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Abstract

The work is devoted to application of global optimization in data fitting problem under inter-

val uncertainty. Parameters of the linear function that best fits intervally defined data are taken

as the maximum point for a special (“recognizing”) functional which is shown to characterize

consistency between the data and parameters. The new data fitting technique is therefore called

“maximum consistency method”. We investigate properties of the recognizing functional and

present interpretation of the parameter estimates produced by the maximum consistency method.
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1 Introduction

The subject matter of this paper is application of the global optimization methods. We consider the

problem of data fitting: given empirical data, it is required to construct a functional relationship, of a

fixed form, between “input” and “output” quantities that best fits the data in a prescribed sense.

More precisely, let us suppose that the quantity b is a linear function of a1, a2, . . . , an, i. e. such

that

b = a1x1 +a2x2 + . . .+anxn (1)

with some coefficients xi, i = 1,2, . . . ,n. They are not known, and we have to determine them from

given sets of values of both the function and its arguments. There are m such sets that we denote as

a11, a12, . . . , a1n, b1,

a21, a22, . . . , a2n, b2,
...

...
. . .

...
...

am1, am1, . . . , amn, bm,

(2)
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where the first of the lower indices shows the number of the data set, or, in other words, the “ob-

servation number”. We have to determine the values of xi, i = 1,2, . . . ,n, for which the function (1)

approximates the data (2) with “the best accuracy”.

Substituting the values from (2) to the equality (1), we arrive at the system of equations



















a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(3)

that the sought-for coefficients xi, i = 1,2, . . . ,n, should comply with. The system (3) can be written

briefly as

Ax = b,

where A = (ai j) is an m×n-matrix and b = (bi) is an m-vector made up of the values (2).

A solution to the system of linear algebraic equations (3), either common or in a generalized sense,

is usually taken as an estimate of the parameters x0, x1, . . . , xn. But the practical application of the

above scheme inevitably encounters a number of difficulties that crucially complicates both the initial

problem statement and its solution.

First of all, the number of observations almost always is not the same as the number of unknown

parameters xi that we have to determine. Very often, they try to get as much observations as possible,

since every one of them provides us with information on the function (1). This is why the system of

equations (3) is usually overdetermined. However, there exist situations when the number of obser-

vations is less than the number of unknown parameters, so that the system (3) is underdetermined.

But the main feature of the problem under study is that the measuments data (2) are always im-

precise, and the system of equations (3) should be solved for inexact ai j and bi. Further analysis and

our modus operandi in the solution of the data fitting problem depend upon the way that we describe

the data imprecision (uncertainty). If we adhere to the model of errors based on the classical proba-

bility theory, this results in the traditional regression analysis (see e. g. [3, 14]). The main data fitting

technique is then the least squares method and its modifications. In what follows, we are going to

adopt only the terminology of the regression analysis, since it provides the most elaborated system of

concepts and notions that are necessary for data fitting.

In the present paper, we consider interval model of the measurement errors when uncertainty and

imprecision in the data are described by intervals of their possible values, i. e. we have at our disposal

only lower and upper bounds for possible values of the measured quantities. In other words, it is

supposed that the memeberships of ai j and bi in some intervals are known:

ai j ∈ ai j and bi ∈ bi, (4)

where boldface letters denote intervals according to the informal notation standard [7].

The pioneering work on data processing under interval uncertainty was published in 1962 [6],

authored by Leonid Kantorovich, inventor of linear programming. It seems like he anticipated a

long-standing and mature necessity in this kind of technique, since analogous approaches had been

repeatedly reinvented since the mid-60th. The first Western paper on data processing under bounded

(interval) uncertainty was written by Schweppe [16], and a detailed survey of the modern state of this

field can be found in the handbook [10].
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2 Problem statement

What is a “solution” to the data fitting problem under interval uncertainty (4)? The following natural

definition is generally accepted: The set of parameters x1, x2, . . . , xn of the linear function (1) is said

to be consistent with the interval experimental data (ai1,ai2, . . . ,ain,bi), i = 1,2, . . . ,m, if, for every

observation i, the measured intervals contain such representatives ai1 ∈ ai1, ai2 ∈ ai2, . . . , ain ∈ ain

and bi ∈ bi that

ai1x1 +ai2x2 + . . .+ainxn = bi.

The above definition is a straightforward generalization of the solution to data fitting problem for

usual non-interval case, and Fig. 1 shows its main idea visually. The regression line that corresponds

to the set of parameters intersects all the uncertainty boxes in the space R
n+1 where the data (2) lie.

a

b

Figure 1: An illustration of consistency between data and parameters of a linear function.

Similar to the usual non-interval case, sometimes there does not exist a set of parameters consistent

with the data (in the sense of the above definition). On the other hand, the data fitting problem under

interval uncertainty has its own features that substantially distinguish it from the common data fitting

problem for non-interval data. In the non-interval case, existence of the regression line that goes

through all the data points, i.ė. existence of the parameters that exactly satisfy the system of equations

(3) is, generally speaking, an delicate event that can be destroyed after arbitrarily small perturbation

in the data. But for essential interval uncertainty, when the widths of the intervals are strictly greater

than zero, the set of parameters consistent with the data has, as a rule, nonzero measure, and it is

stable under small data perturbations. This will be clear from the further mathematical considerations

(see Sections 2–3).

The fact that there does not exist a regression line going through all the uncertainty boxes, i. e.

there is no parameter sets consistent with the data, in no way means that the data fitting problem is

unsolvable. It only means that the consistency condition cannot be exactly satisfied by a solution to the

problem. It makes sense to recall that such a situation is quite typical for the degenerate non-interval

case, when we consider the traditional data fitting problem. Then we do not speak of “unsolvability”

of the problem if the system of equations (3) does not have exact solutions.

Using formal mathematical language, the set of parameters consistent with the interval experi-

mental data can be specified as
{

x ∈ R
n
∣

∣

(

∃(ai j) ∈ (ai j)
)(

∃(bi) ∈ (bi)
)(

Ax = b
)

}

, (5)
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where the elements ai j constitute an m×n-matrix A = (ai j), while the components bi form a vector

b = (bi). In identification theory and data analysis, this set is called parameter uncertainty set, set of

possible values of the parameters, information set [8], and so on. In interval analysis, it is a solution

set to the interval system of linear algebraic equations Ax = b, where A = (ai j) and b = (bi) (see

[11, 12, 18]).

We are going to perform data fitting under imprecision and uncertainty according to the following

general theoretical scheme:

1) a “consistency measure” is introduced between data and parameters that characterizes the ac-

curacy to which the data are approximated by the function defined by the parameters, in other

words, a “quality of data approximation”;

2) as an estimate of the parameters, we take the parameter values for which the “consistency mea-

sure” attains its maximum, that is, where the maximal consistency between data and parameters

is reached.

For instance, in the traditional data fitting problem for non-interval data the distance from the regres-

sion line to the data points is to be minimized (in a certain metric). Then the “consistency measure”

is, in fact, this distance with the minus sign.

When solving the data fitting problem under imprecision and uncertainty, the main question is:

what “consistency measure” should be used? There is a number of natural requirements that such a

measure must fulfill. First of all, the “measure” should trace the quantitative difference between the

cases when the information set (5) is empty or not. This can be achieved, e. g., by assigning different

signs to the “measure”, ether negative or positive.

For a nonempty solution set, the consistency measure should be positive (or, at least, non-negative)

for the points from the solution set, where the “consistency” really takes place. For the points outside

the solution set, where no “consitency” occurs, our measure should be negative.

3 Interval linear systems of equations

In this section, we consider the main object that arises in the data fitting problem under interval

uncertainty when the constructed function is supposed to be linear, i. e., has the form (1). This is an

interval linear algebraic system of the form























a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
...

...
. . .

...
...

am1x1 + am2x2 + . . . + amnxn = bm,

(6)

or, in short,

Ax = b (7)

with an interval m×n-matrix A = (ai j) and an interval m-vector b = (bi).
In what follows, we essentially use terminology and basic concepts of interval analysis (see e. g.

[11, 12, 18]). Interval matrix is a rectangular table made up of interval elements. Similarly, interval

vector is an ordered tuple of intervals disposed either horisontally (column-vector) or vertically (row-

vector). Geometrical images of interval vectors are axis-aligned rectangular parallelepipeds in the

standard Euclidean space R
n. The interval vectors are also called boxes (see [7]). Membership of a
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point in an interval vector-box is understood as set-theoretical membership, i. e., that each component

of the point belongs to the corresponding interval components of the box.

An interval linear system of equations Ax = b is a family of point systems of linear algebraic

equations (ILAS) of the same form Ax = b with A ∈ A and b ∈ b. The solution set for the interval

linear system is

Ξ(A,b) =
{

x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)

}

,

i.e. the set of solutions to all usual non-interval systems Ax = b whose matrices and right-hand side

vectors belong to A and b respectively. The structure of the solution sets to interval linear systems

has been thoroughly studied during the last decades, and details can be found, e.g., in the books

[4, 12, 18].

To give a visual idea of how the solution sets to interval linear systems may look like, we consider

an example of the interval linear system






4 [0,2] [0,2]

[0,2] 4 [0,2]

[0,2] [0,2] 4






x =







[−1,1]

[−1,1]

[−1,1]






. (8)

Its solution set is depicted in Fig. 2, and it is a non-convex polyhedron in R
3, whose boundary

“breaks”, in particular, at the coordinate axes.

x1

x2

x3

Figure 2: Solution set to the interval linear system (8).

The interval system of equations Ax = b is said to be solvable, if its solution set is non-empty, i. e.

there holds Ξ(A,b) 6= ∅. In the general case, checking the solvability for interval linear systems is

an NP-hard problem; this fact was first established by A.V. Lakeyev et al. [9] (see also the book [4]

about further results on the subject).

Analytical description of the points from the solution set to interval linear systems is given by the

following result obtained by H. Beeck in [2]:

The Beeck characterization. A point x ∈ R
n belongs to the solution set Ξ(A,b) if and only if

A · x ∩ b 6=∅, i. e. the interval vectors A · x and b have non-empty intersection.
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In the Beeck characterization, the product A · x is understood in the sense of interval arithmetic,

and we will omit the multiplication sign “ ·” from now on, writing just Ax instead of A · x. More

precisely, the i-th component of the vector Ax is, by definition, ∑n
j=1 ai jx j, where all the operations

are performed according to the rules of the classical interval arithmetic IR [1, 11, 12, 18]. IR is

an algebraic system formed by closed real intervals x = [x,x ] ⊂ R with the arithmetic operations

between them defined by “representatives”, i. e., as follows:

x⋆ y =
{

x⋆ y | x ∈ x, y ∈ y
}

for ⋆ ∈ {+ ,− , · ,/}.

This definition results in the following constructive formulas (see also [1, 11, 12, 18]):

x+ y =
[

x+ y, x+ y
]

, x− y =
[

x− y, x− y
]

,

x · y =
[

min{xy,xy,xy,xy}, max{xy,xy,xy,xy}
]

,

where underlines and overlines mean lower and upper endpoints of the respective intervals. Note

that the last formula crucially simplifies if one of the operands is a degenerate interval, i. e., an exact

number.

4 Recognizing functional

Let us assume that we are given the data fitting problem (1) under interval uncertainty represented

by an interval matrix A and an interval vector b, while the vector x̃ = (x̃1, x̃2, . . . , x̃n)
⊤ determines the

parameters of the linear function (1). Testing consistency between the data and parameters, equivalent

to testing the Beeck characterization, amounts to examination whether the axis-aligned boxes Ax̃ and

b intersect in the space Rn. In doing this, we encounter the situations schematically depicted at Fig. 3.

Considering such pictures suggests the following natural idea: in the data fiting problem, we can

take, as the “consistency measure” between the parameters x̃ and data A, b, a function that character-

izes mutual disposition of the boxes Ax̃ and b, the extent to which they intersect with each other or,

alternatively, their deviation from each other in case of their non-intersection.

Ax̃

b

Ax̃

b

Figure 3: Varuous mutual dispositions of the boxes Ax̃ and b in testing the Beeck characterization.

In numerical analysis, the residual Ax̃−b (also called defect) between the right-hand and left-hand

sides of the equation plays an important role in estimating accuracy of the approximate solution x̃.

For interval systems of equations, an analog of the defect may be the set-theoretical difference of the
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boxes Ax̃ and b, and the size of this difference, in some reasonable sense, can serve as a “consistency

measure” for the parameters x̃ and data A, b in case of nonempty intersection Ax̃∩b. If the intersection

is empty, the desired measure may be taken as a kind of distance between the boxes Ax̃ and b.

To describe the above geometrical ideas in an analytic language, we consider first the one-dimen-

sional case, i. e. intersection of one-dimensional intervals a and b on the real axis R. Let us denote by

mid a and mid b the midpoints of the intervals (half-sums of their endpoints), and let rad a and rad b

denote their radii (half-differences of the upper and lower endpoints). It is obvious (see Fig. 4) that

a∩b 6=∅ ⇔ |mid b−mid a| ≤ rad b+ rad a.

The last inequality can be written in the form

rad b+ rad a−|mid a−mid b| ≥ 0.

Addtitionally, in the case when the intersection of intervals a and b is empty, the absolute value of

the difference (rad b+ rad a−|mid a−mid b|) that forms the left-hand side of the above inequality

characterizes “the degree of non-intersection” for a and b.

R

rad a
rad b

|mid b−mid a|

a
b

Figure 4: Intersection of intervals on the real axis (crosses mean midpoints of the intervals).

As long as the multidimensional interval vectors (boxes) are direct products of one-dimensional

intervals, the following equivalence holds true:

Ax̃∩b 6=∅ ⇔ rad(Ax̃)i + rad bi −
∣

∣mid(Ax̃)i −mid bi

∣

∣≥ 0, i = 1,2, . . . ,m. (9)

How can we combine the results of testing the one-dimensional intersections (Ax̃)i and bi over sep-

arate components into a single expression? Generally, this can be done in several ways, but some

natural requirements should be met when treating the data fitting problem. The overall expression

must be negative if at least one of its one-dimensional subexpressions

rad(Ax̃)i + rad bi −
∣

∣mid(Ax̃)i −mid bi

∣

∣

is negative, which corresponds to empty intersection of the boxes Ax̃ and b. The overall expression

must be non-negative (positive), if all the one-dimensional subexpressions are non-negative (positive),

which corresponds to nonempty intersection of the boxes Ax̃ and b.

It is undesirable that, in the resulting expression, the one-dimensional subexpressions are tied

up so that the values of one of them may substantially compensate (thus “masking”) the values of

the other subexpressions. The contribution of all the one-dimensional subexpressions to the overall

expression should be taken in an equal manner. This is closely related to the “scalability” requirement

on the resulting expression with respect to m (i. e., number of observations), when it is necessary to

provide comparability of the results for different m.
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Sometimes, due to mathematical reasons, it is advisable to preserve differentiability or even

smoothness (continuous differentiability) of relationships to be constructed. This allows one to draw

developed and well-known tools of the differential calculus for further analysis of the mathemati-

cal model. However, in our specific situation preserving smoothness of the overall expression is not

necessary, since the one-dimensional subexpressions are already non-smooth, containing moduli.

For our purposes, taking minimum over the one-dimensional expressions from (9) suits us well,

since it takes into account their values uniformly. To sum up, we can consider, as a “consistency

measure” between the parameters x̃ and data A, b, the values of

min
1≤i≤m

{

rad(Ax̃)i + rad bi −
∣

∣mid(Ax̃)i −mid bi

∣

∣

}

. (10)

To simplify the expression (10), we can notice that [1, 12, 18]

mid(Ax̃) = (midA) x̃ and rad (Ax̃) = (radA) |x̃|,

where the operations “mid” and “rad” are applied to interval vectors and matrices in component-wise

and element-wise manner. Then, instead of (10), one may write out more convenient equivalent form

min
1≤i≤m

{

rad bi +
n

∑
j=1

(rad ai j) |x̃ j|−

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

(mid ai j) x̃ j

∣

∣

∣

∣

∣

}

.

The final result of the above considerations is the following

Theorem. Let A be an interval m×n-matrix, b be an interval m-vector. Then the expression

Uss(x,A,b) = min
1≤i≤m

{

rad bi +
n

∑
j=1

(rad ai j) |x j|−

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

(mid ai j)x j

∣

∣

∣

∣

∣

}

defines such a functional Uss : Rn → R that the membership of a point x ∈ R
n in the solution set

Ξ(A,b) to the interval linear system Ax = b is equivalent to nonnegativity of the functional Uss in the

point x. In other words, x ∈ Ξ(A,b) if and only if Uss(x,A,b)≥ 0.

As a consequence of the theorem, the solution set Ξ(A,b) to the interval linear system can be

represented as the level set
{

x ∈ R
n | Uss(x,A,b) ≥ 0

}

of the functional Uss . It turns out that,

through the sign of its values, the functional Uss “recognizes” the membership of any point in the set

Ξ(A,b). This is why we will call it “recognizing functional”.

5 Properties of the recognizing functional

The functional Uss is obviously continuous, and even Lipschitz continuous.

Proposition 1. The functional Uss is concave with respect to the variable x in every orthant of the

space R
n. If, in the interval matrix A, l columns have nonzero widths and their numbers form the

index set J = { j1, j2, . . . , jl}, l ≤ n, while the rest of the columns have zero widths (i. e., they are

entirely non-interval), then the functional Uss(x,A,b) is concave with respect to x over unions of

several orthants, more precisely, over each of 2l sets of the form
{

x ∈ R
n | x j ≷ 0, j ∈ J

}

, where “≷”

means any one of the relations “≤” or “≥”.
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Proof. It is sufficient to conduct the proof for all the expressions

ψi(x) = rad bi +
n

∑
j=1

(rad ai j) |x j|−

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

(mid ai j)x j

∣

∣

∣

∣

∣

,

i = 1,2, . . . ,m, since Uss is their lower envelope.

Within one orthant of Rn, when the signs of x j are constant, the functions

rad bi +
n

∑
j=1

(rad ai j) |x j| (11)

are linear with respect to x. Additionally, the functions

−

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

(mid ai j)x j

∣

∣

∣

∣

∣

are globally concave. As the result, every ψi(x), i = 1,2, . . . ,m, is also concave with respect to x

within one orthant, being the sum of a linear and concave function.

The above reasoning cannot be conducted in the general case, since the expression

n

∑
j=1

(rad ai j) |x j|

is not a linear function of x outside one orthant of the space R
n. However, if, for some index k ∈

{1,2, . . . ,n}, all aik are noninterval, then rad aik = 0, i = 1,2, . . . ,m, and the expressions (11) are

linear with respect to xk.

Therefore, if the k-th column of A is noninterval, then all the functions ψi(x) (jointly with Uss)

will be concave over the sets

{

x ∈ R
n | x1 ≷ 0, . . . ,xk−1 ≷ 0,xk+1 ≷ 0, . . . ,xn ≷ 0

}

,

each of which being the union of two orthants in R
n. Generalization of the above reasoning to the

case of several noninterval columns in A is obvious. �

To formulate our next result, we remind that, for a function f : Rn → R, its hypograph is defined

as the set hyp f = {(x, t) ∈ R
n+1 | t ≤ f (x)}. In other words, hypograph is the graph of a function

supplemented with all the points below the graph.

Proposition 2. The functional Uss(x,A,b) is polyhedral, i. e. its graph is made up of pieces of

hyperplanes, and its hypograph is a polyhedral set.

Proof. Since |a| = max{a,−a}, we have within every separate orthant of the space R
n, where the

signs of the components of x are constant,

ψi(x) = rad bi +
n

∑
j=1

(rad ai j) sgnx j · x j

−max

{

mid bi −
n

∑
j=1

(mid ai j)x j ,−mid bi +
n

∑
j=1

(mid ai j)x j

}

,
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i = 1,2, . . . ,m. Therefore, within any orthant,

Uss(x) = min
1≤i≤m

ψi(x)

= min
1≤i≤m

min

{

rad bi +
n

∑
j=1

(rad ai j) sgnx j · x j −mid bi +
n

∑
j=1

(mid ai j)x j ,

rad bi +
n

∑
j=1

(rad ai j) sgnx j · x j +mid bi −
n

∑
j=1

(mid ai j)x j

}

= min
1≤i≤m

min

{

−bi +
n

∑
j=1

(

rad ai j sgnx j +mid ai j

)

x j,

bi +
n

∑
j=1

(

rad ai j sgnx j −mid ai j

)

x j

}

= min
1≤i≤m

min
{

−bi +a′ix , bi −a′′i x
}

, (12)

where a′i and a′′i are vertices of the interval row vector (ai1,ai2, . . . ,ain), defined as

(

a′i
)

j
= rad ai j sgnx j +mid ai j,

(

a′′i
)

j
= rad ai j sgnx j −mid ai j, j = 1,2, . . . ,n.

The expressions in curly brackets from (12), over which the minimums are taken, determine linear

functions. In every orthant, Uss(x) is thus minimum of a finite number of linear functions, being

piecewise linear in general. �

−2 2

1

Figure 5: Solution set to the interval linear system (13).

As an example illustrating Proposition 2, we consider interval linear system of equations

(

[2,4] [−1,1]

[−1,1] [2,4]

)

x =

(

[−3,3]

0

)

. (13)

Its solution set is depicted at Fig. 5, and the graph of its recognizing functional can be seen at Fig. 6.
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Figure 6: Graph of the recognizing functional for the system (13).

Proposition 3. If the solution set Ξ(A,b) to the interval linear system Ax = b is bounded, then the

recognizing functional Uss(x,A,b) attains a finite maximum over the entire space R
n.

Proposition 4. If Uss(x,A,b) > 0, then x is a point from topological interior int Ξ(A,b) of the

solution set, i. e. it belongs to the solution set with some its neighbourhood.

Proposition 5. Let the interval linear system of equations Ax = b be such that its augmented matrix

(A,b) does not contain rows in which all elements have zero endpoints. Then the membership x ∈
int
(

Ξ(A,b)∩O
)

, where O is an orthant of the space Rn, implies the strict inequality Uss(x,A,b)> 0.

We omit proofs for Propositions 3–5; the reader can find them in the works [19, 20].

6 Maximum consistency method

Turning to the data fitting problem under interval uncertainty and to the main question how to take

“consistency / inconsistency measure” between the data A, b and parameters x of the relationship

to be constructed, we can repeatedly note that the recognizing functional Uss of the interval linear

system Ax = b suits well for this purpose. Indeed, in case of nonempty information set, it possesses

nonnegative and positive values for the points from this set, where the actual “consistency” really

takes place. For the points outside the information set, where no “consistency” holds, the values of

the functional Uss are negative. Besides, with other things being equal, the values of Uss are positive

in the interior of the solution set, and they exceed the values at the boundary of the solution set, which

are mostly zero.

The above considerations motivate the following approach to the solution of the data fitting prob-

lem under interval uncertainty:

121



As an estimate of the function parameters, we take the point

that provides maximum of the recognizing functional Uss.

We will call this approach to determining the parameters of the linear function (1) that best fits the

interval data as maximum consistency method, since the functional Uss has been shown to characterize

the “consistency measure” between the parameters and data. So,

• if max Uss ≥ 0, then the argument that delivers maximum to the functional Uss lies in a

nonempty set of parameters consistent with the data;

• if max Uss < 0, then the set of parameters consistent with the data is empty, but the point where

the maximum of Uss is attained minimizes the inconsistency.

It makes sense to note that, generally, the maximum consistency point which maximizes the rec-

ognizing functional can be non-unique (unlike, e. g., the least squares method where the solution is

typically unique).

7 Properties of the maximum consistency estimates

The expression defining the recognizing functional Uss has a form that enables one to predict how the

functional will change its values after this or that variation in A and b. We can use such information

for further correction of the interval linear system in a necessary sense. Let us consider the simplest

of this kind of construction.

Note that, in the expression

min
1≤i≤m

{

rad bi +
n

∑
j=1

(rad ai j) |x j|−

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

(mid ai j)x j

∣

∣

∣

∣

∣

}

,

the quantities rad bi, i = 1,2, . . . ,m, occur as addons in every subexpression standing under “min”

operation. Therefore, if all rad bi’s simultaneously increase or decrease by equal values, then the

general minimum increases or decreases by the same value.

Uniform increase of the radii of the right-hand sides bi by C, C ≥ 0, is equivalent to adding the

vector Ce to b, where e =
(

[−1,1], . . . , [−1,1]
)⊤

. Then, for the interval system Ax = b+Ce with the

widened right-hand side, there holds

Uss(x,A,b+Ce) = Uss(x,A,b)+C,

and, as a consequence,

max
x∈Rn

Uss(x,A,b+Ce) = max
x∈Rn

Uss(x,A,b)+C. (14)

From (14), a practical interpretation of the maximum consistency method ensues: the value of the

argument providing maxUss is the first point that appears in the solution set after uniform (with

respect to its midpoint) widening of the right-hand side vector.

Yet another interpretation of the maximum consistency method may be as follows: the argument

of maxUss gives us parameters of such a regression line that should be widened in the smallest

possible amount to result in a “regression strip” intersecting all the data boxes (see Fig. 7).
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a

b

Figure 7: Regression strip (instead of thin line) as a solution to data fitting problem under interval

uncertainty.

To understand relations between the maximum consistency method and the other approaches to

the data fitting problem, it makes sense to consider the extreme case when the data are precise and do

not have any uncertainty. What does maximum consistency method produce then?

If the input data matrix A and output data vector b are non-interval (common real), i. e. A = A =
(ai j) and b = b = (bi), then for all i, j

rad ai j = 0, rad bi = 0 and mid ai j = ai j, mid bi = bi.

The recognizing functional of the equations system then takes the form

Uss(x,A,b) = min
1≤i≤m

{

−

∣

∣

∣

∣

bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

}

=− max
1≤i≤m

∣

∣

∣

∣

bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

=− max
1≤i≤m

∣

∣

(

Ax)i −bi

∣

∣=−‖Ax−b‖∞ .

By ‖ · ‖∞, we denote Chebyshev vector norm (∞-norm) in a finite-dimensional space R
m, which is

defined as ‖y‖∞ = max
1≤i≤m

|yi|. Then

max Uss(x) = max
x∈Rn

(

−‖Ax−b‖∞

)

=−min
x∈Rn

‖Ax−b‖∞,

since max(− f (x)) =−min f (x). Therefore, under the circumstances, maximization of the recogniz-

ing functional is equivalent to minimization of the Chebyshev norm of the discrepancy between the

left-hand and right-hand sides of the equations system. Maximum consistency method then turns into

Chebyshev data smoothing that has been successfully applied in data analysis for a long time (see

e. g. [15]).

8 Implementation

Practical implementation of the maximum consistency method crucially depends on how efficient is

the computation of max Uss . In the general case, this is a global optimization problem with nons-

mooth and multiextrema objective function, which is quite hard to solve.
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Nevetherless, to compute unconstrained maximum of Uss, we can successfully apply some presently

existing techniques taking into account specificity of the functional Uss. First of all, we can try the

exhaustive search over all the concavity regions of the functional Uss (in the general case, over all

the orthants of Rn) and using efficient non-smooth convex optimization methods in every one of such

regions. In particular, good results have been demonstrated in the solution of this kind of problem

by r-algorithms developed by N. Shor [21, 22] as well as separating plane method by E. Nurminski

[13, 24].

The overall number of the concavity regions for the recognizing functional is determined, accord-

ing to Proposition 2, by the number of essentially interval columns in the input data matrix A (put

it differently, by the number of ai’s in (1) subject to interval uncertainty). If, in the data matrix A,

the number of interval columns is not large (say, no more than ten), then the above approach is quite

practical.

One more possible approach to maximization of Uss can be based on the fact that the functional

Uss belongs to the class of so-called d.c.-functions, i. e. such that can be represented as the difference

of two convex functions. For optimization of such functions, a number of promising methods have

been elaborated in the last years [23], which may hopefully lead to implementation of practical and

efficient algorithms.

It is worth mentioning the most important particular case of the data fitting problem that corre-

sponds to the exact definition of all the input variables a1, a2, . . . , an, when interval uncertainty is

present only on output b. Then the regression line (hyperplane in the general case) should go through

vertical segments parallel to the b axis, not through the solid uncertainty boxes shown in Fig. 1.

As a result, instead of the interval linear system of the general form (6)–(7) we get the system of

equations

Ax = b

with a non-interval (thin) matrix A = (ai j). Then all rad ai j = 0, and the recognizing functional of the

solution set crucially simplifies:

Uss(x,A,b) = min
1≤i≤m

{

rad bi −

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

ai j x j

∣

∣

∣

∣

∣

}

. (15)

In the above expression, the “min” operation is taken over the differences between constants and

concave functions with respect to x. Therefore, the recognizing functional of the form (15) is globally

concave, and its graph should look similar to what is depicted at Fig. 8 rather than the multiextrema

configuration of Fig. 5. The picture at Fig. 8 shows the graph of the recognizing functional for the

interval linear system
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. (16)

For the case of non-interval matrix A, maximization of the concave recognizing functional Uss

can, again, rely upon developed methods of non-smooth convex optimization (e. g. those from [13,

21, 22, 24]).

9 Results and conclusions

Introduction of the recognizing functional of the solution set to interval linear algebraic systems re-

duces the problem of testing solvability of such systems to a convenient analytical form that enables
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Figure 8: Graph of recognizing functional for the solution set to (16).

one correcting the initial data and the problem statement itself.

Maximization of the recognizing functional provides us with important information about solv-

ability margin of the interval linear systems and properties of its solution set. Additionally, we can

lay it down as a basis of a new technique for the solution of the data fitting problem under interval

uncertainty called maximum consistency method. It is a good alternative to the traditional statistical

approaches based on probabilistic models of observation errors.
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[2] Beeck, H.: Über die Struktur und Abschätzungen der Lösungsmenge von linearen Glei-

chungssystemen mit Intervallkoeffizienten. Computing 10, 231–244 (1972)

[3] Draper, N. R., Smith, H.: Applied Regression Analysis, 3rd edition. Wiley-Interscience, New

York (1998)

[4] Fiedler, M., Nedoma, J., Ramik, J., Rohn, J., Zimmerman, M.: Linear Optimization Problems

with Inexact Data. Springer, Berlin (2006)

[5] Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis, with Examples in Pa-

rameter and State Estimation, Robust Control and Robotics. Springer, London (2001)

[6] Kantorovich, L. V.: On some new approaches to numerical methods and processing observation

data. Siberian Math. Journal 3 (5), 701–709 (1962) (in Russian) Electronic version is accessible

at http://www.nsc.ru/interval/Introduction/Kantorovich62.pdf

[7] Kearfott, R. B., Nakao, M., Neumaier, A., Rump, S., Shary, S. P., van Hentenryck, P.: Standard-

ized notation in interval analysis. Comput. Technologies 15 (1), 7–13 (2010)

125
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