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Interval regularization
for inaccurate linear algebraic equations

Sergey P. Shary

Abstract In this paper, we consider the solution of ill-conditioned systems of linear

algebraic equations that can be determined inaccurately. To improve the stability of

the solution process, we “immerse” the original inaccurate linear system in an inter-

val system of linear algebraic equations of the same structure and then consider its

tolerable solution set. As the result, the “intervalized” matrix of the system acquires

close and better conditioned matrices for which the solution of the corresponding

equation system is more stable.

As a pseudo-solution of the original linear equation system, we take a point from

the tolerable solution set of the intervalized linear system or a point that provides

the largest tolerable compatibility (consistency). We propose several computational

recipes to find such pseudo-solutions.

1 Problem statement

In our work, we consider using methods of interval analysis for the solution of ill-

conditioned systems of linear algebraic equations that can be specified inaccurately.

We are developing a procedure for regularization of such problems, i. e., for improv-

ing stability of the process of solving them, which is called “interval regularization”.

Let us be given a system of linear algebraic equations of the form























a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...
...

. . .
...

...

am1x1 + am2x2 + . . .+ amnxn = bm,

(1)
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with coefficients ai j and right-hand sides bi, or, in concise form,

Ax = b (2)

where A = (ai j) is an m× n-matrix and b = (bi) is a right-hand side vector. In our

paper, we mainly consider the square case m = n, but some of our constructions are

more general and they can be applied to rectangular linear systems with m 6= n.

In the linear system (1)–(2), the matrix A may be ill-conditioned or even singu-

lar. The system may have no solutions at all in the classical sense. Also, it can be

specified inaccurately, with some measure of inaccuracy given. Our task is to find

a solution or a pseudo-solution (its substitute defined in a reasonable sense) for the

system of equations (1)–(2) in a stable way.

Since we are going to use methods of interval analysis in our work, the inaccu-

racy in specifying the systems of linear algebraic equations will be described using

the interval concepts too. In accordance with the informal international standard [6]

which is used throughout this work, we designate intervals and interval values in

bold, while usual non-interval (point) objects are not marked in any way. So, in-

stead of the system of equations (1)–(2), we shall have an interval system of linear

algebraic equations























a11x1 + a12x2 + . . .+ a1nxn = b1,

a21x1 + a22x2 + . . .+ a2nxn = b2,

...
...

. . .
...

...

am1x1 + am2x2 + . . .+ amnxn = bm,

(3)

with interval coefficients ai j and interval right-hand sides bi, or, in concise form,

Ax = b, (4)

where A = (ai j) is an interval matrix and b = (bi) is an interval right-hand side

vector. The major part of our constructions below is insensitive to such a change

in the object under study. The interval linear system (3)–(4) is then considered as a

family of point linear systems of the form (1)–(2) which are equivalent to each other

to within a prescribed accuracy specified by the intervals in A and b.

2 Idea of the solution

We are going to rely on the following fact from matrix theory. Let A be an n× n-

matrix and its condition number cond(A) = ‖A‖ · ‖A−1‖, defined for a subordinate

norm ‖ ·‖, satisfies cond(A)> 1. Then, in any neighbourhood of the matrix A, there

are matrices Ã having better condition number cond(Ã) < cond(A). This follows

from that the condition number does not have local minima, except for the global

one — namely, cond(A) = 1 for subordinate norms.
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As a result, one naturally arrives at the following idea: we can replace the solution

of the original system Ax = b by the solution of the system Ãx = b with close, but

better conditioned matrix Ã. Under favorable circumstances, the solution to the new

system will be close to the desired solution of the original system (1)–(2).

The idea we have just formulated is not new. There exists the Lavrentiev regular-

ization method [9, 10] (see also [4, 37]), a popular regularization technique for the

integral equations of the first kind and similar operator equations, and its essense is

almost the same as the above stated idea. Imposing a small perturbation on the op-

erator involved in the equation, we shift its small eigenvalues from zero and, hence,

the operator moves away from singularity. This improves stability of the solution.

The Lavrentiev regularization method also applies to systems of linear algebraic

equations of the form (1)–(2). In the simplest case, when the matrix A is, e. g., sym-

metric and positive semidefinite, we should solve

(A+θ I)x = b

instead of the equation system (1)–(2), where I is the identity matrix and real number

θ > 0 is a shift parameter. If λ (A) are eigenvalues of A, then the eigenvalues of

A+ θ I becomes λ (A)+ θ , and the condition number with respect to the spectral

norm is

cond(A+θ I) =
λmax(A)+θ

λmin(A)+θ
.

It obviously decreases in comparison with cond(A) = λmax(A)/λmin(A) since the

function

f (x) =
b+ x

a+ x
= 1+

b− a

a+ x

is evidently decreasing for x > 0 under b > a ≥ 0.

The Lavrentiev regularization is widely used for various equations and systems

of equations, when the properties of A are a priori known, and the most important

of them is information on how the spectrum of A is located. In general, when we

know nothing about the properties of the matrix A, the choice of the parameter θ ,

i. e., the direction of the shift and its magnitude, is not evident.

Turning to our idea, the main question is how to choose a better conditioned

matrix Ã near A? In other words, where and how to move the matrix A, if we do not

know its properties?

The unexpected implementation of our idea in the case when no information

about A is available may be to perform a shift of A “in all directions” at the same

time. Then there is certaintly a suitable direction among our shifts, ant it will provide

desirable regularization and improvement of the matrix.

Within the traditional data types used in calculus and numerical analysis, it is

hardly possible to put into practice such an exotic recipe, but relevant tools have

been already created in interval analysis (see, for example, [2, 3, 12, 13, 14, 33]).

With their help, our idea gets an elegant embodiment.

In order to reach, with guarantee, the matrix Ã no matter where it is, we shift

the original matrix A in all directions and to all possible distances that do not ex-
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x1

x2

99K

x1

x2

Fig. 1 Displacement in all directions and all distances simultaneously is equivalent to covering

a neighborhood of the initial point.

ceed a predetermined value θ (see Fig. 1) in a specified norm. This is equivalent to

enclosing an entire neighborhood of the matrix A.

In interval terms, we “inflate” the matrix A, thus turning it into an interval ma-

trix A. To cover all possible shift directions of the matrix A, we assign

A = A+θE,

where E = ([−1,1]) is the matrix, of the same size as A, made up of the intervals

[−1,1], and θ is the parameter of the “inflation” value. In general, instead of the

equation system (1)–(2), we come to the need to “solve” the interval system of

linear algebraic equations

Ax = b, (5)

having the form (3)–(4), and the solution process must be stable. In particular, it is

desirable to base the solution process on well-conditined matrices within A.

Notice that our construction is more general and, possibly, more flexible than the

Lavrentiev regularization, since we use the matrix A+ θE instead of just A+ θ I,

that is, we can perturbate off-diagonal elements of A too.

Example 1. As an example demonstrating the evolution of the condition number

after a point matrix inflates to an interval one, we consider the matrix

A =

(

99 100

98 99

)

.

With respect to the spectral matrix norm ‖A‖=
√

λmax(A⊤A), the condition number

of the matrix is cond(A) = 3.92 · 104, and it is not hard to show that this is the

maximum for regular 2× 2-matrices with positive integer elements ≤ 100.

Let us “intervalize” the matrix A by adding [−1,1] to each element. We get
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A =

(

[98,100] [99,101]

[97,99] [98,100]

)

.

The new interval matrix acquires a singular point matrix

(

98 99

98 99

)

and many more singular matrices. The condition numbers of the “endpoint matrices”

of the intervalized matrix A are equal to

3.84 ·104, 197.02, 201.12, 1.31 ·104,

197.02, 98.76, 1.31 ·104, 195.12,

197.0, 3.92 ·104, 99.26, 199.02

3.92 ·104, 199.00, 199.02, 4.0 ·104.

We can see that, among 16 endpoint matrices, one matrix has larger condition num-

ber 4.0 · 104, two matrices have the same condition number, and one matrix is

slightly better conditined. However, 10 matrices of 16 have considerably smaller

condition numbers ≤ 200. A more thorough numerical test shows that the condition

number 98.76, attained at the endpoint matrix

(

100 99

97 100

)

,

is really minimal among all the condition numbers of the point matrices from A. We

will further discuss this phenomenon in Section 4.

Another observation is that not only well-conditioned point matrices fall into

the interval matrix A after intervalization of A. Ill-conditioned and even singular

matrices also appear in A. Our task is to construct the solution process in such a

way that it relies mainly on well-conditioned matrices from A.

3 Implementation of the idea

In modern interval analysis, the concept of “solution” of an interval equation or a

system of equations can be understood in various ways which are very different

from each other. As a rule, the solutions to interval problems are estimates (most

often, also interval ones) of some “solution sets” arising in connection with the

interval problem statement. In its turn, the “solution sets” are usually determined

from solutions to separate point problems forming the interval problem under study,

but that can be done in various ways depending on the types of uncertainty that the

input data intervals express.
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The fact is, the interval data uncertainty has, in its essense, a dualistic and am-

bivalent character [31, 33]. In the formal setting of any interval problem, we need to

distinguish between the so-called uncertainties of the A-type and E-type, or, briefly,

A-uncertainty and E-uncertainty:

• the uncertainty of the A-type (A-uncertainty) corresponds to the application

of the logical quantifier “∀” to the interval variable, that is, when

the condition “∀x ∈ x” enters the definition of the solution set;

• the uncertainty of the E-type (E-uncertainty) corresponds to the application

of the logical quantifier “∃” to the interval variable, that is, when

the condition “∃x ∈ x” enters the definition of the solution set.

Sometimes, in connection with the properties expressed by interval A-uncertainties

and E-uncertainties, the terms a strong property and a weak property are used.

As a consequence, different solution sets for interval systems of equations and

other interval problems can be defined by various combinations of these quantifiers

applied to interval parameters. The simplest and most popular among the solution

sets is the set obtained by collecting all possible solutions of non-interval (point)

equations or systems of equations which we get by fixing the parameters of the

system within specified intervals. This is the “united solution set”.

Definition 1. For the interval system of linear algebraic equations (3)–(4), the set

Ξuni(A,b)
def
=
{

x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)

}

=
{

x ∈ R
n | (∃A ∈ A)(Ax ∈ b)

}

.

is called united solution set.

The above definition is organized according to the separation axiom from the for-

mal set theory (which is also known as “axiom schema of specification” or “subset

axiom scheme”): “Whenever the propositional function P(x) is definite for all ele-

ments of a set M, there exists a subset M′ in M that contains precisely those elements

x of M for which P(x) is true” (see, e. g., [1]). The united solution set corresponds

to the situation when M = R
n, P(x) is a predicate with the existential quantifiers

“∃” applied to all interval parameters of the system of equations. The equivalent

set-theoretical representation of the united solution set is

Ξuni(A,b) =
⋃

A∈A

⋃

b∈b

{

x ∈ R
n | Ax = b

}

=
⋃

A∈A

{

x ∈ R
n | Ax ∈ b

}

, (6)

where {x ∈R
n | Ax ∈ b} is, in fact, the solution set to the “partial” equation system

Ax = b.

The united solution set carefully takes into account the contributions of all point

equation systems forming an interval system, by means of uniting their separate
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solutions together. Accordingly, the united solution set is subject to variability in

the same extent as this variability is inherent to solutions of the individual point

systems from the interval system under study. If the interval system of linear equa-

tions includes ill-conditioned or singular point systems, for which the solution varies

greatly as the result of data perturbations, then the united solution set includes all

these variations and will not play any stabilizing role. This will inevitably happen

after intervalization of system (1)–(2) in case it is ill-conditioned.

Overall, the united solution set is not really suitable for a stable solution of the

system Ax = b: its stability is determined by solutions of the most unstable systems

due to representation (6). Working with the united solution set requires an additional

regularization procedure, e. g., such as that proposed by A.N. Tikhonov in [38]. We

are going to develop another approach that relies on good properties of a specially

selected solution set.

First of all, we require that the solution set of an interval system should be con-

structed from the most stable solutions of point systems forming the interval system

of equations. What is this solution set?. . . We will not intrigue the reader and imme-

diately announce the answer: among the solution sets for interval systems of equa-

tions, the “most stable” and, as a consequence, the most suitable for regularization

purposes is the so-called tolerable solution set.

Definition 2. For the interval linear algebraic system (3)–(4), the set

Ξtol(A,b)
def
=
{

x ∈R
n | (∀A ∈ A)(∃b ∈ b)(Ax = b)

}

, (7)

is called tolerable solution set.

The tolerable solution set is composed of all such vectors x ∈R
n that the product

Ax falls into the interval of the right-hand side b for any matrix A ∈ A. The definition

(7) can also be rewritten in the equivalent form

Ξtol(A,b) =
{

x ∈ R
n | (∀A ∈ A)(Ax ∈ b)

}

.

The presence of the condition “∀A ∈ A” with the universal quantifier in the defi-

nition of the tolerable solution set results in the fact that the set-theoretic represen-

tation of Ξtol(A,b) uses the intersection over A ∈ A rather than the union, as was the

case with Ξuni(A,b). Therefore, instead of (6), we get

Ξtol(A,b) =
⋂

A∈A

⋃

b∈b

{

x ∈ R
n | Ax = b

}

=
⋂

A∈A

{

x ∈ R
n | Ax ∈ b

}

. (8)

The representation (8) shows that the tolerable solution set is the least sensitive to

changes in the matrix among all the solution sets of interval linear systems, since it

is not greater than the “most stable” solution sets
{

x ∈ R
n | Ãx ∈ b

}

determined by

the matrix Ã with the best condition number from A. Although some point matrices
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from A may be poorly conditioned or even singular, their effect is compensated by

the presence, in the same interval matrix, of “good” point matrices that make the

tolerable solution set bounded and stable as a whole.

The principal difference between the tolerable solution set and united solution

set is expressed, in particular, in the fact that when the interval matrix A widens, the

united solution set of the system Ax = b expands too, while the tolerable solution

set shrinks, i. e., decreases in size.

To sum up, for the interval system of linear algebraic equations obtained after

“intervalization” of the initial ill-conditioned system, we shall consider the tolera-

ble solution set Ξtol(A,b). We are interested in the points from it or its estimates.

The problem of studying and estimating the tolerable solution set for interval lin-

ear systems of equations is called the interval linear tolerance problem [29, 32, 33].

We, therefore, need its solution, perhaps a partial one, which will be taken as a

pseudo-solution to the original equation system (1)–(2) or (3)–(4) instead of the

ideal solution that may be unstable or even non-existing.

At this point, we are confronted with a specific feature of the tolerable solution

set to interval systems of equations: it is often empty, which can happen even for

ordinary data. For system (3)–(4), this is the case when the intervals of the right-

hand sides bi are “relatively narrow” in comparison with intervals in the matrix A.

Then the range of all possible products of Ax for A ∈ A exceeds the width of the

“corridor” of the right-hand side b into which this product should fit.

For example, the tolerable solution set is empty for the one-dimensional interval

equation [1,2]x = [3,4]. On the one hand, zero cannot be in the tolerable solution

set, since [3,4] 6∋ 0. On the other hand, a non-zero real number t cannot be in the

tolerable solution set too, since the numbers from the range of [1,2] t can differ by

a factor of two, whereas the right-hand side [3,4] can take only the difference of

numbers by a factor of 4/3.

In order to make the tolerable solution set non-empty, we can artificially widen

the right-hand side of the interval linear equation system, for example, uniformly

with respect to the midpoints of the interval components. It is not difficult to realize

that, with the help of such an expansion, we can always make the tolerable solution

set non-empty.

An alternative way is to consider not the tolerable solution set itself, but a quan-

titative measure of the solvability of the linear tolerance problem, and the points at

which the maximum of this measure is reached will be declared pseudo-solutions.

This approach is developed in Section 5 of the present work.

4 Tolerable solution set for interval linear systems of equations

The tolerable solution set was first considered in [15] under the name of restricted

solution set, which is possibly due to the fact that this set is usually much smaller

than the common and well-studied united solution set. Both the united and tolerable

solution sets are representatives of an extensive class of the so-called AE-solution
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sets for interval systems of equations (see [31, 33]). It is not difficult to show that

the AE-solution sets are polyhedral sets, i. e., their boundaries are made up of pieces

of hyperplanes. But the tolerable solution set for interval linear systems has even

better properties: it is a convex polyhedral set in R
n (see [25, 29, 33]), i. e., it can be

represented as the intersection of finite number of closed half-spaces of Rn.

Example 2. Let us consider the interval linear system







2.8 [0,2] [0,2]

[0,2] 2.8 [0,2]

[0,2] [0,2] 2.8






x =







[−1,1]

[−1,1]

[−1,1]






, (9)

proposed in [18] and later studied in [14].

x1

−3

0

3

x2

−3

0

3

x3

−3

0

3

Fig. 2 Unbounded united solution set to the interval system (9).

For the value of the diagonal elements 3.5 in the matrix of (9), its united solution

set is depicted at the jacket of the book [14]. In our specific case, when the diagonal

elements are equal to 2.8, the interval matrix of (9) contains singular point matrices,

and the united solution set becomes unbounded.

Nevertheless, both united solution set and tolerable solution set for the in-

terval system (9) can be visualized with the use of the free software package

IntLinInc3D [27], and their pictures are presented at Fig. 2 and Fig. 3. The

unbounded united solution set infinitely extends beyond the boundaries of the pic-

ture box through the light trimming faces at Fig. 2. However, the tolerable solution
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x1

−1

0

1

x2

−1

0

1

x3

−1

0

1

Fig. 3 Tolerable solution set to the interval system (9).

set to the system (9) is bounded and quite small (see Fig. 3). The reduction of the

solution set, the pruning of its infinite parts, illustrates how efficiently the transition

to the tolerable solution set “regularizes” the singular interval system (9).

There exists several results that provide us with analytical descriptions of the

tolerable solution sets to interval linear systems of equations.

Theorem 1. (the Rohn theorem [19, 20, 33]) A point x ∈R
n belongs to the tolerable

solution set of the interval m×n-system of linear algebraic equations Ax = b if and

only if x = x′− x′′ for some vectors x′, x′′ ∈ R
n that satisfy the following system of

linear inequalities










Ax′−Ax′′ ≤ b,

−Ax′+Ax′′ ≤ −b,

x′, x′′ ≥ 0,

(10)

where A, A, b, b denote lower and upper endpoint matrices and vectors for A and b

respectively.

Theorem 2. (Irene Sharaya’s theorem [25]) Let Ai: be the i-th row of the interval

m×n-matrix A, and vert Ai: denotes the set of vertices of this interval vector, i. e., the

set
{

(ãi1, . . . , ãin) | ãi j ∈ {ai j,ai j}, j = 1,2, . . . ,n}. For an interval system of linear

algebraic equations Ax = b, the tolerable solution set Ξtol(A,b) can be represented

in the form

Ξtol(A,b) =
m
⋂

i=1

⋂

a∈vertAi:

{x ∈ R
n | ax ∈ bi}, (11)
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i. e., as the intersection of hyperstrips {x ∈ R
n | ax ∈ bi}. If |M| means cardinality

of a finite set M, then the number of hyperstrips in the intersection (11) does not

exceed ∑
m
i=1 |vert Ai:| and, a fortiori, does not exceed m ·2n.

Each of the inclusions ax ∈ bi for a ∈ Ai: is equivalent to a two-sided linear

inequality

bi ≤ ai1x1 + ai2x2 + . . .+ ainxn ≤ bi,

which really determines a hyperstrip in R
n, i. e., a set between two parallel hyper-

planes. Therefore, Irene Sharaya’s theorem gives a representation of the tolerable

solution set as the set of solutions to a finite system of two-sided linear inequalities

whose coefficients are endpoints of the interval elements from Ai:, i = 1,2, . . . ,m.

The remarkable fact is that the number of inequalities implied by the representation

(11) is considerably less than the overall number of “endpoint inequalities” of the

interval linear system which is equal to 2m(n+1).

4

13

-2

-2

4 13

—1—

—2—

—3—

—4—

—i— indicates a strip

that corresponds to the solution

of the i-th row of the system (12)

x1

x2

Ξtol

Fig. 4 Constructing the tolerable solution set according to Irene Sharaya’s theorem.

Example 3. For the interval linear equation system











−2 1

1 1

1 0

−1 2











(

x1

x2

)

=











[−8,4]

[4,13]

[1,7]

[−1,19]











, (12)
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the tolerable solution set can be constructed in the way depicted at Fig. 4 which is

borrowed from [25].

From Irene Sharaya’s theorem, it follows that, within the given interval matrix,

the point matrix with the best condition number is necessarily an endpoint (“corner”)

matrix. We saw an illustration of this fact in Example 1 in Section 3.

As far as the solution of a system of linear inequalities is computable in poly-

nomial time depending on the size of the problem (see, e. g., [7, 23]), the Rohn

theorem implies that, in general, the recognition of whether the tolerable solution

set is empty or not empty is a polynomialy solvable problem too.

Over the last decades, several approaches have been developed to study the tol-

erable solution set and to compute its estimates. These are:

• Application of systems of linear inequalities from theorems of Jiri Rohn and

Irene Sharaya.

• Formal algebraic approach. Estimation of the tolerable solution set reduces to

computing so-called formal (algebraic) solutions for a special interval linear sys-

tem of the same form.

• The method of the recognizing functional. The tolerable solution set is repre-

sented as a level set of a special function called recognizing functional, and we

study the problem by using the functional, its values and their sign.

Following the author’s earlier ideas, a technique based on correction and further

solution of the system of linear inequalities (10) has been developed in [17]. In our

paper, we are going to elaborate the second and the third approaches which use

purely interval technique and work directly with the interval system of equations.

5 Recognizing functional and its application

To go further and make our article self-sufficient, we need to recall some fundamen-

tal concepts and facts from interval analysis.

The main instrument of interval analysis is so-called interval arithmetics, alge-

braic systems that formalize common operations between entire intervals of the real

line R or other number fields. In particular, the classical interval arithmetic IR is

an algebraic system formed by intervals x = [x,x ] ⊂ R so that, for any arith-

metic operation “⋆” from the set {+ ,− , · ,/}, the result of the operation between

the intervals is defined “by representatives”, i. e., as

x⋆ y =
{

x⋆ y | x ∈ x, y ∈ y
}

.

The above formula is mainly of a theoretical nature, being hardly applicable for

actual computations. Expanded constructive formulas for the interval arithmetic op-

erations are as follows [12, 13, 14, 33]:
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x+ y =
[

x+ y, x+ y
]

, x− y =
[

x− y, x− y
]

,

x · y =
[

min{xy,xy,xy,xy}, max{xy,xy,xy,xy}
]

,

x/y = x ·
[

1/y, 1/y
]

for y 6∋ 0.

We start our consideration from the following characterization result for the

points from the tolerable solution set (see [29, 32, 33]): for an interval system of lin-

ear algebraic equations Ax= b , the point x∈R
n belongs to the solution set Ξtol(A,b)

if and only if

A · x ⊆ b, (13)

where “ ·” means the interval matrix multiplication. The validity of this character-

ization follows from the properties of interval matrix-vector multiplication and the

definition of the tolerable solution set. We are going to reformulate the inclusion

(13) as an inequality, in order to be able to apply results of the traditional calculus.

If A = (ai j), then, instead of (13), we can write

n

∑
j=1

ai jx j ⊆ bi, i = 1,2, . . . ,m,

due to the definition of the interval matrix multiplication. Next, we represent the

right-hand sides of the above inclusions as the sums of midpoints mid bi and inter-

vals
[

−rad bi, rad bi

]

which are symmetric with respect to zero (“balanced”):

n

∑
j=1

ai jx j ⊆ mid bi +
[

−rad bi, rad bi

]

, i = 1,2, . . . ,m.

Then, adding (−mid bi) to both sides of the inclusions, we get

n

∑
j=1

ai jx j −mid bi ⊆
[

−rad bi, rad bi

]

, i = 1,2, . . . ,m.

The inclusion of an interval into the balanced interval
[

−rad bi, rad bi

]

can be

equivalently rewritten as the inequality on the absolute value:

∣

∣

∣

∣

∣

n

∑
j=1

ai jx j −mid bi

∣

∣

∣

∣

∣

≤ rad bi, i = 1,2, . . . ,m,

which implies

rad bi −

∣

∣

∣

∣

∣

n

∑
j=1

ai jx j −mid bi

∣

∣

∣

∣

∣

≥ 0, i = 1,2, . . . ,m.

Therefore,



388 Sergey P. Shary

Ax ⊆ b ⇐⇒ rad bi −

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

∣

≥ 0 for each i = 1,2, . . . ,m.

Finally, we can convolve, over i, the conjunction of the inequalities in the right-hand

side of the logical equivalence obtained:

Ax ⊆ b ⇐⇒ min
1≤i≤m

{

rad bi −

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

∣

}

≥ 0.

We have arrived at the following result

Theorem 3. Let A be an interval m× n-matrix, b be an interval m-vector. Then the

expression

Tol(x,A,b) = min
1≤i≤m

{

rad bi −

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

∣

}

defines a mapping Tol : Rn × IR
m×n × IR

m → R, such that the memebership of

a point x ∈R
n in the tolerable solution set Ξtol(A,b) of an interval system of linear

algebraic equation Ax = b is equivalent to that the mapping Tol is nonnegative in

the point x, i. e.

x ∈ Ξtol(A,b) ⇐⇒ Tol(x,A,b)≥ 0.

The tolerable solution set Ξtol(A,b) to an interval linear equation systems is thus

a “level set”
{

x ∈ R
n | Tol(x,A,b)≥ 0

}

of the mapping Tol with respect to the first argument x under fixed A and b. We

will call this mapping recognizing functional of the tolerable solution set, since the

values of Tol are in the real line R and their sign “recognizes” the membership of a

point in the set Ξtol(A,b). Below, we outline briefly the properties of the recognizing

functional, and their detailed proofs can be found in [29, 32, 33].

First of all, the functional Tol is continuous function of its arguments, which

follows from the form of the expression that determines Tol. Moreover, Tol is con-

tinuous in a stronger sense, namely, it is Lipschitz continuous. At the same time,

the functional Tol is not everywhere differentiable due to the operation “min” in its

expression and “non-smooth” character of interval arithmetic operations.

The functional Tol(x,A,b) is polyhedral, that is, its hypograph is a polyhedral

set, while its graph is composed of pieces of hyperplanes.

The functional Tol is concave in the variable x over the entire space R
n. Finally,

the functional Tol(x,A,b) attains a finite maximum over the whole space Rn.

Example 4. Fig. 5 shows the graph of the recognizing functional for the tolerable

solution set to the interval equation system
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Fig. 5 Graph of the recognizing functional of the tolerable solution set to the interval system (9).











[−2,0] [−4,2]

[−3,2] [2,3]

[3,4] [4,5]

[3,5] [−2,2]











(

x1

x2

)

=











[1,2]

[−2,0]

[0,4]

[−2,3]











(14)

Polyhedral structure and nonsmoothness of the functional Tol are clearly seen at the

picture. Also, polygons in the plane 0x1x2 at Fig. 5 are level sets for various values

of the level.

If Tol(x,A,b) > 0, then x is a point of the topological interior int Ξtol(A,b) of

the tolerable solution set. It make sense to clarify that an interior point is a point that

belongs to a set together with a ball (with respect to some norm) centered at this

point. Therefore, interior points remain within the set even after small perturbations,

and this fact may turn out important in practice.

The converse is also true. Let an interval m× n-system of linear algebraic equa-

tions Ax = b be such that, for every index i = 1,2, . . . ,m, there exists at least one

nonzero element in the i-th row of the matrix A or the respective right-hand side

interval bi does not have zero endpoints. Then the membership x ∈ int Ξtol(A,b)
implies the strict inequality Tol(x,A,b)> 0.

As a consequence of the above results, we are able to perform, using the recog-

nizing functional, a study of whether the tolerable solution set to an interval linear

system is empty/nonempty. This can done according to the following procedure. For

the interval system Ax = b , we solve an unconstrained maximization problem for
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the recognizing functional Tol(x,A,b), that is, we compute maxx∈Rn Tol(x,A,b).
Let T = max Tol , and it is attained at the point τ ∈ R

n. Hence,

• if T ≥ 0, then τ ∈ Ξtol(A,b) 6= ∅, i. e., the tolerable solution set to the system

Ax = b is not empty and τ lies inside it;

• if T > 0, then τ ∈ intΞtol(A,b) 6=∅, i. e., the tolerable solution set has nonempty

interior and the point τ is an interior one;

• if T < 0, then Ξtol(A,b) =∅, i. e., the tolerable solution set to the interval equa-

tion system Ax = b is empty.

Example 5. For the tolerable solution set to the interval linear system (14), the graph

of the recognizing functional (Fig. 5) does not reach the zero level, all its values are

negative. Hence, the tolerance problem is not solvable.

Using the program tolsolvty (see below), one can compute more specific

results:

max Tol =−1, arg max Tol = (−0.21294,0)⊤.

A more thorough investigation shows that, around the maximum of the functional,

there is an entire small plateau of the constant level −1 (one can discern it in Fig. 5),

and the maximization method can converge to different points of this plateau from

different initial approximations.

Even if the tolerable solution set is empty, the maximal value of the recognizing

functional, T = maxx∈Rn Tol(x,A,b), can serve as a measure of unsolvabilty of the

tolerance problem for the interval linear system. At the same time, the argument that

delivers maximum to Tol is the “most promising” point with respect to the tolerance

solvability or, in other words, it is the “least unsolvable”. Let us clarify this assertion.

First of all, note that widening the right-hand side vector leads to expansion of

the tolerable solution set, i. e., it increases the solvability of the tolerance problem,

while narrowing the right-hand side leads to reduction of the tolerable solution set,

i. e., decreases the solvability of the interval tolerance problem. Consequently, the

value of the coordinated contraction of the right-hand sides to the point at which the

tolerable solution set becomes empty can be taken as a solvability measure for the

interval linear tolerance problem. Conversely, the minimal value of the coordinated

expansion of the intervals in the right-hand sides, under which the tolerable solution

set becomes nonempty, characterizes an “unsolvability measure” of the tolerance

problem. Similar natural considerations are widely used in interval data fitting (see,

e. g., [42, 43]). The “coordinated” expansion or narrowing of the data intervals is

usually understood as uniform expansion or contraction relative to their centers.

The point (or points) that first appears in non-empty tolerable solution set during

the uniform expansion of the right-hand side intervals is of special interest to us,

since it delivers the smallest “incompatibility” to the interval tolerance problem.

So, this point (or points) can be taken as a pseudo-solution of the original equation

system.

The remarkable fact is that the argument of maxTol is the first point that appears

in the non-empty tolerable solution set after uniform, with respect to its midpoint,
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widening of the right-hand side vector. To substantiate it, let us look at the expres-

sion for the recognizing functional Tol:

Tol(x,A,b) = min
1≤i≤m

{

rad bi −

∣

∣

∣

∣

∣

mid bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

∣

}

.

The quantities rad bi enter as addons in all subexpressions over which we take

min1≤i≤m when calculating the final value of the functional. Therefore, if we de-

note

e =
(

[−1,1], . . . , [−1,1]
)⊤

,

i. e., the interval vector with the radii of all components equal to 1, then the system

Ax = b+Ce has the widened right-hand sides and their radii become rad bi +C,

i = 1,2, . . . ,m. We thus have

Tol(x,A,b+Ce) = Tol(x,A,b)+C.

Consequently,

max
x

Tol(x,A,b+Ce) = max
x

Tol(x,A,b)+C,

which proves our assertion.

We can see that the values of the recognizing functional at a point give a quanti-

tative measure of the compatibility of this point with respect to the tolerable solution

set of a given interval linear system. Consequently, the argument of the maximum

of the recognizing functional, no matter whether it belongs to a nonempty tolerable

solution set or not, corresponds to the maximum tolerance compatibility for a given

interval linear system. That is why we regard it as a pseudo-solution of the original

system of linear algebraic equations, to which interval regularization is applied.

Next, we consider the interesting question of what result will be produced by

interval regularization for the case when the matrix of the system and its right-hand

side vector are specified exactly, without errors and uncertainty.

If the matrix A of the linear system and its right-hand side vector b are point

(non-interval), i. e. A = A = (ai j) and b = b = (bi), then

rad bi = 0, mid bi = bi, ai j = ai j

for all i, j. The recognizing functional of the solution set then takes the form

Tol(x,A,b) = min
1≤i≤m

{

−

∣

∣

∣

∣

bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

}

= − max
1≤i≤m

∣

∣

∣

∣

bi −
n

∑
j=1

ai jx j

∣

∣

∣

∣

= − max
1≤i≤m

∣

∣

(

Ax)i − bi

∣

∣

= −‖Ax− b‖∞ .
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Through ‖ · ‖∞, we denote Chebyshev norm (∞-norm) of a vector in the finite-

dimensional space Rm, which is defined as ‖y‖∞ = max1≤i≤m |yi|. Then

max Tol(x) = max
x∈Rn

(

−‖Ax− b‖∞

)

=−min
x∈Rn

‖Ax− b‖∞,

insofar as max(− f (x)) = −min f (x). In this particular case, the maximization of

the recognizing functional is equivalent, therefore, to minimizing the Chebyshev

norm of defect of the solution, very popular in data processing.

In practice, the maximization of the recognizing functional can be performed

with the use of nonsmooth optimization methods that have been greatly developed

in the last decades. The author used for this purpose the so-called r-algorithms,

invented by Naum Shor [34] and later elaborated in V.M. Glushkov Institute of Cy-

bernetics of the National Academy of Sciences of Ukraine [35, 36]. Based on the

computer code ralgb5 created by Petro Stetsyuk, a free program tolsolvty

has been written for Scilab and MATLAB, available at [3]. Our computational ex-

perience shows that tolsolvty works satisfactorily for the linear systems having

the condition number which is not large. One more possibility of implementation

of the approach can be based on the separating planes algorithms of non-smooth

optimization, proposed in [16, 39, 40, 41].

To summarize, in the interval regularization method for the system of linear al-

gebraic equations (1)–(2), the matrix A “inflates” by a small value to result in an

interval matrix A. In particular, if the equation system is determined imprecisely,

then the intervalization of A to A can be carried out based on the information of the

accuracy to which the elements of A and b are given. We thus get an interval sys-

tem of linear algebraic equations Ax = b with A ∋ A and b ∋ b. Then we compute

numerically unconstrained maximum, with respect to x, of the recognizing func-

tional Tol(x,A,b) of the tolerable solution set for the interval linear system Ax = b.

The argument of the maximum value of Tol is the sought-for pseudosolution to the

equation system (1)–(2).

6 Formal (algebraic) approach

Yet another way of estimating the tolerable solution set to interval systems of equa-

tions is the formal approach (sometimes called algebraic). It consists in replacing

the initial estimation problem with the problem of computing the so-called formal

(algebraic) solution for a special interval equation or a system of equations. Based

on the formal approach, we can propose one more version of the interval regulariza-

tion procedure.

Definition 3. An interval (interval vector, matrix) is called a formal solution to the

interval equation (system of equations, inequalities, etc.) if substituting this interval

(interval vector, matrix) into the equation (system of equations, inequalities, etc.)

and executing all interval arithmetic, analytic, etc., operations result in a valid rela-

tion.
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The formal solutions correspond, therefore, to the usual general mathematical

concept of a solution to an equation. Introduction of a special term for them in

connection with interval equations has, rather, historical causes. Formal solutions

turn out to be very useful in estimating various solution sets for interval systems of

equations (see, e. g., [21, 22, 30, 31, 33]). The simplest result of this kind applies to

the tolerable solution set and looks as follows:

Theorem 4. If an interval vector x ∈ IR
n is a formal solution to the interval linear

system Ax = b, then x ⊆ Ξtol(A,b), that is, x is an inner interval estimate of the

tolerable solution set Ξtol(A,b).

Proof. Let us recall that the point x̃ ∈ R
n lies in the tolerable solution set Ξtol(A,b)

of an interval system of linear algebraic equations Ax = b, if and only if A · x̃ ⊆ b.

If the interval vector x ∈ IR
n is a formal solution to the interval linear system

Ax = b, then, for any point x ∈ x,

Ax ⊆ Ax = b

due to inclusion monotonicity. Hence, we can assert the membership x ∈ Ξtol(A,b)
for every such x ∈ x, which implies x ⊆ Ξtol(A,b).

It is worth noting that the result of Theorem 4 is, in fact, a particular case of a very

general results on inner estimation of the so-called AE-solution sets for interval

systems of equations [22, 31, 33]. A remarkable property of the formal approach to

the inner estimation of the solution sets to interval linear systems is that it produces

interval estimates maximal with respect to inclusion [24, 31, 33].

Example 6. The formal solution to the interval linear system of equations (9) is the

interval vector






[−0.147059,0.147059]

[−0.147059,0.147059]

[−0.147059,0.147059]






. (15)

We can see that it really provides an inner box within the tolerable solution set for

the system (9).1 It is even inclusion maximal in the sense that there do not exist

interval boxes being inner estimates of the tolerable solution set and including (15)

as a proper subset at the same time.

Computation of formal solutions for interval linear systems of equations is well

developed in modern interval analysis. Over the past decades, several numerical

methods have been designed that can efficiently compute formal solutions. These

are various stationary single-step iterations [8, 11, 22, 33] and the subdifferential

Newton method [30, 33]. Most of these methods work in the so-called Kaucher

complete interval arithmetic (see, e. g., [5, 31, 33]) which consists of usual “proper”

intervals [x,x] with x ≤ x as well as “improper” intervals [x,x] with x > x. Kaucher

1 The formal solutions may be computed, e. g., using the code subdiff available at http:

//www.nsc.ru/interval/shary/Codes/progr.html.
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interval arithmetic has better algebraic properties than the classical interval arith-

metic and, in addtition, it allows to work adequately with interval uncertainties of

various types [31, 33].

Example 7. The interval equation [1,2]x = [3,4] does not have proper formal solu-

tions, while its formal solution in Kaucher interval arithmetic is improper interval

[3,2]. It cannot be interpreted as an inner interval estimate of the tolerable solution

set according to Theorem 4. The situation is explained by the fact that the tolerable

solution set is empty in this case.

Let us turn to the interval regularization for a system of linear algebraic equations

Ax = b. We intervalize it and thus get an interval linear system Ax = b. Next, we

compute its formal solution x∗. As a pseudo-solution of the original linear system

Ax = b, we can take the middle of the vector x∗, that is, the point x∗ ∈ R
n with the

coordinates

x∗i = mid x∗i
def
= 1

2

(

x∗i + x∗i
)

, i = 1,2, . . . ,n. (16)

If the formal solution x∗ is proper, then the motivation for such a choice of the

pseudo-solution is clear. In view of Theorem 4 and further results, x∗ is the maxi-

mal, with respect to inclusion, inner interval box within the tolerable solution set.

Therefore the middle point of x∗ is really one of the “most representative” points

from the tolerable solution set. But if the formal solution x∗ is improper (as in Ex-

ample 7), then the choice of x∗ in the form of (16) requires explanation.

If the formal solution of the intervalized system of equations Ax = b is improper,

then its tolerable solution set is most likely empty. But the choice of a pseudo-

solution in the form of (16) ensures an “almost minimal” measure of the “tolerance

unsolvability” of this point in the sense that it requires the smallest widening of the

right-hand side b to obtain a non-empty tolerable solution set.

We recall that, for interval linear systems of the form Ax = b with a point square

matrix A, a unique formal solution exists if and only if the matrix satisfies the abso-

lute regularity property [11, 30, 31, 33]. Among several equivalent formulation of

this property, the simplest one is that both A and the matrix |A| (composed of the

modules of the elements) should be nonsingular [11, 31, 33].2

If the point matrix A is absolutely regular and b is a proper interval vector, then

it is easy to substantiate that the formal solution to the linear system Ax = b is

also proper. In addition, the point (16), i. e., the midpoint of the inner interval box

for Ξtol(A,b) provides the maximum value of the recognizing functional Tol. From

continuity reasons, it follows that the same holds true for sufficiently narrow inter-

val matrices A ∋ A too. Hence, the formal solutions to such interval linear systems

are proper, they can be interpreted as inner interval boxes for the corresponding

tolerable solution sets, and the instruction (16) makes good sense.

For slightly wider, but still sufficiently narrow interval matrices for which the

interval linear systems has formal solutions that are not entirely proper, the same

continuity reasons imply that the recipe (16) gives us points which are not far from

the optimal point arg max Tol.

2 This property was also called “complete regularity” and “ι-regularity” in earlier works.
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It is worthwhile to note that, inflating the right-hand side vector, we can always

make the point (16) fall into a non-empty tolerable solution set. Indeed, let x∗ be a

formal solution to the interval equation system Ax= b and e=([−1,1], . . . , [−1,1])⊤

is the n-vector of all [−1,1]’s. If x∗ is improper in some components, then we take

the vector x∗ + te. It satisfies mid (x∗ + te) = mid x∗, and all the components of

x∗+ te become proper for t ≥ t∗, where

t∗
def
= 1

2

∣

∣

∣min
i

(x∗i − x∗i )
∣

∣

∣.

Also, the point (16) belongs to x∗+ te, i. e.

mid x∗ ∈ x∗+ te (17)

for such t ≥ t∗. We can assert that then

A(mid x∗) ⊆ A(x∗+ te) ⊆ Ax∗+A(te) = b∗+ tAe (18)

due to (17), inclusion monotonicity of the interval arithmetic operations and sub-

distributivity of multiplicaition with respect to addition for proper A. As a conse-

quence, the point mid x∗ lies in the non-empty tolerable solution set of the interval

linear system

Ax = b+ t∗Ae

with the uniformly widened right-hand side vector. In fact, the exact equality

A(x∗ + te) = Ax∗+A(te) holds true instead of inclusion, since both te and A(te)
are balanced intervals (symmetric with respect to zero). This makes our estimate in

(18) even sharper.

Conclusion

The work proposes a new approach to regularization of ill-conditioned and inaccu-

rate systems of linear algebraic equations based on interval analysis methods, and

we call it interval regularization. Its essence is the “immersion” of the original sys-

tem of equations into an interval system of the same structure for which the so-called

tolerable solution set is studied, the most stable of the solution sets. As a pseudo-

solution of the original system of equations, we assign a point from the tolerable

solution set (if it is not empty) or a point providing the largest “tolerable” compat-

ibility (if this solution set is empty). To find such a point, one can apply numerical

methods for computing formal (algebraic) solutions of interval systems or, alterna-

tively, algorithms of non-smooth optimization for computing the maximum of the

recognizing functional of the tolerarble solution set.

The interval regularization has two strengths. First, for the system of linear equa-

tions Ax = b, it depends on the properties of the matrix A significantly less than in

other approaches. The properties of A are taken into account as if automatically, by
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the method itself. Second, information about the data uncertainty, both in the matrix

A and right-hand side vector b, is taken into account very simply and naturally. One

only need to further “inflate” the interval matrix and/or the right-hand side vector

according to the known accuaracy level.

An interesting open question is the choice of the extent to which we should “in-

flate” the matrix A of the original system (1)–(2). The wider the interval matrix A of

the system of equations (3)–(4) or (5), the more well-conditioned matrices are in it,

the more stable the tolerable solution set according to (8) and, hence, the better the

general regularization of the problem. On the other hand, for a wider interval matrix

A, much different from the original point matrix A, the solution of the regularized

problem can be strongly distorted in comparison with the solution of the original

system. Consequently, how should we choose optimally the widths of the elements

of the interval matrix A ∋ A? If the original system (1)–(2) is specified inaccurately,

as an interval equation system (3)–(4) with a predetermined accuracy level, then the

question is solved naturally. In the general case, an additional study is necessary.

A certain drawback of the new approach stems from the fact that, in order to con-

struct the desired pseudo-solution, we may have to process some of (or even many)

“endpoint” linear systems of the regularized interval equation system, and some

of these endpoint systems can have worse conditionality than the original system.

However, the reality of this danger depends on the way the interval regularization

method is implemented. Therefore, technological issues related to the implementa-

tion of the corresponding numerical methods are very important, but their develop-

ment is beyond the scope of our article.
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