

Parameter Partition Methods

for Optimal Numerical Solution
of Interval Linear Systems

S.P. Shary

Institute of computational technologies SB RAS,
Lavrentiev ave. 6, 630090 Novosibirsk, Russia

shary@ict.nsc.ru

Abstract. The paper presents a new class of adaptive and sequen-
tially guaranteeing PPS-methods, based on partitioning parameter sets,
for computing optimal (exact) component-wise bounds of the solution
sets to interval linear systems with square regular matrices.

1 Introduction

The subject of the present work is the problem of outer interval estimation of
the solution set to an interval linear system

Ax = b (1)

with a regular (nonsingular) interval n × n-matrix A = (aij) and an interval
right-hand side n-vector b = (bi). The solution set of the interval linear system
(1) is known to be defined the set

Ξ(A, b) :=
{

x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)

}
, (2)

formed by solutions to all the point systems Ax = b with A ∈ A and b ∈ b.
Ξ(A, b) is often referred to as united solution set insofar as there exist a variety
of other solution sets to interval systems of equations (see e.g. [1]). We will not
consider them in our paper, so that the united solution set will be the only one
being studied. In what follows, we shall thereby call it just solution set.

An exact description of the solution set is practically impossible for the di-
mensions n larger than several tens, since its complexity grows exponentially
with n. On the other hand, such an exact description is not really necessary in
most cases. The users traditionally confine themselves to computing some esti-
mates, in a prescribed sense, of the solution set, and below we are going to solve
the following problem of outer (by supersets) interval estimation:

For an interval system of linear equations Ax = b,
find an interval enclosure of the solution set Ξ(A, b). (3)

E. Krause et al. (Eds.): Comp. Science & High Perf. Computing III, NNFM 101, pp. 184–205, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008

Parameter Partition Methods for Optimal Numerical Solution 185

Sometimes, a component-wise form of the problem (3) is considered:

For an interval system of linear equations Ax = b,
find estimates for min{ xν | x ∈ Ξ(A, b) } from below,
for max{ xν | x ∈ Ξ(A, b) } from above, ν = 1, 2, . . . , n.

(4)

One can find the extensive (but not at all exhaustive) bibliography on the prob-
lem (3)–(4) e.g. in [2,3,4,5,6,7].

Practical needs often require that the solution to the interval problem should
be not any one, but optimal, i.e. the best in some sense. It is fairly simple to
realize that the optimal solution to (3)–(4) is the interval hull of the solution
set, that is, the least inclusive interval vector guaranteed to contain the solution
set. The optimality requirement makes the problem statement (3)–(4) NP-hard
in general, if we do not restrict the widths of the intervals in the system and/or
the structure of nonzero elements in the matrix A [8]. Still, in the present work
we advance an efficient adaptive numerical technique — parameter partitioning
methods or PPS-method — for computing such optimal outer estimates of the
solution sets for interval linear systems.

Our notation follows, in the major lines, an informal international standard
[9]. In particular, we designate intervals and interval objects by boldface letters,
while underbars and overbars mean lower and upper endpoints of the corre-
sponding intervals. The set of all intervals is denoted by IR, and we identify real
numbers with zero-width degenerate intervals.

2 Parameter Partition Method for Interval Linear
Systems

In the rest of the paper, we concentrate on computing min{ xν | x ∈ Ξ(A, b) }
for a fixed integer index ν ∈ { 1, 2, . . . , n }, since

max{ xν | x ∈ Ξ(A, b) } = −min{ xν | x ∈ Ξ(A,−b) }.

Let

Encl be a method that computes an enclosure of the solution set (we shall call
it basic method),

Encl (Q, r) be an interval enclosure, produced by the method Encl , of the
solution set Ξ(Q, r) to the system Qx = r, that is, Encl (Q, r) ∈ IR

n and

Encl (Q, r) ⊇ Ξ(Q, r),

Υ (Q, r) be the lower endpoint of the ν-th component of the interval enclosure
for the solution set Ξ(Q, r) obtained by the method Encl , that is,

Υ (Q, r) :=
(
Encl (Q, r)

)
ν
. (5)

186 S.P. Shary

We require that the basic method should satisfy

the estimate Υ (Q, r) is inclusion monotonic with respect to
the matrix Q and vector r, i.e., for all Q′, Q′′ ∈ IR

n×n and
r′, r′′ ∈ IR

n, Q′ ⊆ Q′′ and r′ ⊆ r′′ implies the inequality
Υ (Q′′, r′′) ≤ Υ (Q′, r′).

(C1)

For most of the popular techniques computing enclosures of the solution set
to interval linear systems (interval Gauss method [2,5], interval Gauss-Seidel
iteration [4,5], various modifications of the stationary iterative single-step and
total-step techniques [2], Krawczyk method [5], etc.), the fulfillment of (C1)
can be easily derived from the inclusion monotonicity of the interval arithmetic
operations.

To go further, we need to remind a remarkable result first obtained by H. Beeck
[10] and afterward repeatedly proved by K. Nickel [11]: if A is regular (i.e., con-
tains only regular point matrices), then both minimal and maximal component-
wise values of the points from the solution set are attained at the so-called
extreme matrices and right-hand side vectors made up of the endpoints of A
and b. In other words, for any ν = 1, 2, . . . , n,

min{ xν | x ∈ Ξ(A, b) } =
(
Ã−1b̃

)
ν

with a point matrix Ã ∈ R
n×n and a point vector b̃ ∈ R

n whose elements are
the endpoints of the interval entries of the matrix A and vector b respectively.
It is also worth noting that

Υ (Ã, b̃) ≤ (
Ã−1b̃

)
ν

due to the very definition of the estimate Υ .
Assuming that an entry aij of the matrix A has nonzero width, we denote

by A′ and A′′ the matrices obtained from A through
replacing the entry aij by aij and aij respectively, (6)

by A′ and A′′ the matrices obtained from Ã through
replacing the entry ãij by aij and aij respectively.

Inasmuch as

A′ ⊆ A′ ⊆ A, A′′ ⊆ A′′ ⊆ A,

and b̃ ⊆ b, the condition (C1) implies the inequalities

Υ (A, b) ≤ Υ (A′, b) ≤ Υ (A′, b̃) and Υ (A, b) ≤ Υ (A′′, b) ≤ Υ (A′′, b̃).

Therefore, taking the minima of the corresponding inequality sides, we arrive at

Υ (A, b) ≤ min
{

Υ (A′, b), Υ (A′′, b)
}

≤ min
{

Υ (A′, b̃), Υ (A′′, b̃)
}

.

Parameter Partition Methods for Optimal Numerical Solution 187

Additionally,

min
{

Υ (A′, b̃), Υ (A′′, b̃)
}

≤ Υ (Ã, b̃) ≤
(

Ã−1b̃
)

ν
= min{ xν | x ∈ Ξ(A, b) }.

Comparing the above two inequality chains results in the relation

Υ (A, b) ≤ min
{

Υ (A′, b), Υ (A′′, b)
}

≤ min{ xν | x ∈ Ξ(A, b) },

and, as a consequence, in the following practical prescription: having solved
the two interval “systems-descendants” A′x = b and A′′x = b defined by
(6) we can get better estimate for min{ xν | x ∈ Ξ(A, b) } from below as
min

{
Υ (A′, b), Υ (A′′, b)

}
.

In the right-hand side vector b, breaking an interval element bi up into its
endpoints bi and bi has the similar effect. For uniformity, we will designate by
A′x = b′ and A′′x = b′′ the interval “systems-descendants” we get from Ax = b
after having subdivided an interval element of either the matrix A or right-hand
side vector b.

To further improve the estimate for min{ xν | x ∈ Ξ(A, b) }, it makes sense to
repeat the above described subdivision procedure applying it to the “systems-
descendants” A′x = b′ and A′′x = b′′, and then to subdivide the descendants
of A′x = b′ and A′′x = b′′ again to get even better estimate, and so forth.
We arrange the whole process of the successive step-by-step improvement of the
estimate for min{ xν | x ∈ Ξ(A, b) } in accordance with the well-known “branch-
and-bound” technique, similar to that implemented in the popular interval global
optimization methods from [3,4,12] and Lipschitz global optimization methods
from [13]:

first, all the interval systems Qx = r emerging as the result of the partitioning
of the original system (1) as well as their estimates Υ (Q, r) are stored in a
working list L;

second, at every step of our algorithm, the interval system subject to subdivision
is that providing the smallest current estimate Υ (Q, r);

third, the interval element to be subdivided in the system Qx = r is the one
having the maximal width.

The execution of the algorithm thus amounts to maintaining the list L, which
consists of records having the form of triples

(
Q, r, Υ (Q, r)

)
, (7)

where Q is an interval n × n-matrix, Q ⊆ A,
r is an interval n-vector, r ⊆ b.

Besides, the records forming the working list L will be ordered with respect
to the values of the estimate Υ (Q, r), while the first record of L as well as
the corresponding interval system Qx = r and the estimate Υ (the smallest in
the list) will be called leading ones at the current step of the method. Table 1

188 S.P. Shary

Table 1. The simplest PPS-method for interval linear systems

Input

An interval linear system Ax = b.

A number ν of the component estimated.

A method Encl that produces the estimate Υ by the rule (5).

Output

An estimate Z for min{xν | x ∈ Ξ(A, b) } from below.

Algorithm

assign Q := A and r := b ;

compute the estimate υ := Υ (Q, r);

initialize the list L :=
{

(Q, r, υ)
}
;

DO WHILE (either Q or r has an interval entry)

in the matrix Q = (qij) and vector r = (ri), choose
an interval element h having the maximal width;

generate interval systems Q′x = r′ and Q′′x = r′′ so that

if h = qkl for some k, l ∈ { 1, 2, . . . , n }, then set

q′
ij := q′′

ij := qij for (i, j) �= (k, l),
q′

kl := q
kl

, q′′
kl := qkl, r′ := r′′ := r;

if h = rk for some k ∈ { 1, 2, . . . , n }, then set

Q′ := Q′′ := Q, r′
k := rk, r′′

k := rk,
r′

i := r′′
i := ri for i �= k;

compute the estimates υ′ := Υ (Q′, r′) and υ′′ := Υ (Q′′, r′′);

delete the former leading record (Q, r, υ) from the list L;

put the records (Q′, r′, υ′) and (Q′′, r′′, υ′′) into L so that
the values of the third field of the records in L increases;

denote the first record of the list L by (Q, r, υ);

END DO

Z := υ;

summarizes the overall pseudocode of the new algorithm, which we are going
to refer to as parameter partition method following the terminology tradition
of deterministic global optimization [13]. Another suitable name for the new

Parameter Partition Methods for Optimal Numerical Solution 189

method is PPS-method — after Partitioning Parameter Set1. The main idea
of this kind of method, first presented by the author in [14], can be extended
to general nonlinear interval systems of equations, although the result of the
subdivision of each interval parameter will be two subintervals rather than the
endpoints as in the linear case.

If T is the total number of interval (with nonzero widths) elements in the
matrix A and right-hand side vector b of the original system (1) (in general,
T ≤ (n + 1)n), then the algorithm of Table 1 stops after at most 2T steps,
producing an estimate for min{ xν | x ∈ Ξ(A, b) } from below. How close the
computed result is to the exact value of min{ xν | x ∈ Ξ(A, b) } depends mainly
on the way we find the estimate Υ (Q, r), that is, on the choice of the basic
method Encl . In particular, for the computed result to be optimal (exactly
equal to min{ xν | x ∈ Ξ(A, b) }) it is necessary and sufficient that the following
condition holds:

the estimate Υ (Q, r) is exact
for point linear systems Qx = r

(C2)

However, if the dimension of the system under solution is sufficiently large
and T exceeds several tens, then, even on modern medium class computers, the
simplest parameter partition method will never work till its natural completion,
so that it makes good sense to consider it as an iterative one.

3 Modifications of Parameter Partition Methods

In this section, we are constructing more sophisticated and, hence, more efficient
PPS-methods for the optimal outer estimation of the solution sets to interval
linear systems. In doing that, the algorithm of Table 1 shall be a basis to be
further improved and modernized by a number of the modifications, some of
them being already standard for this kind of algorithm.

3.1 Monotonicity Test

Let an interval linear system Qx = r be given, and we know

∂xν(Q, r)
∂qij

and
∂xν(Q, r)

∂ri
,

i.e., interval extensions of the corresponding derivatives

∂xν(Q, r)
∂qij

and
∂xν(Q, r)

∂ri

of the ν-th component of the solution x(Q, r) to the point system Qx = r with
respect to the ij-th entry of the matrix Q and i-th element of the vector r. If an
1 The more so that there exists a dual class of PSS-methods [7], which exploit the idea

of Partitioning the Solution Set.

190 S.P. Shary

interval n × n-matrix Q̃ = (q̃ij) and an interval n-vector r̃ = (r̃i) are formed
of the elements

q̃ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

[q
ij

, q
ij

], for
∂xν(Q, r)

∂qij
≥ 0,

[qij , qij], for
∂xν(Q, r)

∂qij
≤ 0,

qij , for int
∂xν(Q, r)

∂qij
� 0,

(8)

r̃i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[ri, ri], for
∂xν(Q, r)

∂ri
≥ 0,

[ri, ri], for
∂xν(Q, r)

∂ri
≤ 0,

ri, for int
∂xν(Q, r)

∂ri
� 0,

(9)

where “int” means interior of the interval, then, evidently,

min{ xν | x ∈ Ξ(Q̃, r̃) } = min{ xν | x ∈ Ξ(Q, r) }.
Since the number of the elements with nonzero widths in Q̃ and r̃ may be
substantially less than that in Q and r, reducing the interval system Qx = r
to Q̃x = r̃ simplifies, in general, the computation of the desired min{ xν | x ∈
Ξ(Q, r) }.

We can find the interval extensions of the derivatives entering into the formu-
las (8)–(9), for instance, in the following way. As is known from any advanced
calculus course, the derivatives of the solution x of a linear system Qx = r with
respect to its coefficients are given by

∂xν

∂qij
= −yνixj ,

∂xν

∂ri
= yνi

providing that Y = (yij) is the inverse matrix for Q = (qij), Y = Q−1 (see
e.g. [2], Chapter 16, or [15]). Therefore, if Y = (yij) is the so-called “inverse
interval matrix” for Q, i.e. an enclosure for the set of inverse point matrices, Y ⊇
{Q−1 | Q ∈ Q }, and xj is the j-th component of an inclusive interval vector
x ⊇ Ξ(Q, r), we can take the following interval extensions for the derivatives

∂xν(Q, r)
∂qij

= −yνixj ,
∂xν(Q, r)

∂ri
= yνi. (10)

Computing the “inverse interval matrix” may be carried out, for example, as
enclosing of the solution set to the interval matrix equation

AY = I, I is the identity matrix,

applying n times (for every column of the matrix Y) the same outer estimation
method Encl which has been chosen as the basic one for the entire algorithm.

Parameter Partition Methods for Optimal Numerical Solution 191

3.2 Subdivision Strategy

Traditionally, the leading intervals are subdivided along the longest components
in the interval “branch-and-bound” based global optimization algorithms, which
are the nearest relatives to our parameter partition technique. Such a strategy
is known to guarantee (see e.g. [12,7]) the convergence of the algorithm, and we
also use it in our simplest PPS-method of Table 1 (although it is finite).

When the convergence takes place, we can wish optimizing the numerical pro-
cedure, i.e. to achieve the best possible convergence rate, which usually further
reduces to the simplified problem of getting faster improvement of the objective
function at every step of the algorithm. A strict and exact optimization of the
algorithm in the above sense is hardly possible for the parameter partition tech-
nique in general, but we are going to improve our method relying on reasonable
heuristic considerations and taking into account estimates of the derivatives of
the objective function.

If the matrices Q̌ = (q̌ij) and Q̂ = (q̂ij) differ from each other only in the
(k, l)-th entry, q̌kl < q̂kl, and wid [q̌kl, q̂kl] stands for the width of the interval
[q̌kl, q̂kl], then, due to Lagrange mean-value theorem,

(Q̂−1r)ν − (Q̌−1r)ν =
∂xν(Q̃, r)

∂qkl
· wid [q̌kl, q̂kl]

for some matrix Q̃ ∈ [Q̌, Q̂]. Similarly, if the vectors ř = (ři) and r̂ = (r̂i) differ
only in the k-th component and řk < r̂k, then

(Q−1r̂)ν − (Q−1ř)ν =
∂xν(Q, r̃)

∂rk
· wid [řk, r̂k]

for some vector r̃ ∈ [ř, r̂].
Now, let the interval matrices Q̌ and Q̂ be obtained from the interval matrix

Q by breaking up its element qkl into the endpoints q
kl

and qkl: q̌kl = q
kl

,
q̂kl = qkl. Suppose also that min{ xν | x ∈ Ξ(Q̌, r) } and min{ xν | x ∈ Ξ(Q̂, r) }
are attained at the same family of the endpoints of the matrix and right-hand
side vector, which is almost always the case for “sufficiently narrow” interval
systems due to continuity reasons. Then

min{ xν | x ∈ Ξ(Q̂, r) } − min{ xν | x ∈ Ξ(Q̌, r) } =
∂xν(Q́, ŕ)

∂qkl
· wid qkl

for some matrix Q́ ∈ Q and vector ŕ ∈ r. Similarly, let ř and r̂ be the interval
vectors obtained from the interval vector r by breaking up its k-th component
into the endpoints rk and rk: řk = rk, r̂k = rk. Under the condition that
min{ xν | x ∈ Ξ(Q, ř) } and min{ xν | x ∈ Ξ(Q, r̂) } are attained at the same
set of the endpoints of the matrix and right-hand side vector, we again get

min{ xν | x ∈ Ξ(Q, r̂) } − min{ xν | x ∈ Ξ(Q, ř) } =
∂xν(Q̀, r̀)

∂rk
· wid rk

192 S.P. Shary

for some matrix Q̀ ∈ Q and vector r̀ ∈ r. Hence, the value of the product of the
width of an interval element by the absolute value of the interval extension of
the corresponding derivative may serve as a local measure, in a sense, of how the
subdivision of an element from either Q or r affects on min{ xν | x ∈ Ξ(Q, r) }
and the size of the solution set.

For most of the existing techniques that solve interval linear systems, the
overestimation of enclosures of the solution sets gets smaller as the solution set
lessens. For example, the quadratic convergence is proven for Krawczyk method
[5] and so on. Therefore, the decrease of the size of the solution set Ξ(Q, r)
shall result, to approximately the same extent, in the change of the estimate
Υ (Q, r). With such basic methods, the requirement that the objective function
should increment most rapidly per step is, in essence, equivalent to that the
subdivision of the leading interval system implies the fastest decrease of the size
of the solution set.

Taking the above (partly heuristic) conclusions, we thus recommend to sub-
divide the leading interval systems along the elements on which the maximum
of ∣

∣∣
∣

∂xν(Q, r)
∂qij

∣
∣∣
∣ · wid qij ,

∣
∣∣
∣

∂xν(Q, r)
∂ri

∣
∣∣
∣ · wid ri, (11)

i, j = 1, 2, . . . , n, is attained, that is, along the elements providing the maximal
product of the width by the derivative estimate. The author has first proposed
such a subdivision strategy requiring maximization of (11) in the paper [14].

3.3 “Rohn Modification”

Beeck-Nickel theorem that we used in Section 2 for the derivation of parameter
partition technique has been strengthened in 80s by J. Rohn [6] who defined
more precisely the set of the endpoints of the matrix A and right-hand side
vector b on which min{ xν | x ∈ Ξ(A, b) } and min{ xν | x ∈ Ξ(A, b) } are
attained.

To give a mathematically rigorous formulation of the result by Rohn, we need
an additional notation. Let

E := { x ∈ R
n | |xi| = 1 for i = 1, 2, . . . , n }

be the set of vectors with ±1 components. For a given interval matrix A and
fixed σ, τ ∈ E , we designate through Aστ = (aστ

ij) a point n × n-matrix formed
by the entries

aστ
ij :=

{
aij , if σiτj = −1,

aij , if σiτj = 1.

Also, we designate through bσ = (bσ
i) a point n-vector formed by the elements

bσ
i :=

{
bi, if σi = 1,

bi, if σi = −1.

Parameter Partition Methods for Optimal Numerical Solution 193

The matrix Aστ and the vector bσ are thus made up of collections of the endpoints
of the elements of A and b respectively, and there are totally 2n · 2n = 4n matrix-
vector couples of the form (Aστ , bσ) as σ and τ independently vary within E .

For the nonsingular matrix A, it turns out [6] that both minimal and maximal
component-wise values for the points from the solution set Ξ(A, b) can be only
reached at the set of 4n matrices Aστ and associated vectors bσ, i.e.

min{ xν | x ∈ Ξ(A, b) } = min
σ,τ∈E

((
Aστ

)−1
bσ

)

ν
, (12)

max{ xν | x ∈ Ξ(A, b) } = max
σ,τ∈E

((
Aστ

)−1
bσ

)

ν
(13)

for every index ν = 1, 2, . . . , n. How could we exploit this fact in our parameter
partition method?

It is important to realize that the above result imposes no restriction on the
endpoints of a separate element of either A or b unless the information of the
other elements’ endpoints is drawn into the consideration. The restrictions on
the combinations of the endpoints followed from (12)–(13) are essentially col-
lective and to take them into account we should trace the structure of the end-
points involved through all of the matrix A and right-hand side b. To put these
ideas into practice, we connect, with every interval system Qx = r, Q = (qij),
r = (ri), produced from the subdivision of the initial system (1),

1) an auxiliary integer n×n-matrix W = (wij), its elements being equal to ±1
or 0, such that

wij :=

⎧
⎪⎨

⎪⎩

−1, if qij = aij ,

0, if qij = aij ,

1, if qij = aij ,

and
2) auxiliary integer n-vectors s = (si) and t = (tj), their components being

equal to ±1 or 0, such that
wij = sitj (14)

for all i, j = 1, 2, . . . , n and

si :=

⎧
⎪⎨

⎪⎩

−1, if ri = bi,

0, if ri = bi,

1, if ri = bi.

The values of tj are thus determined implicitly through the matrix W and vector
s. Additionally, the working list L is going to consist of the records with six
members, (

Q, r, Υ (Q, r), W, s, t
)
, (15)

to preserve W , s and t obtained at the preceding steps of the algorithm.
In the rest of the paper, we will call W and s, t check matrix and check vec-

tors respectively, intending to use them for checking and controlling the overall

194 S.P. Shary

bisection process in the PPS-methods. Namely, the vectors s and t are to be
“approximations” to the vectors σ and τ , respectively, from the equalities (12)–
(13), while W = s t� shall be an “approximation” to the matrix (σ τ�). At
the start of our algorithm, we set W , s and t to all zeros, and then they are
recalculated (updated) so as to replace their zero elements (that correspond
to our ignorance of which specific endpoint is treated) to nonzero ones (that
correspond to a certain endpoint). The check matrix W and check vectors s, t,
mutually affecting each other and being updated during the algorithm run, are
thus intended to “supervise” the partitioning of the initial interval linear system
so that only the variants allowed by the equalities (12)–(13) are begotten. The
latter is implemented as follows.

At each step of the algorithm, when subdividing an interval element h of the
leading system Qx = r, we look at the corresponding value

• of the check matrix W = (wij), if the element h is qkl of the matrix Q,
• of the check vector s = (si), if the element h is rk of the right-hand side

vector r.

Then, in case of wkl = 0 (sk = 0 respectively), we engender, according to the
usual subdivision procedure used in the simplest parameter partition method of
Table 1, two interval systems-descendants Q′x = r′ and Q′′x = r′′ correspond-
ing to both endpoints of the interval subdivided. Otherwise, in case of wkl 	= 0
(sk 	= 0 respectively), only one descendant Q′x = r′ may be engendered, de-
pending on the sign of wkl (sk respectively). More precisely, we perform the
procedure presented in Table 2 instead of the traditional bisection.

Why is that at all possible? In other words, can discarding the second inter-
val system-descendant in the above procedure violate the fact that the leading
estimate Υ (Q, r) approximates the sought-for min{ xν | x ∈ Ξ(A, b) } from
below?

To answer these questions, we note that in the new subdivision procedure of
Table 2 we reject only such interval systems that neither belong to the set of
point systems

{Aστx = bσ | σ, τ ∈ E }
nor contain them. Therefore, due to the property (C1) of the basic enclosing
method and taking into account the equality (12), we have

min{ xν | x ∈ Ξ(A, b) } = min
σ,τ∈E

((
Aστ

)−1
bσ

)

ν
≥ min

σ,τ∈E
Υ (Aστ , bσ)

≥ min{Υ (Q, r) | Q � Aστ and r � bσ for some σ, τ ∈ E }

≥ min{Υ (Q, r) | the system Qx = r is in the working list L}

= the leading estimate Υ (Q, r),

so that with our new subdivision procedure the leading estimate really approx-
imates min{ xν | x ∈ Ξ(A, b) } from below.

Parameter Partition Methods for Optimal Numerical Solution 195

Table 2. Generating the systems-descendants

IF (subdivided is qkl) THEN

IF (wkl = 0) THEN
generate the systems Q′x = r′ and Q′′x = r′′ so that

q′
ij := q′′

ij := qij for (i, j) �= (k, l),

q′
kl := q

kl
, q′′

kl := qkl, r′ := r′′ := r;

ELSE

generate the system Q′x = r′ so that

r′ := r, q′
ij := qij for (i, j) �= (k, l),

q′
kl :=

{
q

kl
, for wkl = 1,

qkl, for wkl = −1;

END IF

END IF

IF (subdivided is rk) THEN
IF (sk = 0) THEN

generate the systems Q′x = r′ and Q′′x = r′′ so that

Q′ := Q′′ := Q,

r′
i := ri for i �= k, r′

k := rk, r′′
k := rk;

ELSE

generate the system Q′x = r′ so that

Q′ := Q, r′
i := ri for i �= k,

r′
k :=

{
rk, for sk = −1,

rk, for sk = 1;

END IF

END IF

Getting started to specify the formal computational scheme, let us establish
the rules for the recalculation of the check matrix W and check vectors s, t
during the algorithm run. In doing this, we adopt the following notation: if a
leading interval system Qx = r has begotten, as the result of executing the
algorithm of Table 2, the systems-descendants Q′x = r′ and Q′′x = r′′, then
the corresponding new check matrices and check vectors will be referred to as
W ′, W ′′ and s′, s′′, t′, t′′ respectively. There exists a one-to-one correspondence
between the vector s and the right-hand side of the interval system Qx = r, while
partitioning the interval matrix Q of the system affects the vectors s and t only
implicitly, through the matrix W and the conditions (14). The latter still enables
us to organize recalculating of W , s and t at every such algorithm step that it
results in the subdivision of an interval element of the leading system. Otherwise,

196 S.P. Shary

if the leading interval system engenders only one descendant Q′x = r′ according
to Table 2, the check vectors s, t and check matrix W remain unchanged so that
s′ := s, t′ := t, W ′ := W .

So, let the leading interval system Qx = r have been subdivided to two
systems-descendants Q′x = r′ and Q′′x = r′′ defined as in Table 2. What
should be the law according to which we are to form the matrices W ′, W ′′ and
vectors s′, s′′, t′, t′′ corresponding to the systems-descendants? Initially, we can
set W ′′ := W ′ := W , s′′ := s′ := s, t′′ := t′ := t, and then perform the following
two-stage recalculating procedure:

First, we modify W ′, W ′′ and s′, s′′ using the information about the subdivi-
sion done. Namely,

(i) if the subdivided element was qkl of the matrix Q, then,
in the matrices W ′ = (w′

ij) and W ′′ = (w′′
ij), we put w′

kl := 1
and w′′

kl := −1;
(ii) if the subdivided element was rk of the right-hand side vector r,

then, in the vectors s′ = (s′i) and s′′ = (s′′i), we put s′k := −1
and s′′k := 1.

Second, we recalculate each of the two families of the interconnected objects —
W ′, s′, t′ and W ′′, s′′, t′′ respectively — using the relations (14). Namely,

(i) if s′ or t′ is changed, we try to update the matrix W ′;
(ii) if W ′ or t′ is changed, we try to update the vector s′;
(iii) if W ′ or s′ is changed, we try to update the vector t′.
The instructions (i)–(iii) repeat consecutively one after another in a cycle
until changes in W ′, s′ and t′ stop. The same process is then applied to W ′′,
s′′, t′′.

The overall algorithmic scheme of the above procedure turns out to be quite
involved so that it makes sense to provide the reader with its more strict and de-
tailed description. Table 3 presents the corresponding pseudocode and some ex-
planations are in order. The Boolean variables

W ′Change, s′Change, t′Change, W ′C, s′C, t′C

and
W ′′Change, s′′Change, t′′Change, W ′′C, s′′C, t′′C

are “flags” introduced to reflect the current state of changes in the check matrices
and vectors W ′, s′, t′ and W ′′, s′′, t′′ respectively. The value true means that the
corresponding object has been changed at the current iteration of the recalculat-
ing process, while the value false means “no changes”. The whole algorithm of
Table 3 can be divided into three essentially different parts. The first one, consist-
ing of two starting lines, is preparatory and represents initialization of the flags.
The second part, consisting of two conditional operators IF-THEN, fulfills recal-
culation of the check matrices W ′, W ′′ and check vectors s′, s′′ taking into ac-
count the bisection results. Finally, the third part of the pseudocode, consisting

Parameter Partition Methods for Optimal Numerical Solution 197

Table 3. Recalculation of W ′, W ′′, s′, s′′, t′, t′′

W ′Change := false; s′Change := false; t′Change := false;
W ′′Change := false; s′′Change := false; t′′Change := false;

IF
(

(subdivided is qkl of Q) AND (qkl is subdivided to two endpoints)
)
THEN

w′
kl := 1; w′′

kl := −1; W ′Change := true; W ′′Change := true;
END IF

IF
(

(subdivided is rk of r) AND (rk is subdivided to two endpoints)
)
THEN

s′k := −1; s′′k := 1; s′Change := true; s′′Change := true;
END IF

DO WHILE
(

W ′Change OR s′Change OR t′Change
)

IF (s′Change OR t′Change) THEN
trying to update the matrix W ′ according to (14);
IF (W ′ has been changed) THEN W ′C := true

ELSE W ′C := false END IF

END IF

IF (W ′Change OR t′Change) THEN

trying to update the vector s′ according to (14);
IF (s′ has been changed) THEN s′C := true

ELSE s′C := false END IF

END IF

IF (W ′Change OR s′Change) THEN

trying to update the vector t′ according to (14);
IF (t′ has been changed) THEN t′C := true

ELSE t′C := false END IF

END IF

W ′Change := W ′C; s′Change := s′C; t′Change := t′C;
END DO

DO WHILE
(

W ′′Change OR s′′Change OR t′′Change
)

IF (s′′Change OR t′′Change) THEN

trying to update the matrix W ′′ according to (14);
IF (W ′′ has been changed) THEN W ′′C := true

ELSE W ′′C := false END IF

END IF

IF (W ′′Change OR t′′Change) THEN
trying to update the vector s′′ according to (14);
IF (s′′ has been changed) THEN s′′C := true

ELSE s′′C := false END IF

END IF

IF (W ′′Change OR s′′Change) THEN
trying to update the vector t′′ according to (14);
IF (t′′ has been changed) THEN t′′C := true

ELSE t′′C := false END IF

END IF

W ′′Change := W ′′C; s′′Change := s′′C; t′′Change := t′C;
END DO

198 S.P. Shary

of two DO WHILE cycles, makes an attempt to update the new check matrices and
check vectors “on its own basis”, according to the main relation (14). We perform
the calculation until W ′, W ′′, s′, s′′, t′, t′′ “stabilizes”, that is, their changes stop
and all the corresponding flags W ′Change, s′Change, t′Change, W ′C, s′C, t′C,
W ′′Change, s′′Change, t′′Change, W ′′C, s′′C, t′′C are false.

To complete the formalized description of “Rohn modification” we have only
to define in detail what is meant by “trying to update the matrix W ′ according
to (14)”, “trying to update the vector s′” and the like in Table 3.

Let us denote by Greek capital letters K ′, Λ′ and Ω′ index subsets of the
elements of the vector s′, vector t′ and the matrix W ′ respectively that have
changed their values (from 0 to ±1) at the current step of the recalculation
procedure of Table 3. K ′ and Λ′ are thus subsets of the set of the first n natural
numbers { 1, 2, . . . , n }, while Ω is a subset of the set of all the pairs constituted
by the first n natural numbers, i.e. of { (1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (n, n) }.
Each of the sets K ′, Λ′, Ω′ may be empty, or may contain more than one member.
Then our “trying to update the vector s′” may be organized as follows:

Table 4. Updating s′

IF (W ′Change) THEN

DO FOR (k, l) ∈ Ω′

IF (t′l �= 0) s′k := w′
kl/t′l

END DO

END IF

IF (t′Change) THEN
DO FOR l ∈ Λ′

DO FOR k = 1 TO n
IF (sk = 0 AND w′

kl �= 0) s′k := w′
kl/t′l

END DO

END DO

END IF

“Trying to update the vector t′” can be accomplished similar to the above with
the only distinction that the cycle “DO FOR l ∈ Λ′” in the second IF-operator
should be replaced by “DO FOR k ∈ K ′”. Coming up next is the updating of W ′:
The same with the recalculation of s′′, t′′ and W ′′, for which we should introduce
the index subsets K ′′, Λ′′ and Ω′′ to denote the indices of the elements of the
vector s′′, vector t′′ and matrix W ′′ respectively that has changed at the current
step of the recalculation process.

Finally, it is worth mentioning the following remarkable property of the check
matrix W : in every its 2 × 2-submatrix, any element is equal to the product of
the rest three elements. To make sure of that, designate by i1, i2 the numbers of
the rows and by j1, j2 the numbers of the columns forming the submatrix under
consideration. Then, according to the definition (14).

Parameter Partition Methods for Optimal Numerical Solution 199

Table 5. Updating W ′

IF (s′Change) THEN
DO FOR k ∈ K′

DO FOR l = 1 TO n
IF (t′l �= 0) w′

kl := s′kt′l
END DO

END DO

END IF

IF (t′Change) THEN
DO FOR l ∈ Λ′

DO FOR k = 1 TO n
IF (s′k �= 0) w′

kl := s′kt′l
END DO

END DO

END IF

wi1j1 = σi1τj1 , wi1j2 = σi1τj2 ,

wi2j1 = σi2τj1 , wi2j2 = σi2τj2 .

Multiplying any three of the above equalities, e.g., the 1st, 2nd and 4th, we get

wi1j1wi1j2wi2j2 = σi1τj1σi1τj2σi2τj2 .

The square of any of the components of σ and τ is 1, so that

wi1j1wi1j2wi2j2 = τj1σi2 = wi2j1 . (16)

The same with the rest elements of the submatrix:

wi1j1wi1j2wi2j1 = wi2j2 , (17)

wi1j2wi2j1wi2j2 = wi1j1 , (18)

wi1j1wi2j1wi2j2 = wi1j2 . (19)

Sometimes, the relations (16)–(19) may prove helpful in further refining the
check matrix W . For instance, let us be about to subdivide the leading interval
system Qx = r in the element qkl while the corresponding element wkl of the
check matrix W is zero, i.e. normally we will have to engender two systems-
descendants instead of Qx = r. It is advisable to make an effort to determine
wkl by searching 2 × 2-submatrices of W having all the entries nonzero ex-
cept wkl. If such a submatrix in W is found, we assign wkl the product of the
rest its three elements. The above stated can be implemented as the following
program.

200 S.P. Shary

Table 6. Refining W by 2 × 2-submatrix search

DO FOR i = 1 TO n
DO FOR j = 1 TO n

IF (i �= k AND j �= l) THEN

IF (wij �= 0 AND wil �= 0 AND wkj �= 0) THEN
wkl := wijwilwkj ;
EXIT

END IF

END IF

END DO

END DO

where EXIT operator means leaving all the blocks and cycles in the above code.

3.4 Sifting Unpromising Records

Next, we consider the modification of the parameter partition method resulting
from the computation of the estimates Υ for the midpoints of the leading sys-
tems. It enables us to partially control the precision of the current estimate for
min{ xν | x ∈ Ξ(A, b), }, as well as to delete unpromising records, which never
become the leading ones, from the working list L. Thanks to the last feature the
growth of the list L is confined to some extent.

Let, along with the estimates Υ (Q, r) for the interval linear systems Qx = r,
the values Υ (�Q, �r) be computed during the algorithm run where “�” means
taking a point from the interval. It is fairly simple to realize that

Υ (�Q, �r) ≥ Υ (Q, r)

and the values of Υ (�Q, �r) approximate min{ xν | x ∈ Ξ(A, b) } from above.
If we define, for each step of our PPS-method,

ω := min Υ (�Q, �r) (20)

over all the interval linear systems Qx = r which have been in the list L up to
the current step, then

min{ xν | x ∈ Ξ(A, b) } ≤ ω.

On the other hand, if Qx = r is the leading interval system, then

Υ (Q, r) ≤ min{ xν | x ∈ Ξ(A, b) },
so that one more stopping criterion in our algorithm may be attaining the re-
quired smallness of (ω − Υ (Q, r)).

Next, an interval linear system Qx = r satisfying at some step the condition

Υ (Q, r) > ω (21)

Parameter Partition Methods for Optimal Numerical Solution 201

will never become the leading one, and deleting the corresponding record from
the working list L would have no effect on the result of the execution of the
algorithm. In general, all the newly generated records should be tested by the
inequality (21), while the total clean up of the working list — looking through
L and removing the records satisfying (21) from it — makes sense only after the
value of ω changes.

Choosing (�Q, �r) ∈ Arg min{Υ (Q, r) | Q ∈ Q, r ∈ r } would be an
ideal outcome, but in general it is not at all easier than the original prob-
lem (3)–(4). So, to minimize the possible deviation of (�Q, �r) from the set
Argmin{Υ (Q, r) | Q ∈ Q, r ∈ r }, we can take �Q and �r as the midpoints of
the matrix Q and right-hand side vector r, i.e. as mid Q and mid r respectively.

3.5 Influence of the Basic Method

To start many procedures for enclosing the solution sets to interval linear sys-
tems, we need an initial interval that contains the solution set under estimation.
Such are, for instance, interval Gauss-Seidel iteration, Krawczyk method and
some others. It is not hard to understand that an enclosure of the solution set
to a leading system Qx = r , found at a previous step, may serve as an initial
approximation for the procedures enclosing the solution sets to the systems-
descendants Q′x = r′ with Q′ ⊆ Q and r′ ⊆ r. The same trick is applicable
to the computation of the “inverse interval matrix” which we need in the mono-
tonicity test of §3.1 and in selecting the subdivided element according to the
technique of §3.2.

Hence, having chosen such a basic method that requires a starting outer ap-
proximation, it makes sense to preserve the interval enclosures of both the so-
lution set and “inverse interval matrix” obtained at the preceding step of the
algorithm. To do that, we have to enlarge the records forming the working list
L by two more fields, so that now L contains neither triples (7) nor six-term
records (15), but eight-term records

(
Q, r, Υ (Q, r), W, s, t, Y , x

)
,

where the first three fields has the same meaning as in (7), the check matrix W
and check vectors s, t have been introduced in §3.3 and, additionally,

Y is an interval n × n-matrix, such that Y ⊇ {Q−1 | Q ∈ Q },
x is an interval n-vector, such that x ⊇ Ξ(Q, r).

Every technique that encloses the solution set to interval linear systems and
satisfies the condition (C2) usually produces the exact estimate Υ (Q, r) not only
for point (noninterval) Q and r, but for a wider data set, when a part of the
elements in either Q or r can be intervals. For instance, interval Gauss-Seidel
iteration [4,5] and stationary iterative single-step and total-step procedures [2]
provide the exact estimate Υ (Q, r) in case of the point matrix Q, no matter what
the right-hand side vector r is. The estimate Υ (Q, r) obtained through interval
Gauss elimination is, obviously, exact for the triangular matrices Q. The list

202 S.P. Shary

of examples might be continued as well. There can exist more sophisticated
conditions on the mutual disposition of the elements in the interval matrix Q
and vector r, their widths, magnitudes, and so on.

We thus may not wait for the complete “deintervalization” of the leading in-
terval system Qx = r (the termination criteria for “DO WHILE” cycle in Table 1)
to stop the PPS-method. Instead, it is quite sufficient that the leading estimate
Υ (Q, r) is exact.

One can go even further and make provision for a dynamic runtime change
of the basic method Encl . Originally, Encl may be a technique with a wide
applicability scope, although having a low convergence rate. Afterward, as the
algorithm reaches a prescribed narrowness of the interval systems-descendants,
we can switch Encl to a more precise specialized technique.

The conclusion one ought to draw from the above stated is that, to achieve
the best possible efficacy of the parameter partition methods, all the components
of the practical algorithm, namely

data structure (in particular, the form of the records from L),
the way the working list L is processed,
subdivision strategy, etc.,

should be carefully adapted to the features of the specific problem under solution.

3.6 Overall Computational Scheme

The pseudocodes of Tables 7 and 8 sum up the above modifications of the pa-
rameter partition method for outer interval estimation of the solution sets to the
interval linear systems.

Theoretically, Rohn modification enables us to decrease the upper bound of
the computational complexity of PPS-methods from 2n2+n to 4n, but

• This is done at the price of substantial complication of the algorithm, so
that its informational complexity becomes quite high,

• When solving large practical problems of the dimensions greater than several
tens, both 2n2+n and 4n are unattainable and parameter partition technique
should be considered rather as an iteration procedure that does not work
to the natural completion. As a consequence, the check matrix W remains
mostly zero and we cannot avail ourselves of the information followed from
the equalities (12)–(13).

To our mind, it is up to the user to decide in each specific case, judging on
the size of the interval system, its structure, etc., whether incorporating Rohn
modification into this or that implementation of parameter partition technique
is really expedient. This is why we present two overall computational schemes,
both with and without Rohn modification.

In Tables 7 and 8, it is supposed that interval Gauss-Seidel iteration is taken
as the basic enclosing method Encl , but this is set just for certainty. We should
emphasize that the parameter partition method is rather a general scheme, while
Tables 7 and 8 present only some of its possible implementations. The construc-
tions of the above subsections contain, in particular, a number of “free variables”

Parameter Partition Methods for Optimal Numerical Solution 203

Table 7. Algorithm LinPPS1

DO WHILE
(

(the leading estimate Υ (Q, r) is not exact) OR (ω − Υ (Q, r) > ε)
)

using the formulas (10), compute the interval enclosures of the derivatives

∂xν(Q, r)

∂qij
and

∂xν(Q, r)

∂ri
,

that correspond to the interval elements qij and ri with nonzero width;

“squeeze” according to (8)–(9) the interval elements of Q and r for which
we have detected the monotonicity of xν with respect to qij and rj ,
denote the interval matrix and vector thus obtained by Q and r too;

find, among the elements of the system Qx = r, an interval h
that corresponds to the largest of the products

∣∣
∣
∣

∂xν(Q, r)

∂qij

∣∣
∣
∣ · wid qij ,

∣∣
∣
∣

∂xν(Q, r)

∂ri

∣∣
∣
∣ · wid ri, i, j ∈ { 1, 2, . . . , n };

beget the interval “systems-descendants” Q′x = r′ and Q′′x = r′′ so that
if h = qkl for some k, l ∈ { 1, 2, . . . , n }, then set

q′
ij := q′′

ij := qij for (i, j) �= (k, l), q′
kl := q

kl
, q′′

kl := qkl,

r′ := r′′ := r;
if h = rk for some k ∈ { 1, 2, . . . , n }, then set

r′
i := r′′

i := ri for i �= k, r′
k := rk, r′′

k := rk,
Q′ := Q′′ := Q;

compute the interval vectors x′ = Encl (Q′, r′) and x′′ = Encl (Q′′, r′′),
taking x as an initial approximation;

assign the estimates υ′ := Υ (Q′, r′) and υ′′ := Υ (Q′′, r′′);

sharpen the enclosures for the “inverse interval matrices”
Y ′ ⊇ (Q′)−1 and Y ′′ ⊇ (Q′′)−1, taking Y as an initial approximation;

compute the estimates Υ (mid Q′, mid r′) and Υ (mid Q′′, mid r′′), and set
μ := min{ Υ (mid Q′, mid r′), Υ (mid Q′′, mid r′′) };

delete the former leading record (Q, r, υ,Y , x) from the list L;

if υ′ ≤ ω, then put the record (Q′, r′, υ′, Y ′, x′) into the list L
so that the values of the third field of the records in L increase;

if υ′′ ≤ ω, then put the record (Q′′, r′′, υ′′, Y ′′, x′′) into the list L
so that the values of the third field of the records in L increase;

if ω > μ, then set ω := μ and clean up the list L, i.e.
remove from it all such records (Q, r, υ,Y , x), that υ > ω;

END DO

204 S.P. Shary

Table 8. Algorithm LinPPS2

DO WHILE
(

(the leading estimate Υ (Q, r) is not exact) OR (ω − Υ (Q, r) > ε)
)

using the formulas (10), compute the interval enclosures of the derivatives

∂xν(Q, r)

∂qij
and

∂xν(Q, r)

∂ri
,

that correspond to the interval elements qij and ri with nonzero width;

“squeeze” according to (8)–(9) the interval elements of Q and r for which
we have detected the monotonicity of xν with respect to qij and rj ,
denote the interval matrix and vector thus obtained by Q and r too;

find, among the elements of the system Qx = r, an interval h
that corresponds to the largest of the products

∣
∣
∣∣

∂xν(Q, r)

∂qij

∣
∣
∣∣ · wid qij ,

∣
∣
∣∣

∂xν(Q, r)

∂ri

∣
∣
∣∣ · wid ri, i, j ∈ { 1, 2, . . . , n };

trying to refine the check matrix W according to the procedure of Table 6;

beget one or two interval “systems-descendants” Q′x = r′ and Q′′x = r′′

according to the procedure of Table 2;

if two systems-descendants have been generated, calculate the new check
matrices W ′, W ′′ and vectors s′, s′′, t′, t′′ according to the procedures
of Table 3 and Tables 4–5; otherwise, set W ′ := W , s′ := s, t′ := t;

compute the interval vectors x′ = Encl (Q′, r′) and, possibly,
x′′ = Encl (Q′′, r′′), taking x as the initial approximation;

assign the estimates υ′ := Υ (Q′, r′) and, possibly, υ′′ := Υ (Q′′, r′′);

sharpen the enclosures for the “inverse interval matrices” Y ′ ⊇ (Q′)−1

and, possibly, Y ′′ ⊇ (Q′′)−1, taking Y as the initial approximation;

compute the estimates Υ (mid Q′, mid r′) and, possibly, Υ (mid Q′′, mid r′′),
and set μ := min{Υ (mid Q′, mid r′), Υ (mid Q′′, mid r′′) };

delete the former leading record (Q, r, υ, Y , W, s, t, x) from the list L;

if υ′ ≤ ω, then put the record (Q′, r′, υ′, W ′, s′, t′, Y ′, x′) into the list L
so that the values of the third field of the records in L increase;

if the two systems-descendants has been engendered and υ′′ ≤ ω, then
put the record (Q′′, r′′, υ′′, W ′′, s′′, t′′, Y ′′, x′′) into the list L
so that the values of the third field of the records in L increase;

if ω > μ, then set ω := μ and clean up the list L, i.e.
remove from it all such records (Q, r, υ, W, s, t, Y , x), that υ > ω;

END DO

Parameter Partition Methods for Optimal Numerical Solution 205

to be tuned and determined under specific circumstances. We can, therefore,
speak about a whole class of methods based on the common general idea of
partitioning the interval parameters of the system.

To start the algorithm of Table 7, which we shall call LinPPS1, one should

• Find crude enclosures for the solution set and the inverse interval matrix,
that is, compute x ⊇ Ξ(A, b) and Y ⊇ A−1,

• Assign the accuracy ε > 0,
• Set Υ (A, b) := x and ω := +∞,
• Initialize working the list L by the record (A, b, x, Y , x).

To start the algorithm of Table 8, called LinPPS2, one needs accomplish the
first three items as in the previous case, then set W := 0, s := 0, t := 0 for the
check matrix W and check vectors s and t introduced in §3.3 and initialize the
working list L by the record (A, b, x, W, s, t, Y , x).

Parallelization is another important point. Similar to its nearest relatives —
“branch-and-bound” based interval global optimization techniques from [3,4,12]
— our parameter partition methods for interval systems of equations are readily
adapted for parallel processing, but deeper inquiring into this issue is beyond
the scope of the present work.

References

1. Shary, S.P.: Reliab. Comput. 8, 321–419 (2002)
2. Alefeld, G., Herzberger, J.: Introduction to interval computations. Academic Press,

New York (1983)
3. Hansen, E., Walster, G.W.: Global optimization using interval analysis. Marcel

Dekker, New York (2004)
4. Kearfott, R.B.: Rigorous global search: continuous problems. Kluwer, Dordrecht

(1996)
5. Neumaier, A.: Interval methods for systems of equations. Cambridge University

Press, Cambridge (1990)
6. Rohn, J.: Lin Algebra Appl. 126, 39–78 (1989)
7. Shary, S.P.: SIAM J. Numer. Anal. 32, 610–630 (1995)
8. Kreinovich, V., Lakeyev, A.V., Rohn, J., Kahl, P.: Computational complexity and

feasibility of data processing and interval computations. Kluwer, Dordrecht (1997)
9. Kearfott, R.B., Nakao, M.T., Neumaier, A., Rump, S.M., Shary, S.P., van Henten-

ryck, P.: Standardized notation in interval analysis (2002),
http://www.nsc.ru/interval/INotation.pdf

10. Beeck, H.: Computing 10, 231–244 (1972) (in German)
11. Nickel, K.: Computing 18, 15–36 (1977) (in German)
12. Ratschek, H., Rokne, J.: New computer methods for global optimization. Ellis

Horwood–Halsted Press, Chichester–New York (1988)
13. Horst, R., Tuy, H.: Global optimization. deterministic approaches. Springer, Berlin

(1995)
14. Shary, S.P.: Interval Comput. 2(4), 18–29 (1992)
15. Hansen, E.: On linear algebraic equations with interval coefficients. In: Hansen, E.

(ed.) Topics in interval analysis, pp. 35–46. Clarendon Press, Oxford (1969)

http://www.nsc.ru/interval/INotation.pdf

	Parameter Partition Methods for Optimal Numerical Solution of Interval Linear Systems
	Introduction
	Parameter Partition Method for Interval Linear Systems
	Modifications of Parameter Partition Methods
	Monotonicity Test
	Subdivision Strategy
	``Rohn Modification''
	Sifting Unpromising Records
	Influence of the Basic Method
	Overall Computational Scheme

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

