 8(D), Arg ¥(D), Arg O(D))}

. If in the leading rectangle Q

Arg ¥(Q) N Arg ©(Q) #
or if (¢ — P(Q)) <e, then stop computation.

. Choose the incidental component Q, of the largest length in the leading rectangle and

subdivide Q to the descendants Q' and Q” so that Q) and Q” are the opposite endpoints
of the interval Q, and

Arg ¥(Q)<Q’ and Arg&(Q)cqQ”

. Calculate the natural interval extension of the expression (30) over Q' for all j €

{1, 2,..., n} such that rad Q) # 0. If it is a nonnegative interval, then substit_ute Qj for its
left endpoint Q’;, and if it is a nonpositive one, then for its right endpoint Q.

We keep the former designation Q' for the rectangle resulted from this procedure.

Do with the rectangle Q" that same as in the preceding item.

Calculate ©(Q’) and Arg ©(Q’), ¥(Q") and Arg v(Q").

Put #(Q"):= ¥(Q)/6(Q’) and (Q"):= ¥(Q")/ &(Q).

If $(Q')< ¢, then enter the record (Q’, P(Q"), ¥(Q), ©®(Q'), Arg ¥(Q), Arg @(Q’))
into the list L in the proper order (of increasing the second member).

If (Q")< ¢, then enter the record (Q", ®(Q"), ¥(Q"), ®(Q), Arg ¥(Q"), Arg &(Q))
into the list L in the proper order.

Delete the late leading record (Q, ¢(Q), ¥(Q), @(Q), Arg ¥(Q), Arg ©(Q)) from the
list L.

Calculate @ = min{®(mid Q’), #(mid Q")}.

If ¢ >w, then put ¢=w and clean the list L, ie., delete from it all records

(P, 2(P) , ¥(P), O(P), Arg ¥(P), Arg B(P)) such that §(P)> ¢.

In the second instruction, ¢ is a prescribed absolute accuracy of the result. For large
dimensions, the practical work with this algorithm shows, however, that more often its stop is
due to exhaustion of the computer resources (primarily, of the time). In such cases, we still
obtain the answer to the problem: it will be the last computed leading estimate P(Q).
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