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For the data fitting problem under interval uncertainty, we introduce the concept of
strong compatibility between data and parameters. It is shown that the new strengthened
formulation of the problem reduces to computing and estimating the so-called tolerable
solution set for interval systems of equations constructed from the data being processed.
We propose a computational technology for constructing a “best-fit” linear function from
interval data, taking into account the strong compatibility requirement. The properties
of the new data fitting approach are much better than those of its predecessors: strong
compatibility estimates have polynomial computational complexity, the variance of the
strong compatibility estimates is almost always finite, and these estimates are rubust. An
example considered in the concluding part of the paper illustrates some of these features.

Keywords: Data fitting problem; interval uncertainty; compatibility of data and parame-
ters; strong compatibility; interval system of equations; tolerable solution set; recognizing
functional; nondifferentiable optimization.

1. Introduction

1.1. Problem statement

The work is devoted to the development of methods for analyzing data that are
inaccurate and have interval uncertainty. We consider a linear regression model

y = β0 + β1x1 + β2x2 + · · · + βmxm, (1)

in which x1, x2, . . . , xm are independent variables (also called exogenous, explana-
tory, predictor, or input variables), y is a dependent variable (also called endogenous,
response, criterion, or output variable), and β0, β1, . . . , βm are some coefficients.
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These unknown coefficients should be determined from a number of measurements
(observations) of the values x1, x2, . . . , xm and y.

The measurement results are inaccurate, and we assume that they have bounded
uncertainty (see Milanese et al. [1996]) when we know only some intervals that
provide us with two-sided bounds for the exact values of the measured quantities.
Therefore, the ith measurement results in such intervals x

(i)
1 , x

(i)
2 , . . . , x

(i)
m , y(i) that

the actual value of x1 is within x
(i)
1 , the actual value of x2 is within x

(i)
2 , and so

on, up to y, with its actual value being within y(i).
In total, there are n measurements, so that the index i can take values from

the set {1, 2, . . . , n}. We need to find or somehow estimate the coefficients βj , j =
0, 1, . . . , m, for which the linear function (1) would “best approximate” the data.
The ideal is, of course, the case when the graph of the constructed function (1)
“passes through all measurement points”, i.e. when the approximation of the data
is indeed complete, in exactly the same way as, for example, in the interpolation.

1.2. Main ideas and results of the work

In the case when the data are inaccurate, when each measurement or observation
represents an entire set of possible values rather than a single point, the very concept
of “passing through measurement points” must be rethought. The fact is that now
the sets of measurement uncertainty acquire a structure that makes it necessary to
distinguish between different cases of passing a function graph through these sets.
This is caused, in particular, by the inputs and outputs of the system (corresponding
to independent arguments of the function and the dependent variables) differing
from each other in their purpose. In addition, measurements of inputs and outputs
can be performed in various ways, by various instruments and techniques, or even
at different points in time.

In order to take into account these new realities, we introduce the concepts of
weak compatibility and strong compatibility of data and parameters of the functional
dependence. All parameters having weak compatibility with the data forms a set,
which is known in interval analysis as the united solution set for an interval system
of equations constructed from interval measurement data. On the other hand, the
set of model parameters that satisfy the strong compatibility conditions is the so-
called tolerable solution set for an interval system of equations constructed from
interval measurement data.

The tolerable solution sets for interval systems of linear algebraic equations is
relatively well studied. It is always a convex polyhedral set and there exist prac-
tical methods for recognizing whether it is empty or nonempty, as well as for its
inner and outer estimations. Moreover, recognizing whether the tolerable solution
set for an interval linear equation system is empty or nonempty is a polynomially
complex problem, whereas recognition of the united solution set is NP-hard. As
a consequence, the properties of the new data fitting approach are much better
than those of its predecessors: strong compatibility estimates have polynomial
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computational complexity. Additionally, the variance of the strong compatibility
estimates is almost always finite, and these estimates are rubust.

In our work, we discuss practical methods for the solution of the data fitting
problem under the strong compatibility requirement. Our main tool is a technique
that uses the so-called recognizing functional of the tolerable solution set to the
interval system of linear equations constructed from the measurement data.

Although we study in detail the situation, when all the measurements are subject
to the same compatibility conditions, the most general case in processing interval
data is that some measurements with strong compatibility are combined with those
where the usual weak compatibility takes place. Then the data fitting problem
becomes even more complicated, and its analysis makes it necessary to consider
the so-called AE solutions and AE solution sets for interval systems of equations.
The corresponding mathematical theory, in fact, has already been developed, and
there are computational methods for solving problems of recognition and estimation
of the AE solution sets (see e.g. Sharaya and Shary [2016] and Shary [2002]). We
postpone the detailed exposition of these results until future publications.

This work continues and supplements an earlier article [Shary (2017)], and our
notation system corresponds to the informal international standard [Kearfott et al.
(2010)]. In particular, intervals and interval objects are throughout indicated in bold
type, while noninterval (point) values, quantities, and variables are not designated
in any special way.

2. Data Fitting Under Interval Uncertainty

2.1. Short review

The data fitting problem is a popular and practically important problem, in which
we are required to construct, according to empirical data, a functional dependence
of a given type between “input” and “output” quantities. In our work, we consider
in detail the simplest linear function of the form

y = β0 + β1x1 + β2x2 + · · · + βmxm, (2)

although many constructions and conclusions are also valid in the general nonlinear
case. It is necessary to determine the unknown coefficients βi so that the resulting
linear function “best-fits” a given set of values of the independent arguments and
dependent variable,

x
(1)
1 , x

(1)
2 , . . . , x

(1)
m , y(1),

x
(2)
1 , x

(2)
2 , . . . , x

(2)
m , y(2),

...
...

. . .
...

...

x
(n)
1 , x

(n)
2 , . . . , x

(n)
m , y(n).

(3)

The above problem is often referred to as “linear regression problem” in statistics
or as “parameter identification problem” in engineering language.
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Substituting data (3) in equality (2), we obtain, after renaming xij := x
(i)
j and

yi := y(i), the system of equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β0 + x11β1 + · · · + x1nβm = y1,

β0 + x21β1 + · · · + x2nβm = y2,
...

...
. . .

...
...

β0 + xn1β1 + · · · + xnmβm = yn,

(4)

with the unknowns β0, β1, . . . , βm, or briefly

Xβ = y, (5)

with n× (m + 1)-matrix X = (xij), (m + 1)-vector β = (βi), and n-vector y = (yi)
such that

X =

⎛
⎜⎜⎜⎜⎝

1 x11 · · · x1m

1 x21 · · · x2m

...
...

. . .
...

1 xn1 · · · xnm

⎞
⎟⎟⎟⎟⎠, β =

⎛
⎜⎜⎜⎜⎜⎝

β0

β1

...

βm

⎞
⎟⎟⎟⎟⎟⎠, y =

⎛
⎜⎜⎜⎜⎜⎝

y1

y2

...

yn

⎞
⎟⎟⎟⎟⎟⎠

(where the columns of the matrix X are, apparently, more convenient to be num-
bered from zero). A solution to systems (4) and (5), either ordinary or in a gener-
alized sense, is taken as an estimate of the parameters β0, β1, . . . , βm. A graphical
illustration of the data fitting problem is shown in traditional Fig. 1: we have to find
a straight line that “best approximates” the set of points with the coordinates (3).

In the practical data fitting problems, the data is almost always inaccurate, since
the results of measurements and observations are influenced by external uncon-
trolled factors, the measuring devices themselves are not absolutely accurate, etc.
Thus, in reality, we must deal with this or that uncertainty — the state of partial
knowledge of the measured quantity, when we know some value, but it is approx-
imate, and there is also some information (qualitative or quantitative) about the
error of this value.

x

y

Fig. 1. Illustration of the data fitting problem.
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How to describe this uncertainty? In other words, what “uncertainty model” do
we accept for the data? The traditional choice is a probabilistic model of errors, the
foundations of which were laid at the turn of the eighteenth and nineteenth centuries
by C. F. Gauss and P.-S. Laplace. According to this approach, the errors in mea-
surements and observations are random quantities that can be adequately described
by the mathematical probability theory, and we (more or less) know the charac-
teristics of these random variables. Over the past two centuries, the probabilistic
model of measurement errors has been intensively developed by many outstand-
ing mathematicians and statisticians. It has become very popular, turning into the
main tool for data processing. Nevertheless, the application of this model puts a
lot of nontrivial questions for both engineers and mathematicians, the answers to
which are sometimes not entirely satisfactory.

In general, if the probabilistic description of the measurement errors is inade-
quate, it is often more convenient to work with uncertainties and inaccuracies in
the data using interval analysis methods. In this approach, we suppose that interval
estimates of the measurement results are given instead of probabilistic distributions,
i.e. we know the smallest and largest bounds of possible values of the quantities of
interest. In our data fitting problem, it is assumed that interval estimates are given
for xij and yi:

xij ∈ xij = [xij , xij ] and yi ∈ yi = [y
i
, yi].

The pioneer of the new approach to data processing was Kantorovich, who,
in 1962, first articulated the above principles and briefly outlined the formulation
of the new problem and some methods for solving it in an article [Kantorovich
(1962)]. The first Western article on this topic was authored by Schweppe [1968].
Later, a significant contribution to the development of the theory was made by
many researchers, and the interested reader can find the necessary information on
the current state of this area e.g. in the literature [Combettes (1993); Jaulin et al.
(2001); Milanese et al. (1996); Polyak and Nazin (2006); Zhilin (2005, 2007)] (see
also the references in the above articles). Our publications [Shary (2012, 2016);
Shary and Sharaya (2013)], which develop the so-called maximum compatibility
method, are devoted to this same problem.

2.2. Definition of compatibility between parameters and data

In the formulation of Kantorovich and his followers, the data fitting problem under
interval uncertainty did not cover the most general case: the inaccuracies in the
input data were absent, i.e. it was supposed that xij = xij . Then, for the linear
function (2), there should be

y
i
≤ β0 + β1xi1 + · · · + βmxim ≤ yi, (6)

i = 1, 2, . . . , n. The compatibility of parameters and data was understood as the
passage of the graph of the constructed functional dependence, i.e. of a straight line,
through all the corridors of data uncertainty for the output variable (see Fig. 2).
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Fig. 2. Illustration of the compatibility between parameters of a linear model and interval mea-
surement data for exact values of independent variable.

This particular case, nevertheless, is practically very important, and its careful
solution facilitated the wide dissemination of the new approach. Mathematically,
relations (6) form a system of linear inequalities, which can be solved, for exam-
ple, by linear programming methods (this was proposed in Kantorovich [1962]). In
the general case, when both input and output data have interval uncertainty, the
following definition seems to be natural.

Definition 1. The parameters β0, β1, . . . , βm of the linear function (2) are
called compatible (or weakly compatible) with the interval experimental data
(xi1, xi2, . . . , xim, yi), i = 1, 2, . . . , n, if, for each measurement i, there exist such
representatives xi1 ∈ xi1, xi2 ∈ xi2, . . . , xim ∈ xim and yi ∈ yi within the measured
intervals, that the equality

β0 + β1xi1 + · · · + βmxim = yi

is valid.

According to this definition, the data of each measurement is a large point
“inflated” to an axis aligned box in the space R

m+1. The fact that the graph of
the constructed dependence “passes” through such a point is understood as its
intersection with this box (see Fig. 3).

Using the formal language of predicate logic (see e.g. Barker-Plummer et al.
[2011]), the definition of the set of parameters β = (β0, β1, . . . , βm)� compatible
with the data (3) looks as follows:

{β ∈ R
m+1 | (∃x11 ∈ x11) · · · (∃ y1 ∈ y1)(β0 + x11β1 + · · · = y1)&

(∃x21 ∈ x21) · · · (∃ y2 ∈ y2)(β0 + x21β1 + · · · = y2)& . . .&

(∃xn1 ∈ xn1) · · · (∃ yn ∈ yn)(β0 + xn1β1 + · · · = yn)}. (7)

Next, we transform the separating predicate, i.e. the logical formula that stands
after the vertical line in the above definition of the set.
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Fig. 3. Illustration of compatibility between parameters of a linear model and interval measure-
ment data in the general case.

If P and Q are propositional formulas depending on the same variable v, then,
as is well known, (∃ vP (v)) & (∃ vQ(v)) is not equivalent to ∃ v(P (v) & Q(v))
[Barker-Plummer et al. (2011)]. But the sets of variables that are members of indi-
vidual conjunctions in formula (7) do not intersect each other. Because of this, we
can use the weaker equivalence:

(∃ v′P (v′)) & (∃ v′′Q(v′′)) ⇔ ∃ v′ ∃ v′′(P (v′) & Q(v′′)).

As a consequence, we obtain the formula equivalent to the separating predicate in
the set (7):

(∃x11 ∈ x11) · · · (∃ y1 ∈ y1)(∃x21 ∈ x21) · · · (∃ y2 ∈ y2) · · ·
(∃xn1 ∈ xn1) · · · (∃ yn ∈ yn)((β0 + x11β1 + · · · = y1)&

(β0 + x21β1 + · · · = y2)& . . . &(β0 + xn1β1 + · · · = yn)). (8)

If we organize, from the input data of the problem, an n × (m + 1)-matrix
X = (xij) and an n-vector y = (yi), then the large quantifier prefix of formula (8)
can be written briefly in the form (∃X ∈ X)(∃ y ∈ y), where X is an n× (m + 1)-
matrix with the elements xij , and y = (yi) is an n-vector. Instead of the large
formula (8), we thus get

(∃X ∈ X)(∃ y ∈ y)((β0 + x11β1 + · · · = y1)&

(β0 + x21β1 + · · · = y2)& . . . &(β0 + xm1β1 + · · · = yn)).

But the resulting conjunction of equalities standing after the quantifier prefix is
nothing more than the vector equality Xβ = y. Therefore, we can finally conclude
that the set of parameters compatible with the data in the sense of the first definition
is a set determined as

{β ∈ R
m+1 | (∃X ∈ X)(∃ y ∈ y)(Xβ = y)}.

In the interval analysis, it is called united solution set to the interval system of
linear equations Xβ = y, denoted by Ξuni(X, y), and informally we can describe
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it as

Ξuni(X, y) = {β ∈ R
m+1 |Xβ = y for some X ∈ X and y ∈ y}.

2.3. Strong compatibility between parameters and data

An important new circumstance is that the “swollen” data points acquire an addi-
tional structure that the initial infinitesimal points did not have. They become direct
Cartesian products of intervals having different meanings, which correspond to
input (independent) variables and output (dependent) variable. As a consequence,
the different faces of the measurement uncertainty box have different meanings (in
Fig. 3, these are the vertical and horizontal sides of the rectangles), and the data
fitting problem under interval inaccuracy can take on various contexts. It becomes
important how exactly the graph of the constructed function passes through the
uncertainty box, which was first noticed, apparently, in Gutowski [2006].

If the process of measuring the values of the input and output is broken in
time and, hence, divided into stages, when the outputs are measured after fixing
the values of the inputs, then another understanding of “compatibility” is more
adequate, in which the output constraint must be met uniformly at any value of
the inputs. Formally, this situation is described by another definition.

Definition 2. The parameters β0, β1, . . . , βm of the linear function (2) are
strongly compatible with the interval experimental data (xi1, xi2, . . . , xim, yi),
i = 1, 2, . . . , n, if, for each measurement i and for any representatives xi1 ∈ xi1, xi2 ∈
xi2, . . . , xim ∈ xim, there exist yi ∈ yi within the measured intervals, that the
equality

β0 + xi1β1 + xi2β2 + · · · + ximβm = yi

is valid.

The set of parameters which are strongly compatible with the data according
to the second definition is described, in the formal language, as follows:

{β ∈ R
m+1 | (∀x11 ∈ x11) · · · (∃ y1 ∈ y1)(β0 + x11β1 + · · · = y1)&

(∀x21 ∈ x21) · · · (∃y2 ∈ y2)(β0 + x21β1 + · · · = y2)& . . . &

(∀xn1 ∈ xn1) · · · (∃ yn ∈ yn)(β0 + xn1β1 + · · · = yn)}. (9)

We perform equivalent transformations with the selecting predicate of this set,
analogous to those carried out previously for Definition 1, using additionally the
equivalence

(∀uP (u)) & (∀ vQ(v)) ⇔ ∀u ∀ v(P (u) & Q(v)).

It turns out that the set (9) coincides with the set specified as

{β ∈ R
m+1 | (∀X ∈ X)(∃ y ∈ y)(Xβ = y)},
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x

y

Fig. 4. Illustration of the strong compatibility between parameters of a linear model and interval
measurement data.

Fig. 5. Illustration of the weak compatibility (below) and strong compatibility (above) between
parameters of a nonlinear model and interval measurement data.

where X is an n × (m + 1)-matrix with the elements xij , and y = (yi) is an n-
vector. In interval analysis, this set is called the tolerable solution set Ξtol(X, y)
of the interval linear system of equations Xβ = y, since historically it originated
from practical problems in which the “tolerances” appear on the parameters of an
object [Neumaier (1986); Shary (1995b, 2004, 2019)]. Informally,

Ξtol(X, y) = {β ∈ R
m+1 | for any X ∈ X, there holds Xβ ∈ y}.
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As one can see, the definition of the tolerable solution set differs from the defi-
nition of the united solution set by only one logical quantifier, which is applied to
the matrix. But this leads to the fact that the properties of the tolerable solution
set are much unlike the properties of the united solution set.

2.4. Plan of the solution

The specificity of the traditional data fitting problem, where we operate with the
point (noninterval) values of measurements and observations, is the fact that the
compatibility (consistency) between the parameters of the model and the data is
an exceptional event that almost never takes place. In addition, even if there is
compatibility, it collapses after an arbitrarily small perturbation of the data. But
with an essential interval uncertainty, the set of parameters that are compatible
(consistent) with data in typical situations has a nonzero measure, being stable to
small perturbations in the data.

The solution of the data fitting problem from inaccurate data will be carried
out according to the following general scheme:

(1) We introduce a quantitative “measure of strong compatibility” between param-
eters and data.

(2) As an estimate of the parameters, we take the point in which the maximum of
this measure is achieved.

It is clear that, for a reasonable choice of the “compatibility measure”, the
evaluation of the parameters will always be performed by this method. But it is
completely unessential that the actual compatibility of the obtained parameters
and data will in fact take place. Similar to the traditional noninterval case, some-
times there may not exist a set of parameters that are compatible with the data in
accordance with Definition 1 or Definition 2. In other words, then there is no line
passing through all the uncertainty measurement boxes in the sense we need, either
ordinary or strong.

The main question arising in connection with the intended plan is how to take
the “measure of strong compatibility/incompatibility” of the data and parameters
of a regression line? There are natural requirements that this measure should sat-
isfy. With a nonempty solution set, it must be positive (or at least nonnegative)
for points from this set on which “strong compatibility” is actually achieved. For
points outside the solution set on which there is no “strong compatibility”, it can
be negative.

3. Interval Linear Systems of Equations

In this section, we consider in more detail the interval linear systems of equations,
i.e. the main object that arises in the solution of the data fitting problem under
interval uncertainty for the case of linear functional dependence.
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3.1. United and tolerable solution sets

Applying the notation traditional for numerical analysis and linear algebra, we write
an interval n × m-system of linear algebraic equations in the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + · · · + a1mxm = b1,

a21x1 + a22x2 + · · · + a2nxm = b2,

...
...

. . .
...

...

an1x1 + an2x2 + · · · + anmxm = bn,

(10)

or, briefly,

Ax = b, (11)

with interval n × m-matrix A = (aij) and n-vector b = (bi). Both (10) and (11)
are formal entries denoting a family of point linear systems Ax = b of the same
structure, with A ∈ A and b ∈ b. Each system of linear algebraic equations Ax = b,
whose matrix is taken from the interval matrix A and whose right-hand side b

belongs to b, can have solutions, and in many practical situations it makes sense
to consider them together, as a single set, i.e. taking their union. In this way, we
obtain the so-called united solution set

Ξuni(A, b) = {x ∈ R
m | there exist such A ∈ A and b ∈ b that Ax = b}.

It corresponds, apparently, to the simplest and the most natural understanding
of what is a “solution” to an interval system of equations. In a large number of
works, this set is simply called the “solution set”, without the epithet “united” (see
e.g. Mayer [2017], Moore et al. [2009] and Neumaier [1990]). Various techniques for
estimating it and identifying whether it is empty or nonempty are well developed
in modern interval analysis. In the formal language,

Ξuni(A, b) = {x ∈ R
m | (∃A ∈ A)(∃ b ∈ b)(Ax = b)},

or

Ξuni(A, b) = {x ∈ R
m | (∃A ∈ A)(Ax ∈ b)}.

But strong compatibility between parameters and data dictates a different
understanding of the solution to the interval system of equations. It corresponds to
the so-called tolerable solution set of the interval linear system of equations, the set
defined as

Ξtol(A, b) = {x ∈ R
m | for any A ∈ A, there holds the membership Ax ∈ b}.

This is the set of solutions to all point systems Ax = b, for which the product Ax

falls into the right-hand side intervals b for any A ∈ A. In the formal language,

Ξtol(A, b) = {x ∈ R
m | (∀A ∈ A)(∃ b ∈ b)(Ax = b)},
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or

Ξtol(A, b) = {x ∈ R
m | (∀A ∈ A)(Ax ∈ b)}.

It is not hard to realize that if the membership Ax ∈ b is valid for every A ∈ A,
then it certainly holds for some A ∈ A, i.e.

{x ∈ R
m | (∀A ∈ A)(Ax ∈ b)} ⊆ {x ∈ R

m | (∃A ∈ A)(Ax ∈ b)}.
The latter means that the following inclusion holds:

Ξtol(A, b) ⊆ Ξuni(A, b), (12)

i.e. the tolerable solution set is always a subset of the united solution set. In terms of
the data fitting problem under interval uncertainty, the above implies that if there is
a strong compatibility between parameters and data, then the usual compatibility
(which can be called “weak”) obviously takes place.

The tolerable solution set and the united solution set coincide with each other
if the matrix of the system is a point matrix, i.e. its width is zero:

Ξtol(A, b) = Ξuni(A, b) for any point matrix A.

When the matrix of the system expands, i.e. its width grows, then the tolerable
solution set decreases in size, while the united solution set increases, which is their
principal distinction. For essentially interval matrices A, with nonzero widths of
the elements, the difference between the solution sets Ξtol(A, b) and Ξuni(A, b) can
be considerable (see examples below).

The tolerable solution set can be empty if the intervals of the right-hand side
are too narrow in comparison with the interval elements of the matrix. Then the
product Ax gets “large range”, which may not fit into the corridors of the right-
hand sides of the system. For example, for the interval equation [1, 2]x = [2, 3], the
tolerable solution set is empty, In fact, for any nonnegative real t, the ratio of the
upper endpoint to the lower one is 2 in the product [1, 2]t = [t, 2t], whereas this
ratio is only 3/2 for the right-hand side. At the same time, there can be no negative
reals in the tolerable solution set, since the right-hand side [2, 3] is positive.

There are various ways to investigate whether the tolerable solution set is empty
or non-empty for a given interval system of linear equations (see Rohn [1986] and
Shary [1995b, 2004, 2012]), and we consider in detail one of them in Sec. 4.3 below.

3.2. Analytical descriptions of the tolerable solution set

The definitions of the solution sets given in the preceding section by means of logical
formulas are convenient and well understood by practitioners. Nevertheless, they
are not very suitable for solving some mathematical questions. For example, the
needs to compute with the solution sets as well as to find their estimates require
defining these sets through traditional arithmetic and analytical operations.

For the united solution set, there exist quite a lot of such equivalent reformu-
lations of its definition (see Mayer [2017], Neumaier [1990], Rohn [2005] and Shary
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[2019]). Also, its structure has been studied in detail. Below, we are presenting the
results that give analytic descriptions of the tolerable solution set to the interval
linear systems of equations.

The Rohn theorem [Rohn [1986, 2005]; Shary [2019]]. A point x ∈ R
m

belongs to the tolerable solution set of the interval n×m-system of linear algebraic
equations Ax = b if and only if x = x′ − x′′ for some vectors x′, x′′ ∈ R

m that
satisfy the system of linear inequalities⎧⎪⎪⎨

⎪⎪⎩
Ax′ − Ax′′ ≤ b,

−Ax′ + Ax′′ ≤ −b ,

x′, x′′ ≥ 0,

where A, b, A, and b are matrices and vectors made up of the lower and upper
endpoints of the interval elements of A and b, respectively.

To formulate the next result, we need the following notation. Let vert a denote
the set of vertices of the interval vector a ∈ IR

m, i.e.

vert a = {a ∈ R
m | either ai = ai or ai = ai, i = 1, 2, . . . , m}.

Also, card S will denote the cardinality of a finite set S, i.e. the number of elements
of S.

Theorem on the structure of the tolerable solutions set [Sharaya (2005a)].
Let Ai: be the ith row of the interval matrix A. For the interval n × m-system
of linear algebraic equations Ax = b, the tolerable solution set Ξtol(A, b) can be
represented in the form

Ξtol(A, b) =
n⋂

i=1

⋂
a∈vert Ai:

{x ∈ R
m | ax ∈ bi},

i.e. as the intersection of hyperstrips, the number of which does not exceed
n∑

i=1

card vert Ai:

and, moreover, does not exceed n · 2m.

The term “hyperstrip” in the formulation of this theorem is quite adequate and
justified by the fact that each of the inclusions ax ∈ bi for a ∈ Ai: is equivalent to
the two-sided inequality

bi ≤ ai1x1 + ai2x2 + · · · + aimxm ≤ bi,

which actually determines a “strip” between two hyperplanes in R
m. The theorem

on the structure of the tolerable solutions set gives, in essence, a representation
of the tolerable solution set in the form of a solution set to a system of two-sided
linear inequalities whose number is substantially smaller than the total number of
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extreme (“vertex”) inequalities of the interval system, equal to 2n(m+1). Overall, it
follows from the above results that the tolerable solution set for an interval system
of linear algebraic equations is a convex polyhedral set, no matter whether m ≤ n

or m ≥ n. In particular, the tolerable solution set is always connected and cannot
have disjoint parts.

Example 1. As an illustrative example, we consider the interval linear system of
equations ⎛

⎜⎝
[2, 4] [−2, 1]

[−1, 2] [2, 4]

[0, 1] [1, 2]

⎞
⎟⎠
(

x1

x2

)
=

⎛
⎜⎝

[−1, 2]

[−1, 2]

[0, 1]

⎞
⎟⎠. (13)

Its united solution set and tolerable solution set are depicted in Fig. 6.

Example 2. An expressive three-dimensional example is provided by the interval
system of linear algebraic equations⎛

⎜⎜⎝
[2, 3] [−0.75, 0.65] [−0.75, 0.65]

[−0.75, 0.65] [2, 3] [−0.75, 0.65]

[−0.75, 0.65] [−0.75, 0.65] [2, 3]

⎞
⎟⎟⎠
⎛
⎜⎜⎝

x1

x2

x3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

[−2, 2]

[−2, 2]

[−2, 2]

⎞
⎟⎟⎠. (14)

It is a particular case of the test parametric system proposed in Shary [1995a]. The
united and tolerable solution sets for (14) are shown in Figs. 7 and 8, and they are
visualized with the use of the software packages IntLinInc3D [Sharaya (2014)].

Although the interval linear system of equations in the last example is square
(m = n), while general rectangular systems are most common in data fitting

Fig. 6. United solution set and tolerable solution set for the interval linear system (13).
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Fig. 7. United solution set for the interval system (14).

Fig. 8. Tolerable solution set for the interval system (14).

problems (with m 	= n), the form of the solution sets in Figs. 7 and 8 (and in
Fig. 6 as well) is quite typical. They all are polyhedral sets that are bounded by
pieces of hyperplanes. But the tolerable solution set is also convex, whereas the
united solution set has only a convex intersection with each orthant of the space
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R
m, and it can be nonconvex as a whole (see the details in Mayer [2017], Neumaier

[1990] and Shary [2019]). Moreover, the united solution set of interval linear sys-
tems with matrices of incomplete rank can be disconnected or unbounded, which is
very unnatural for identification problems and data fitting. Readers can see specific
examples in the manual for the software package IntLinInc3D [Sharaya (2014)].

The problem of solving systems of linear inequalities is known to have poly-
nomial complexity (see, for example, Schrijver [1998]). As a consequence, it fol-
lows from the Rohn theorem that in general the recognition of the emptiness/
nonemptiness of the tolerable solution set for interval linear systems (as well
as finding a point from it) is also a polynomially solvable problem. Answering
the same question for the united solution set is generally an NP-hard problem
[Kreinovich et al. (1998)]. It is equally intractable to obtain outer estimates of the
united solution set.

3.3. Boundedness of the tolerable solution set

To conclude this section, we give a simple and useful result on the tolerable solution
set that allows us to investigate whether it is bounded or unbounded, i.e. whether
the tolerable solution set is finite in size or extends infinitely.

Recall that a set of vectors of a linear space is said to be linearly dependent if
one of the vectors in the set can be expressed as a linear combination, in which
not all coefficients are equal to zero, of the other vectors. If no vector in the set
can be expressed in this way, then the vectors are called linearly independent. An
equivalent definition: a finite set of vectors is said to be linearly dependent if there
exist scalars, not all of which are zeros, such that the linear combination of the
vectors with these scalars is equal to zero vector.

Irene Sharaya’s boundedness criterion [Sharaya (2005b)]. Let the tolerable
solution set to an interval linear system Ax = b be nonempty. It is unbounded if
and only if the matrix A has linearly-dependent noninterval columns.

The criterion of boundedness shows that the tolerable solution set is unbounded,
in fact, under exceptional circumstances, which are almost never fulfilled in practice,
when working with real-life interval data. That is, the tolerable solution set is mostly
bounded.

4. The Method of Recognizing Functional

The results from the previous section — the Rohn theorem and the structural the-
orem of Sharaya, in principle, provide tools for investigating the tolerable solution
set and working with it. In some situations, the first result is more convenient
and preferable, while in other cases the second result is more appropriate. Never-
theless, the representation of the tolerable solution set through a system of linear
inequalities has certain disadvantages. In particular, it is desirable to investigate
the tolerable solution set and work with it in terms of entire data intervals from
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the problem statement, and not with their individual endpoints that have multiple
occurrences in the system of inequalities.

In this section of our work, we briefly present the known results on the tolerable
solution set published earlier in the literature [Shary (1995b, 2004, 2019)].

In the sequel, the classical interval arithmetic IR plays an important role. IR is
an algebraic system formed by the intervals x = [x, x] ⊂ R so that the result of any
arithmetic operation “�” between the intervals is defined by their representatives
as

x � y = {x � y |x ∈ x, y ∈ y}, � ∈ {+,−, ·, /}.
Expanded constructive formulas for interval arithmetic operations are as follows
(see e.g. Mayer [2017], Moore et al. [2009], Neumaier [1990] and Shary [2019]):

x + y = [x + y, x + y],

x − y = [x − y, x − y],

x · y = [min{xy, x y, xy, xy}, max{xy, x y, xy, x y}],
x/y = x · [1/y, 1/y] for y 	� 0.

4.1. Derivation of the recognizing functional

The starting point for the further constructions is the following characterization of
points from the tolerable solution set (see e.g. Neumaier [1986], Sharaya [2005b],
and Shary [1995b]): for the interval system of linear algebraic equations Ax = b, a
point x̃ ∈ R

m belongs to the tolerable solution set Ξtol(A, b) if and only if

A · x̃ ⊆ b, (15)

where “·” is the interval matrix multiplication. The validity of this characterization
follows from the properties of interval matrix–vector multiplication and the defini-
tion of the tolerable solution set. We transform the relation (15) into an analytical
form.

First of all, we rewrite (15) as an equivalent system of component-wise inclu-
sions. By definition of the interval matrix–vector product

(A · x)i =
m∑

j=1

aijxj , i = 1, 2, . . . , n,

and then, instead of (15), we can write
m∑

j=1

aijxj ⊆ bi, i = 1, 2, . . . , n.

Each right-hand side of these inclusions may be represented as the sum of the
midpoint mid bi and the balanced (symmetric with respect to zero) interval
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[−radbi, radbi]:

m∑
j=1

aijxj ⊆ mid bi + [−radbi, radbi], i = 1, 2, . . . , n.

Adding (−mid bi) to both sides of the above relations, we get

m∑
j=1

aijxj − mid bi ⊆ [−radbi, radbi], i = 1, 2, . . . , n.

But inclusion of an interval into the balanced interval [−radbi, radbi] is equivalent
to the inequality on the absolute value. So,∣∣∣∣∣∣

m∑
j=1

aijxj − mid bi

∣∣∣∣∣∣ ≤ radbi, i = 1, 2, . . . , n,

which implies

radbi −
∣∣∣∣∣∣

m∑
j=1

aijxj − mid bi

∣∣∣∣∣∣ ≥ 0, i = 1, 2, . . . , n.

Therefore,

Ax ⊆ b ⇔ radbi −
∣∣∣∣∣∣mid bi −

m∑
j=1

aijxj

∣∣∣∣∣∣ ≥ 0, i = 1, 2, . . . , n.

Finally, we can convolve, over i, the conjunction of the inequalities in the right-hand
side of the logical equivalence obtained:

Ax ⊆ b ⇔ min
1≤i≤n

⎧⎨
⎩radbi −

∣∣∣∣∣∣mid bi −
m∑

j=1

aijxj

∣∣∣∣∣∣
⎫⎬
⎭ ≥ 0.

We thus arrive at the following result.

Theorem. Let A be an interval n×m-matrix and b be an interval n-vector. Then
the expression

Tol(x, A, b) = min
1≤i≤n

⎧⎨
⎩radbi −

∣∣∣∣∣∣mid bi −
m∑

j=1

aijxj

∣∣∣∣∣∣
⎫⎬
⎭

determines the mapping Tol : R
m× IR

n×m× IR
n → R, such that the membership of

a point x ∈ R
m in the tolerable solution set Ξtol(A, b) to the interval linear system
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of equations Ax = b is equivalent to nonnegativity of the mapping Tol in the point
x, i.e.

x ∈ Ξtol(A, b) ⇔ Tol(x, A, b) ≥ 0.

The tolerable solution set Ξtol(A, b) to the interval linear systems is therefore
the “level set” (also called “Lebesgue set”)

{x ∈ R
m |Tol(x, A, b) ≥ 0}

of the mapping Tol. We call this mapping the recognizing functional of the tolerable
solution set, since the range of values of the mapping is the numerical set R, i.e. the
real number line,a and Tol “recognizes”, by means of the sign of its values, whether
a point belongs to the solution set Ξtol(A, b).

4.2. Properties of the recognizing functional

Below, we outline the main properties of the recognizing functional. Their detailed
proofs can be found in Shary [1995b, 2004, 2019].

Proposition 1. The functional Tol is continuous over all variables. The func-
tional Tol is also Lipschitz continuous, i.e. continuous in a stronger sense.

Proposition 2. The functional Tol is concave with respect to x everywhere in R
m.

Proposition 3. The functional Tol(x, A, b) is a concave polyhedral function, i.e.
its hypograph is a polyhedral set and its graph is made up of pieces of hyperplanes.

As an illustration, Fig. 9 depicts the graph of the recognizing functional of the
tolerable solution set for the interval system (13). It is clearly seen from the figure
that the graph of the functional Tol really has a polyhedral shape.

The form of the expression for the functional Tol obviously implies that the
functional is bounded from above:

Tol(x, A, b) ≤ min
1≤i≤n

radbi,

since the subtracted absolute values are always nonnegative. In reality, even a
stronger assertion is true.

Proposition 4. The functional Tol(x, A, b) attains a finite maximum over the
entire space R

m.

Proposition 5. If Tol(x, A, b) > 0, then the point x belongs to the topological
interior of the tolerable solution set, i.e. x ∈ int Ξtol(A, b).

aIn mathematics, a functional is a mapping defined on an arbitrary set and having a numeric
range of values, usually the set of real numbers R or complex numbers C.
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Fig. 9. The graph of the recognizing functional of the tolerable solution set to the system (13).

It should be clarified that any point of topological interior is a point of the set
that belongs to it together with a ball (with respect to some norm) having the center
at this point. Consequently, points from the interior of the set are “robust” points
of the set, i.e. they remain within this set even after their small “perturbations”.
This fact often turns out to be important for practice.

Proposition 6. Let the interval linear system of equations Ax = b be such that,
for each index i = 1, 2, . . . , n, either there exists at least one nonzero element in the
ith row of the matrix A or none of the endpoints of the corresponding component
of the right-hand side bi is zero. Then the membership x ∈ int Ξtol(A, b) implies
the strict inequality Tol(x, A, b) > 0.

4.3. Solvability investigation

As a consequence of the above results, we can use the recognizing functional to
investigate whether the tolerable solution set is empty or nonempty. This can be
done according to the following scheme.

For the interval linear system of equations Ax = b, we solve the unconstrained
maximization problem for the recognizing functional Tol(x, A, b), with respect to x.
Let U = maxx∈Rm Tol(x, A, b), and it is attained at a point τ ∈ R

m. Then

• if U ≥ 0, then τ ∈ Ξtol(A, b) 	= ∅, i.e. the tolerable solution set to the system
Ax = b is not empty and τ lies in it;
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• if U > 0, then τ ∈ int Ξtol(A, b) 	= ∅, and the membership of the point τ in the
tolerable solution set is stable under small perturbations of A and b;

• if U < 0, then Ξtol(A, b) = ∅, i.e. the tolerable solution set to the interval linear
system Ax = b is empty.

Next, we answer the question of what is the meaning of specific numerical values
of the recognizing functional Tol.

As we have already seen, the criterion for the membership of a point x̃ in the
tolerable solution set is the inclusion (15):

A · x̃ ⊆ b.

It is not difficult to show that the reserve of this inclusion, i.e. how strongly and
with what margin this inclusion is fulfilled, is determined precisely by the value of
the functional Tol at the point x̃ [Sharaya and Shary (2016)]. One can say that the
values of the recognizing functional give a quantitative measure of the compatibility
of the point x̃ and the data of the interval linear system, A and b, with respect to
its tolerable solution set.

5. Maximum Compatibility Method

5.1. Formulation

The results of the previous section can be used as a basis for the approach to com-
puting such solutions to the data fitting problem under inaccuracy and uncertainty
that satisfy the requirement of strong compatibility between data and parameters.

In accordance with the plan outlined in Sec. 2.4, we need to introduce a “mea-
sure of strong compatibility/incompatibility” between parameters and data. It is
clear that, for a nonempty tolerable solution set, it must be positive for points from
this set, on which the “strong compatibility” is actually achieved. For points out-
side the tolerable solution set, on which there is no “strong compatibility”, it can
be negative. Recalling the properties and meaning of the recognizing functional Tol
presented in Sec. (4), we can see that it is very suitable for the role of the compat-
ibility measure. In particular, Propositions 5 and 6 show that Tol distinguishes the
boundary and interior of the tolerable solution set.

Suppose that an interval data fitting problem is specified for the linear function
(1) with the parameters β0, β1, . . . , βm. In other words, we are given an interval
n × (m + 1)-matrix X = (xij) and vector y = (yi), such that the first column in
the matrix X consists of all ones and has the number 0 (see Sec. 2.1). Then we have
to construct the recognizing functional of the tolerable solution set for the interval
system of linear equations Xβ = y, i.e.

Tol(β, X , y) = min
1≤i≤n

⎧⎨
⎩radyi −

∣∣∣∣∣∣mid yi −
m∑

j=0

xijβj

∣∣∣∣∣∣
⎫⎬
⎭,
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which should serve as the “strong compatibility measure” between the data X, y

and the parameter vector β = (β0, β1, . . . , βm)�.
The above motivates the following method for estimating the parameters of a

linear functional dependence from inaccurate data, which we will call the “strong
version” of the maximum compatibility method or simply the maximum compati-
bility method for brevity:

As an estimate β� of the parameters of the linear function (2), we take
the point where the maximum of the recognizing functional Tol is reached.

In mathematical terms,

β� = arg max
β∈Rm+1

Tol(β, X, y).

As a consequence of the theory of Sec. 3,

� if maxTol ≥ 0, then the argument of the maximum lies in the set of parameters
strongly compatible with the data;

� if max Tol < 0, then the set of parameters having strong compatibility with the
data is empty, but the argument of the maximum minimizes the incompatibility
(inconsistency) between the parameters and data.

The usual (“weak”) version of the maximum compatibility method devel-
oped earlier in the literature [Kreinovich and Shary (2016); Shary (2012, 2016);
Shary and Sharaya (2013, 2016)] is based on similar ideas. We need to maximize a
measure of compatibility between the data and parameters of the function, which
is also expressed by means of some recognizing functionals, called Uni and Uss. But
the properties of weak compatibility estimate differ significantly from the proper-
ties of strong compatibility estimates. We have already mentioned that computing
strong compatibility estimates is polynomially complex, while finding an estimate
in the sense of weak compatibility is usually NP-hard. Additionally, we will see
below in Sects. 5.4 and 5.5 that the strong compatibility estimates turn out to be
more adequate to reality and actual properties of point estimates that we expect
in practice.

5.2. Interpretation of the maximum compatibility method

Yet another interpretation of the maximum compatibility method in the case of
the empty solution set Ξtol(X, y) can be, for example, as follows: estimate of the
parameters, i.e. the argument on which max Tol is reached, is the first point that
appears in the nonempty tolerable solution set after the uniform widening of the
right-hand side vector with respect to its midpoint.

In fact, let us consider the expression for the recognizing functional Tol:

Tol(β, X, y) = min
1≤i≤n

⎧⎨
⎩radyi −

∣∣∣∣∣∣mid yi −
m∑

j=0

xijβj

∣∣∣∣∣∣
⎫⎬
⎭.
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The quantities radyi enter, as summands, in all expressions over which we take
min1≤i≤n when calculating the final value of the functional. Therefore, if we denote

e = ([−1, 1], . . . , [−1, 1])�,

then, for the interval system Xβ = y+Ce with a widened right-hand side, we have

Tol(β, X , y + Ce) = Tol(β, X , y) + C,

since all the radii of the right-hand side components become equal to radyi + C,
i = 1, 2, . . . , n. Consequently,

max
β

Tol(β, X , y + Ce) = max
β

Tol(β, X , y) + C.

Expansion of the interval relative to the center is, actually, an increase in its
uncertainty with the invariable value of the most representative point of the interval,
its midpoint. As we can see, argument of the maximum of the recognizing functional
is really the most promising point if we consider it with respect to variation in the
accuracy of the output interval data.

5.3. The maximum compatibility method generalizes

Chebyshev data approximation

In the limit case where there is no interval uncertainty in our measurements and
we have usual point data, any good interval method should turn into a reasonable
data fitting method for such data. The strong version of the maximum compatibility
method, like the weak one, coincides with the so-called Chebyshev data approxima-
tion, which has long been successfully applied to data processing (see, for example,
Iske [2018] and Remez [1962]).

In fact, if the data matrix X and the data vector y are point (noninterval), i.e.
X = X = (xij) and y = y = (yi), then for all i, j

radyi = 0, mid yi = yi, xij = xij .

Fig. 10. Expanding the data uncertainty boxes along the output variables results in the strong
compatibility.
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Then the recognizing functional of the solution set (which is both united and tol-
erable simultaneously) takes the form

Tol(β, X, y) = min
1≤i≤n

⎧⎨
⎩−

∣∣∣∣∣∣yi −
m∑

j=0

xijβj

∣∣∣∣∣∣
⎫⎬
⎭

= − max
1≤i≤n

∣∣∣∣∣∣yi −
m∑

j=0

xijβj

∣∣∣∣∣∣
= − max

1≤i≤n
|(Xβ)i − yi| = −‖Xβ − y‖∞.

In the above formula, ‖ · ‖∞ denotes the Chebyshev norm of a vector in the finite-
dimensional space R

n, which is defined as ‖z‖∞ = max1≤i≤n |zi| (it is also called
∞-norm, uniform norm, or maximum norm). Therefore,

maxTol(β) = max
β∈Rm+1

(−‖Xβ − y‖∞) = − min
β∈Rm+1

‖Xβ − y ‖∞,

as long as max(−f(β)) = −min f(β). Thus, the maximization of the recognizing
functional is equivalent in this case to minimization of the Chebyshev norm of the
residual, i.e. of the difference between the left-hand and right-hand sides of the
equation system.

5.4. Bounded variance of the strong compatibility estimates

From a practical point of view, a strong version of the maximum compatibility
method is more favorable for the solution of the data fitting problem with “over-
lapping” uncertainty boxes. The strong version allows to obtain a reasonable and
bounded set of alternatives in such complex cases when the uncertainty boxes inter-
sect each other.

Let us consider the situation when two uncertainty boxes intersect so that their
intersection is solid, i.e. it is a box whose width is nonzero in each dimension, as
shown in Fig. 11. Then, within this solid intersection, we can always take two points
from the uncertainty boxes that have arbitrary mutual position, so that the straight
line y = β0 + β1x passing through them will have the angular coefficient β1 equal
to any real number (or infinity as well). As a consequence, the set of parameters
(β0, β1) compatible, in the sense of Definition 1, with the data from Fig. 11 is
unbounded.

At the same time, the tolerable solution set for interval linear systems with essen-
tially interval matrix should be bounded, which follows from the Sharaya bounded-
ness criterion (see Sec. 3.3). Therefore, the set of parameters strongly compatible
with the data (i.e. in the sense of Definition 2) is bounded for the case depicted
in Fig. 11. This helps to reduce indeterminacy and ambiguity in estimating the
parameters of the functional dependence, i.e. to choose the solution more definitely
from a narrow collection of alternatives rather than from an unbounded set.
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Fig. 11. The intersection of boxes may result in total indeterminacy of the angular coefficient of
the line passing through the boxes in the sense of “weak compatibility”.

These ideas can be given a different form. The important concepts of variance
and standard deviation are known to be one of the main characteristics of statistical
estimates obtained using the methods of probability theory (see e.g. Cramér [1946]).
They characterize the dispersion or variability of the estimate, or, put differently, its
possible range of values. The analog of the variance and standard deviation in the
statistics of interval data can be the size of the set of parameters compatible with
the data, i.e. the size of the corresponding solution set to an interval equation system
constructed from measurement data. Computation of enclosures of the solution sets
to interval systems of equations can be performed using interval methods described
in the literature [Mayer (2017); Moore et al. (2009); Neumaier (1990); Rohn (2005);
Shary (2019)].

The relation (12), i.e. the property that the tolerable solution set is always
included in the united solution set, can be interpreted as the fact that estimates
in the sense of ordinary weak compatibility always have a greater “variance” than
estimates in the sense of strong compatibility. In addition, the “variance” of the
strong compatibility estimates is almost always finite, which follows from Sharaya’s
criterion of boundedness of the tolerable solution set (see Sec. 3.3).

The above phenomenon is, in effect, a manifestation of the so-called “regularizing
properties” of the tolerable solution set for interval systems of equations. It turns
out that the tolerable solution set is the “most stable” among all the solution sets to
the interval system of linear equations, which is discussed in detail in Shary [2018].

5.5. Strong compatibility and the Demidenko paradox

The “Demidenko paradox” is a paradoxical statement about the properties of
the solution to the data fitting problem under interval uncertainty, first noted
by Demidenko [1990] (see also Kreinovich and Shary [2016], Shary [2012], and
Shary and Sharaya [2013]). Its essence can be expressed by the phrase “the worse,
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the better”. More precisely, the wider the intervals of data uncertainty, i.e. the more
uncertainty they represent, the easier it is to draw through them the graph of the
constructed function.

Data uncertainty is undesirable because it distorts the true picture of reality.
Therefore, reducing uncertainty, i.e. reducing the size of data uncertainty boxes, is a
boon that should be welcomed in practice. On the other hand, for wider intervals of
data, the united solution set of the interval equation system built from this data is
also wider and, therefore, there are more opportunities to select model parameters
from it, than for the case of narrow interval data. Thus, the higher the accuracy
of the data, the lower the interval uncertainty and the worse it is to estimate the
parameters. Conversely, the wider the interval uncertainty and the worse we know
the exact values of the measured variables, the better the parameter estimation
process and the richer the set of results that can be obtained. This situation is
depicted in Fig. 12 where the uncertainty intervals at the lower picture are obtained
by contracting the intervals of the upper picture. At the same time, the opportunity
to draw a straight line passing through all uncertainty boxes is lost.

x

y

?

x

y

Fig. 12. Wide uncertainty boxes enable us to construct many models compatible with the data.
For narrow uncertainty boxes, a model compatible with the data may not exist.
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There are two basic ways to overcome the Demidenko paradox. The first one
is based on the assumption that the intervals of the data adequately represent
the boundaries of the measurement errors, so that the reduction of their width
uncertainty is positive. Hence, the impossibility to choose the model parameters
compatible with these interval data (where the solution set of the interval equation
system is empty) indicates the inadequacy of the model used to describe the object.
As a result, the model must be changed, and the process of parameter estimation
must be repeated using another model.

The second way assumes that the uncertainty intervals of the data do not rep-
resent exactly the set of possible values of the corresponding variables. Therefore,
one does not have to obtain full compatibility with the experimental data for the
selected model of the object. As in the traditional case of noisy point (noninterval)
data, a certain incompatibility (inconsistency) is acceptable, and then the problem
of minimizing this incompatibility needs to be solved. Yet another situation where
one has to go this way stems from the need to retain the selected model, form of a
functional dependence between the considered variables about which it is a priori
known that “this must be the case”. Following this way, one has to select a numer-
ical “incompatibility measure” between the data and model parameters. Then, for
example, a point of the parameter space where the incompatibility (inconsistency)
is minimal can be taken as the desired estimate.

Anyway, the Demidenko paradox is not fully applicable to the situation of strong
compatibility between parameters and data, since the tolerable solution set, when
changing data intervals, behaves quite differently from the united solution set.

As we already noted in Sec. 3.1, the tolerable solution set shrinks as the width
of the intervals in the matrix of the equation system increases. Then, it becomes
more difficult to construct a straight line that passes through the uncertainty boxes
in the strong sense of Definition 2. This fact is well understood intuitively, from
the consideration of Figs. 4 and 5 in which the widths of the boxes grow along the
axis Ox. Thus, here we are in a situation where the increase of interval uncertainty
at the input leads to the similar deterioration in the solution of the problem (it
becomes more difficult to choose the desired function). The Demidenko paradox
does not work.

6. Implementation

The theory developed in the preceding sections will be practical and really useful
only if we have at our disposal effective methods for finding the maximum of the
recognizing functional of the tolerable solution set, i.e. maxTol. The properties
of the recognizing functional are considered in Sec. 4, and they are favorable for
applying efficient numerical optimization methods.

In the general case, the problem of computing maxTol is the problem of uncon-
strained maximization of a concave nonsmooth objective function. Its solution can
be found by nonsmooth optimization methods, which many researchers have been
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intensively developing for several decades. We successfully used the algorithms
designed by Shor and his co-workers in Kiev (see Shor and Zhurbenko [1971] and
Stetsyuk [2014]).

In recent years, we freely circulate the program tolsolvty, accessible from
the website “Interval Analysis and its Applications” — http://www.nsc.ru/interval
(section “Software”, then “Some interval programs on Scilab” or “Some interval
programs on Matlab”). The program is designed to numerically determine the
unconditional maximum of the recognizing functional Tol and uses, as a basis,
the code ralgb5 developed by Stetsyuk (Institute of Cybernetics of the National
Academy of Sciences of Ukraine; see an earlier article [Stetsyuk (2017)] specially
devoted to this algorithm). In fact, tolsolvty is a very good and time-tested imple-
mentation of the maximum compatibility method in the “strong sense” that can
be recommended for solving practical problems. Under the name TOLSOLVTY2, the
international version of this program is also uploaded to our page of ResearchGate
(see https://www.researchgate.net).

Recently, it has become possible to use the separating planes methods to find
the maximum of the recognizing functional Tol. These methods were proposed by
Nurminski [1997] and further developed and adapted by Vorontsova [2016, 2017].
The free program tolspaclip for maximizing the recognizing functional Tol that
implements the separating planes method with additional clipping is posted on
the website “Interval Analysis and its Applications”. It is intended for the same
purposes as tolsolvty and has roughly the same functionality.

Example 3. As a specific numerical example, we construct a homogeneous linear
dependence of the form

y = y(x1, x2, x3) = β1x1 + β2x2 + β3x3 (16)

from the interval observation data presented in the following table:

Observation x1 x2 x3 y

#1 [11, 12] [13, 14] [15, 16] [18, 22]

#2 [21, 22] [23, 24] [25, 26] [28, 32]

#3 [31, 32] [33, 34] [35, 36] [38, 42]

#4 [41, 42] [43, 44] [45, 46] [48, 52]

(17)

To determine the coefficients β1, β2, and β3, we have to consider the interval linear
4 × 3-system of equations⎛

⎜⎜⎜⎜⎝
[11, 12] [13, 14] [15, 16]

[21, 22] [23, 24] [25, 26]

[31, 32] [33, 34] [35, 36]

[41, 42] [43, 44] [45, 46]

⎞
⎟⎟⎟⎟⎠
⎛
⎜⎝

β1

β2

β3

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎝

[18, 22]

[28, 32]

[38, 42]

[48, 52]

⎞
⎟⎟⎟⎟⎠. (18)
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Fig. 13. The unbounded united solution set to the interval linear system (18).

The united solution set to the system (18) is unbounded (see Fig. 13), and the
usual compatibility between data and parameters (in the sense of Definition 1)
leads to a large indeterminacy in the choice of parameters we can take for the
linear function (16). Obviously, most of the triples (β1, β2, β3)� that are present
in the unbounded solution set will not have a physical meaning due to their large
values. In essence, we have here a situation with “infinite variance” of the estimate
described earlier in Sec. 5.4.

At the same time, the tolerable solution set to the system (18), depicted in
Fig. 14, is bounded.b It provides us with quite a limited collection of values for the
coefficients of the linear function (16).

The numerical results produced by the program tolsolvty (with all the stop-
ping criteria of the order 10−10) are the following:

max
β∈R3

Tol(β) = 0.375, and it is attained at the point

⎛
⎜⎝

−1.125

4.4 · 10−12

2.125

⎞
⎟⎠. (19)

Then the best fit linear function (16) for the interval data (17) should be

y = −1.125x1 + 4.4 · 10−12x2 + 2.125x3.

bAgain, the pictures of the solution sets are produced by the package IntLinInc3D [Sharaya
(2014)].
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Fig. 14. The tolerable solution set to the interval linear system (18).

We may see that the second coefficient is almost zero, and Fig. 14 shows that the
second component of points from the tolerable solution set is relatively small and
varies around zero.

One can construct an inner interval box within the tolerable solution set, tak-
ing the point (19) as its center and using the methods described in the literature
[Neumaier (1986); Shary (1995b, 2004, 2019)]:⎛

⎜⎝
[−1.1278409,−1.1221591]

[−0.0028409, 0.0028409]

[2.1221591, 2.1278409]

⎞
⎟⎠.

The above indicates a low significance of this coefficient in the linear function (16).
If we were to consider a real-life problem with data (17), then the corresponding
factor, perhaps, should be recognized as having no influence on the phenomenon
we are studying.

7. Generalizations

Let us imagine a situation where, in some measurements, strong compatibility of
parameters with the data is required, while the usual weak compatibility is sufficient
in the other measurements. In formal mathematical language, this means that the
logical quantifiers “∀” are applied to a part of the input variables xijs, and the
logical quantifiers “∃” are applied to the other part of xijs in formula (8).

Then, instead of the united or tolerable solution sets, we naturally arrive at the
solution sets in which quantifiers of different meanings acting on different input
variables are intermixed. These are the so-called “quantifier solution sets” for the
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interval system of equations constructed from the data of the problem (see e.g.
Shary [2002] and Sharaya [2018]). It can be shown that, in fact, the most general
quantifier solutions do not arise in this situation, and we will have to do with
their particular case, the so-called AE solutions of the interval systems of equations
[Shary (2002, 2019)]. AE solutions are defined as quantifier solutions of interval
systems of equations defined by logical formulas in which all occurrences of the
universal quantifier “∀” precede the occurrences of the existence quantifier “∃”.

For AE solution sets, it is also possible to construct “recognizing functionals”
having properties that are analogous to the properties of the functional Tol for
the tolerable solution set. This work has been done in Sharaya and Shary [2016],
where the general recognizing functionals are constructed based on the idea of con-
sidering the “reserve” of the so-called characteristic inclusion for the corresponding
AE solution sets. These functionals can serve to measure the degree of compatibility
(consistency) between parameters and data in the case of more general requirements
on the solution. Having found the unconditional maximum of such a recognizing
functional, we obtain the point at which the maximum of compatibility is achieved,
and this point can be taken as the desired estimate of the parameters. That is the
general scheme for solving the problem, which, of course, needs to be specified and
supplied with efficient computational algorithms.

8. Conclusions

In data fitting problems under interval uncertainty, it is necessary to distinguish
between different types of compatibility (consistency) between interval data and
parameters of the constructed functional dependence. In particular, it makes sense
to introduce the concepts of “strong” and “weak” compatibilities of data and param-
eters that correspond to the different roles of input (predictor) variables and output
(criterion) variables in the measurement process.

The maximum compatibility method is a promising method for parameter iden-
tification and data fitting under interval uncertainty, which is based on maximizing
the recognizing functional of the solution set for the problem. It is a generalization
of the Chebyshev data approximation and can serve as a good alternative to tra-
ditional methods of regression analysis using probabilistic models of data errors.
In this paper, a modification is suggested for the case of “strong” compatibility
(consistency) between parameters and data.

The strong version of the maximum compatibility method has several advan-
tages over the usual (“weak”) version. First, strong compatibility estimates have
a polynomial computational complexity. Second, these estimates are robust and
their variance is finite. Third, the strong compatibility estimation is only partially
subject to the “Demidenko paradox”, being in better agreement with the intuitive
understanding of the meaning of estimates in interval data fitting.

An interesting open question: what is the probabilistic interpretation of the
maximum compatibility method for the “strong case”?
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For the case of weak compatibility between parameters and data, a probabilis-
tic interpretation of the maximum compatibility method was given in a previous
work [Kreinovich and Shary (2016)]. It was shown that the estimates produced by
the maximum compatibility method coincide with those obtained from the maxi-
mum likelihood method for uniform distributions over data intervals. It would be
extremely useful to derive a similar result for the strong compatibility.
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