
Modeling, 
Design, and Simulation 
of Systems with Uncertainties 

Mathematical Engineering, Volume 3

Editors: Andreas Rauh and Ekaterina Auer 

Springer Berlin Heidelberg, 2011

DOI    10.1007/978-3-642-15956-5_2 
Print ISBN  978-3-642-15955-8 
Online ISBN  978-3-642-15956-5 



Chapter 2
A New Method for Inner Estimation
of Solution Sets to Interval Linear Systems

Sergey P. Shary

Abstract For an interval system of linear equationsAx= b, we consider the prob-
lem of inner estimation of its solution set, formed by all thesolutions to point sys-
temsAx= b with A∈A andb∈ b. The so-called “center approach” to the problem is
developed when the inner interval box is constructed aroundan a priori known cen-
ter point from the solution set. Determining the size of the inner box is shown to be
reduced to a maximization problem for a special quasiconcave objective function.

2.1 Introduction

In our work, we consider interval linear equations systems of the form




a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

. . .
...

...

am1x1 + an2x2 + . . . + amnxn = bm,

(2.1)

or, briefly,
Ax= b, (2.2)

whereA = (ai j ) is an intervalm×n-matrix andb= (bi) is an intervalm-vector. The
above interval systems are understood as families of usual “point” linear systems
Ax= b with the same structure, while the matricesA are taken fromA and the
vectorsb are taken fromb.

It is well-known that, for interval equations systems, solutions and solution sets
can be defined in various ways (see e.g. [15–18]), but below weconfine ourselves
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only to the so-calledunited solution setfor (2.1)–(2.2), the set formed by solutionsx
to the point systemsAx= b with the matrixA and right-hand side vectorb indepen-
dently varying throughA andb respectively. The united solution set is rigorously
defined as

Ξ(A,b) = {x∈ R
n | (∃A∈ A)(∃b∈ b)(Ax= b)}, (2.3)

and it is called justsolution setfor (2.1)–(2.2) in the rest of the paper, insofar as the
other solution sets are not treated herein.

The solution setΞ(A,b) is known to be a polyhedral set, generally nonconvex,
while its intersection with each orthant of the spaceRn is convex. An exact descrip-
tion of the solution set may grow exponentially as the dimension n increases, thus
being practically impossible even for several tens of unknowns. On the other hand,
in most real-life problem statements such an exact description of the solution set is
not necessary. The practice is usually satisfied by anestimateof the solution set,
i.e. an approximate description that meets the requirements of the problem under
solution.

In this work, we are interested in computinginner interval estimates (subsets) for
the solution setΞ(A,b), i. e. we solve the following problem:

Find a boxU (as wide as possible)
contained in the solution setΞ(A,b)
of the interval linear systemAx= b.

(2.4)

There are several known approaches to solving the problem ofinner interval estima-
tion of the solution sets to interval linear systems proposed in the literature. Among
those, the so-called formal (algebraic) approach is especially efficient for square
(i.e., with m= n) interval linear systems, developed in [8, 15, 17, 18]. Nonethe-
less, for arbitrary interval linear systems with rectangular (non-square) matrices,
i.e. whenm 6= n, inner interval estimation of the solution sets is an actualand sig-
nificant problem. Relying on vivid geometric considerations, we propose a simple
and quite general technique for constructing a box inscribed into Ξ(A,b) around an
a priori known point from this set (see Fig. 2.1). It is shown that the considered
problem reduces to computing maximum of a special quasiconcave function, and
its approximate value can be obtained by elementary means.

In the rest of the paper, we do not require regularity properties for A and even
admit the case of unbounded solution setΞ(A,b). The only mild condition onA is
that it must not have entirely zero rows.

Our notation follows the well-known project of informal international standard
[6]. In particular, intervals and interval quantities are denoted by boldface letters —
A, B, C, . . . ,x, y, z, — while non-interval (point) objects are not distinguished in any
way. Arithmetical operations with the interval quantitiesare those of the classical
interval arithmeticIR (see, e.g., [1, 9, 10]). Underlining and overlining —a, a —
denote lower and upper endpoints of the intervala, and, additionally,
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Fig. 2.1: Inner estimation of the solution set.

mid a= 1
2(a+a) — midpoint (center) of the interval,

rada= 1
2(a−a) — radius of the interval,

|a|= max{|a|, |a|} — absolute value (modulus) of the interval,

〈a〉=
{

min{|a|, |a|}, if 0 6∈ a,

0, otherwise,
—

mignitude of the interval (antipode
of the absolute value), the smallest
distance between its points and zero.

With respect to interval vectors and matrices, the operations of taking the midpoint,
radius and absolute value are applied in component-wise andelement-wise manner.

We expect that the reader is familiar with fundamentals of interval analysis, e.g.
from the books [1,9,10].

2.2 Refinement of Problem Statement

In applications, the problem statement (2.4) often contains additional information
about the desired form of the boxU = (U1,U2, . . . ,Un)

⊤ that has to estimate
Ξ(A,b) from inside: the widths of the components ofU are supposed to be pro-
portional to the respective components of a real positive vector
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w= (w1,w2, . . . ,wn), wi > 0.

In other words, the formulation (2.4) is additionally supplied with the weight co-
efficientswi for the widths (or radii) of the components of the inner boxU, such
that

radUi/radU j = wi/wj , i, j = 1,2, . . . ,n.

Scaling the interval system (2.1)–(2.2) by the nonsingulardiagonal matrix

W = diag{w1,w2, . . . ,wn}

with the entriesw1, w2, . . . , wn along the main diagonal can reduce the problem to
the simplest case whenw= (1,1, . . . ,1) and the boxU turns to a cube that we have
to inscribe into the solution set of a modified interval equations system. Moreover,
we have

Proposition. Let Ã = AW. The interval vector̃U with equal component widths, i.e.
such that

radŨi = radŨ j , i, j = 1,2, . . . ,n,

is a solution of the inner estimation problem(2.4) for the modified interval system
Ãx = b if and only if the interval vectorU = WŨ with the desired ratios of the
component widths is a solution to the inner estimation problem(2.4)for the original
systemAx= b.

Proof. We use Beeck’s characterization [10] of the solution set to the interval linear
system (2.1)–(2.2): forx∈ R

n

x∈ Ξ(A,b) ⇐⇒ Ax∩b 6=∅. (2.5)

In particular, for the modified equations system

x̃∈ Ξ(Ã,b) ⇐⇒ Ãx̃∩b 6=∅. (2.6)

Multiplication by the matrixW defines a one-to-one correspondence between the
points of the boxesU andŨ according to the rule

x ⇄ x̃=Wx

for x∈ U andx̃∈ Ũ. Further, for every pair of the mutually correspondingx andx̃,
there holds

Ax= AWW−1x= Ãx̃,

so that the relations from the right-hand sides of the equivalences (2.5) and (2.6)
either fulfill or not fulfill simultaneously. Moreover, for each i, j = 1,2, . . . ,n, we
really have

radUi/radU j = wi/wj ,

as was required.
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To sum up, in the rest of the paper we can consider the inner estimation problem
(2.4) with the additional requirement that the interval vector U should have equal
component widths.

2.3 Idea of our Approach

If we find a point from the solution setΞ(A,b), then it can be further used as a
“center” around which the interval solution to the problem (2.4) is to be constructed
somehow, by “inflation” etc. (see Fig. 2.1). This is the main idea of the approach
developed, so that one can call it “center approach” in analogy to what has been
done in [4,16] for the inner estimation of thetolerable solution set. So,

• we look for a pointt ∈ Ξ(A,b) first,

• then we use the coordinates oft for the computation of
the size of the inner estimating cube with the center int.

The formula for the size of the interval solution of the problem (2.4) is going to
be derived later (see Section 2.5). Computation according to this formula involves
taking maximum of a rational expression with moduli over a box, so that the entire
solution of the inner estimation problem (2.4) boils down toan optimization over a
box provided that a pointt ∈ Ξ(A,b) is known. We consider this in Section 2.6 in
details.

2.4 Choosing Center of Inner Estimate

The problem of recognition of whether the solution setΞ(A,b) is empty or not and
the problem of finding a point from the solution setΞ(A,b) are known to be NP-hard
in general [7]. A universal method for solving these problems can exploit the fact
that intersections of the solution sets to interval linear systems with every orthant
of the spaceRn are convex polyhedral sets whose boundary planes are described
by equations one can easily write out from the interval matrix and right-hand side
vector of the system (see, e.g., [3, 11]). Therefore, findingout whether the solution
setΞ(A,b) has empty or nonempty intersection with each orthant ofRn can be re-
vealed by developed linear programming techniques. Overall, the recognition of the
solution sets to interval linear systems and finding a point from it requires no more
than 2n solutions of linear inequalities systems, and this result cannot be principally
improved.

Therefore, in the general situation, finding a point from thesolution set and its
adjustment are not easy tasks. It makes sense to give a list ofparticular prescriptions
for the solution of the above problems in some specific cases.
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We consider first a square interval system with ann×n-matrixA. If it is regular
(i.e., allA∈ A are not singular), then the pointt from Ξ(A,b) can be obtained as the
result of solving a point linear systemAt = b with A from A andb from b, say, the
“middle system”

(mid A)t = mid b.

Checking regularity of the interval matrixA can be performed by the techniques
proposed e.g. in [12].

Let us consider now the case of a singular interval matrixA, that is, when it
contains a singular point matrix. It is well-known that the set of singular matrices
forms a smooth manifold with co-dimension 1 in the set of alln×n-matrices, thus
being quite a meager set with zero Lebesgue measure inRn×n. Hence, if all the
entries of the matrixA have nonzero widths, then we can always hope to arrive at
a regular point matrixA as the result of proper varying entries of the pointn× n-
matrix withinA. Again, it suffices to solve the systemAt = b with anyb∈ b in order
to find the “center” pointt.

What should we do in case of rectangular equation systems? Sometimes, the
technique based on the so-calledrecognizing functionalmay help in this case, which
has been elaborated by the author in [14, 16]. We would remindsome facts and
concepts.

Theorem 2.1.Let A be an interval m×n-matrix,b be an interval m-vector, and the
expression

Uni(x,A,b) = min
1≤i≤m

{
radbi −

〈
mid bi −

n

∑
j=1

ai j x j

〉 }

defines a functionalUni : Rn → R. The membership of a point x in the solution set
to an interval linear systemAx= b is equivalent to nonnegativity of the functional
Uni in x,

x∈ Ξ(A,b) ⇐⇒ Uni(x,A,b)≥ 0,

i. e., the solution setΞ(A,b) of the interval linear system is Lebesgue set{x∈R
n |

Uni(x,A,b)≥ 0} of the functionalUni.

If it is clear from the context which interval system is meant, then we shall write
simply Uni(x) instead of Uni(x,A,b).

Proof. A point x belongs to the solution setΞ(A,b) if and only if there exists a
matrix Ã= (ãi j ) ∈ A, such that

Ãx∈ b.

After writing out the matrix-vector product and representing the right-hand side
intervals in the center-radius form, this membership takesthe from

n

∑
j=1

ãi j x j ∈ mid bi +
[
−radbi , radbi

]
, i = 1,2, . . . ,m.
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Adding (−mid bi) to both sides of the above inclusions, we get the equivalent rela-
tions

n

∑
j=1

ãi j x j −mid bi ∈
[
−radbi , radbi

]
, i = 1,2, . . . ,m,

which are, in its turn, equivalent to
∣∣∣∣∣

n

∑
j=1

ãi j x j −mid bi

∣∣∣∣∣≤ radbi ,

and therefore

radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ãi j x j

∣∣∣∣∣≥ 0 (2.7)

for everyi = 1,2, . . . ,m.
Hence,x ∈ Ξ(A,b) if and only if for each indexi there exist such ˜ai j ∈ ai j ,

j = 1,2, . . . ,n, that the inequalities (2.17) are true. This amounts to the fulfillment
of

max
ãi j∈ai j ,

j=1,2,...,n

{
radbi −

∣∣∣∣∣mid bi −
n

∑
j=1

ãi j x j

∣∣∣∣∣

}
≥ 0 (2.8)

for i = 1,2, . . . ,m. Bringing the maximum into the brackets and taking into account
that the natural interval extension of the expression undermodule coincides with its
range of values, we get fori = 1,2, . . . ,m

{
radbi −

〈
mid bi −

n

∑
j=1

ai j x j

〉 }
≥ 0 (2.9)

instead of (2.8). Finally, taking the minimum, we can reducemconditions (2.9) into
one, to get that the pointx belongs to the setΞ(A,b) only in the case when

min
1≤i≤m

{
radbi −

〈
mid bi −

n

∑
j=1

ai j x j

〉 }
≥ 0,

as required.

One may see that the functional Uni “recognizes”, through the sign of its values,
whether the point is in the solution setΞ(A,b) or not. This is why we use the term
“recognizing” with respect to it. Additionally, the following properties hold [14]:

1) The functional Uni is concave in each orthant ofRn, and if the matrixA
has entirely noninterval (point) columns, then Uni(x,A,b) is concave
on unions of several orthants.

2) The functional Uni(x,A,b) is continuous and attains a finite maximum
over the whole spaceRn.
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3) If Uni(x,A,b)> 0, thenx is a point from the topological interior intΞ(A,b)
of the solution set.

4) Under some additional conditions onA, b andx, the reverse is also true:
the membershipx∈ int Ξ(A,b) implies Uni(x,A,b)> 0.

The last two properties of the recognizing functional enables us to use it for de-
ciding whether a point belongs to the interior of the solution set. This is especially
important inasmuch as our technique can construct a solid inner estimate of the so-
lution set only around the center pointt that lies in the interior of the solution set
int Ξ(A,b).

As a consequence of the results obtained, we arrive at the following practical pre-
scription for the correction of the pointt in our “center” approach to the solution of
the problem (2.4): find a starting guess and then, using gradient ascent, try reaching
better value of the recognizing functional Uni. If the valuefound is strictly greater
than zero, then we are in the interior of the solution set.

We do not discuss the question of optimization (the best choice) of the center of
the inner interval box, since it is closely related to specific needs of the customers
that solve a practical problem statement.

2.5 Formula for Size of Inner Estimate

Theorem 2.2.If a point t ∈ Rn belongs to the solution set of an interval linear
systemAx= b, i.e. t∈ Ξ(A,b), then

ρ = min
1≤i≤m

max
A∈A





radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |





≥ 0 (2.10)

and the interval vectorU = (t+ρe), e= ([−1,1], . . . , [−1,1])⊤, with the center t is
entirely contained in the solution setΞ(A,b).

The expression under extrema in (2.10) looks very impressive, but it has a clear
sense which is worth mentioning. The vector|mid b−At | is composed of abso-
lute values of the deviations of the productAt components from the center of the
right-hand side of the interval linear system considered. The signs of the differ-
ences between the radii of the right-hand side and such deviations, given by the
components of( radb− |mid b−At |), show whether the imageAt of the pointt
under the linear transformationA belongs to the right-hand side vectorb. This all
is familiar to us from the previous section, where we used thesame technique to
derive the recognizing functional Uni. However, when divided by the sums∑ j |ai j |
of the moduli of the entries in the respective rows ofA, the components of the vector
( radb−|mid b−At |) produce a new characteristic, namely, sensitivity of the rec-
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ognizing functional with respect to variations of its first argument. More precisely,
the minimum of such ratios over all the rows ofA gives a “perturbation robustness”
that shows how much we can shift the pointt in order not to leave the solution set
of the interval linear systemAx= b.

Proof. Since the matrix of the interval linear system does not have zero rows, then

n

∑
j=1

|ai j | > 0

for everyi = 1,2, . . . ,m, andρ ≥ 0 is equivalent to nonnegativity of the expression

min
1≤i≤m

max
A∈A

{
radbi −

∣∣∣∣∣mid bi −
n

∑
j=1

ai j t j

∣∣∣∣∣

}
,

which defines the values of the recognizing functional Uni inthe pointt ∈ Rn due
to the theorem of Section 2.4. It is indeed nonnegative fort ∈ Ξ(A,b).

Starting the substantiation of the second statement of the theorem, suppose first
that the matrixA in the problem (2.4) has zero width, i.e. is noninterval,A = A=
(ai j ). Denoting then

ρA = min
1≤i≤m





radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |




, (2.11)

we represent everyx∈ U in the formx= t + y, wherey∈ R
n and

max
1≤k≤n

|yk| ≤ ρA.

In view of the fact that

|yi | ≤ ρA ≤
radbi −

∣∣∣∣∣mid bi −
n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |
, i = 1,2, . . . ,m,

the following inequalities chain is valid for eachi = 1,2, . . . ,m:
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|(Ay)i | =

∣∣∣∣∣
n

∑
j=1

ai j y j

∣∣∣∣∣ ≤
n

∑
j=1

|ai j | |y j | ≤ ρA ·
n

∑
j=1

|ai j |

≤ radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣

= radbi −
∣∣mid bi − (At)i

∣∣.

As far asAy= Ax−At, we get

(At)i − radbi +
∣∣mid bi − (At)i | ≤ (Ax)i ≤ (At)i + radbi −| mid bi − (At)i

∣∣

or, which is equivalent,

bi − ( mid bi − (At)i)+ | mid bi − (At)i |

≤ (Ax)i ≤ (2.12)

bi − ( mid bi − (At)i)−| mid bi − (At)i |.

Taking into account that

−z+ |z| ≥ 0 and − z−|z| ≤ 0

for any realz, the inequality (2.12) implies for everyi = 1,2, . . . ,m

bi ≤ (Ax)i ≤ bi ,

i.e.Ax∈ b. This means that the pointx is a member of the solution set to the interval
linear systemAx= b. So, the formula (2.10) is proved for the systems (2.1)–(2.2)
with only the right-hand side being interval, not the matrix.

We suppose now that the matrixA in the interval linear system (2.1)–(2.2) is
essentially interval, i.e. has nonzero width, the corresponding solution setΞ(A,b) is
nonempty andt ∈ Ξ(A,b). We consider the totality of all the systemsAx= b with
point matricesA∈A and inner estimatesUA of their solution setsΞ(A,b). By virtue
of the fact that

Ξ(A,b) =
⋃

A∈A

Ξ(A,b),

the union of all or some of the inner estimates of the setsΞ(A,b) for A ∈ A is an
inner estimate ofΞ(A,b) too.

Let UA be a cube, with the fixed centert, included in the solution set ofAx= b.
Clearly, such inner estimates exist not for every solution set Ξ(A,b) with A ∈ A,
but only for those that contain the pointt. However, the union of the inner cubes
UA ⊆ Ξ(A,b) that still exist for the givent can be found in an especially simple
way: it is a cube with the same centert, its size being equal to the maximum of sizes
of the cubes to be united (see Fig. 2.2). In particular, if thesizes of the cubes are
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Fig. 2.2: Union of cubes with a common center is also a cube with the same center

defined by the formula (2.11), then the box

U = t +ρe

is also entirely included into the solution setΞ(A,b) for

ρ = max
A∈A

ρA = max
A∈A

min
1≤i≤m





radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |




. (2.13)

In this expression, we have the right to take the maximum withrespect toA over the
whole interval matrixA, no matter whethert ∈ Ξ(A,b) or not for specificA ∈ A.
The point is thatρA < 0 in case of t 6∈ Ξ(A,b), and such negative values of the
inner minimum in the expression (2.13) in no way affect the overall nonnegative
maximum of (2.13).

Finally, we can rearrange the minimum and maximum in (2.13),since, for dif-
ferent indicesi, the expressions in the curly braces havenonintersecting sets of
arguments, namely, they are taken over different rows of the matrixA. Finally,

ρ = min
1≤i≤m

max
A∈A





radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |




.
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This completes the proof of the theorem.

One cannot but notice a beautiful duality of the above resultwith the formula
derived in [4, 16] for the size of inner estimate of thetolerable solution setto the
interval linear system (2.1)–(2.2). The tolerable solution set is defined as

Ξtol(A,b) = {x∈ R
n | (∀A∈ A)(∃b∈ b)(Ax= b)}

= {x∈ R
n | (∀A∈ A)(Ax∈ b)}

= {x∈ R
n | Ax⊆ b}

and has many interesting practical applications (see e.g. [13, 19]). It turns out that,
if t ∈ Ξtol(A,b) 6=∅, then

σ = min
1≤i≤m

min
A∈A





radbi −
∣∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣∣
n

∑
j=1

|ai j |





≥ 0 (2.14)

and the interval vector(t+σe), e=([−1,1], . . . , [−1,1])⊤, is included into the toler-
able solution setΞtol(A,b). Changing the logical quantifier that stands at the matrix
in the definition of the solution set — from “∃” to “ ∀” — leads to changing the sense
of the internal extremum in the expression (2.10) for the size of the inner box: we
get minimum overA∈ A instead of maximum.

An unpleasant feature of the formula (2.10) is that it produces zero, if the radius
of a right-hand side component is zero. This can be partiallycorrected after substi-
tuting the coordinates of the center into the interval system (2.1) and transferring
any interval column into the right-hand side, which acquires nonzero radius as the
result.

In the expression (2.10), taking the minimum overi ∈ {1,2, . . . ,m} involves no
difficulties, so that the main problem in the computation ofρ is to find, for eachi,
the internal maximums

max
(ai1,...,ain)∈(ai1,...,ain)





radbi −
∣∣∣∣mid bi −

n

∑
j=1

ai j t j

∣∣∣∣
n

∑
j=1

|ai j |





or to estimate them from below.
For further convenience, we denote the box(ai1,ai2, . . . ,ain) through

(X1,X2, . . . ,Xn) = X,
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regardless of the indexi ∈ {1,2, . . . ,m}, while the objective functionRn → R, de-
fined by the expression inside the curly braces in (2.10) and (2.14), will be denoted
as

Φ(x) =

R−
∣∣∣∣∣M−

n

∑
j=1

x j t j

∣∣∣∣∣
n

∑
j=1

|x j |
, (2.15)

whereR= radbi , M = mid bi are real constants. As the result, constructing inner
interval estimate of the setΞ(A,b) around the known center point reduces to the
solution of the following optimization problem

Find max
x∈X

Φ(x) or, at least, its nonnegative estimate from below. (2.16)

Nonnegativity constraint is evidently implied by the practical sense of the required
estimate as a radius of the inner box.

2.6 Computing Size of Inner Estimate

It is obvious that, in (2.16), the estimate of the sought-formaxx∈X Φ(x) from be-
low may be the value the objective functionΦ(x) takes at any point of the boxX.
Therefore, if we are not going to get involved into laboriouscomputations, then the
simplest way to solve the problem (2.16) is to take maximum ofthe values of the
objective function in several special points of its domainX.

Let us denote

G(x) = R−
∣∣∣∣∣M−

n

∑
j=1

x j t j

∣∣∣∣∣ , H(x) =
n

∑
j=1

|x j |,

so that

Φ(x) =
G(x)
H(x)

.

G(x) andH(x) are quite simple expressions that have only one occurrence of every
variablex j , so that their extrema overX can be easily computed as the lower and
upper endpoints of the natural interval extensionsG(X) andH(X) for the respective
expressions. In particular,

max
x∈X

G(x) = G(X) = R−
〈

M−
n

∑
j=1

X j t j

〉

and
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min
x∈X

H(x) = H(X) =
n

∑
j=1

〈X j〉.

Further, along with the values of these extrema, we can find the arguments that they
deliver, tracing which of the endpoints of the intervalsX1, X2, . . . , Xn produce the
endpoints of the interval extensionsG(X) andH(X) as the result of the operations
with them, i.e. addition, subtraction, multiplication andtaking the modulus. Overall,
the simplest estimate of the solution to the problem (2.16) can be taken, for instance,
as maximum of the values of the objective functionΦ(x)

in the center (“most representative point”) of the boxX,

in the point where the denominatorH(x) attains its minimum,

in the point where the numeratorG(x) attains its maximum.

If the centert of the inner box lies in the solution setΞ(A,b), then we have seen that
maxx∈X G(x)≥ 0. So, the overall maximum of the values ofΦ(x) in the above three
points is greater or equal to zero, thus satisfying the nonnegativity requirement in
the formulation (16).

We turn now to more developed techniques for the solution of the optimization
problem (2.16). Recall

Definition [2]. Let D be a convex set inRn. The functionf : D → R is referred to
asquasiconcave, if for every x,y∈ D and 0≤ λ ≤ 1 there holds

f
(

λx+(1−λ )y
)
≥ min{ f (x), f (y) }.

-

6

-

6

Fig. 2.3: Graphs of concave and quasiconcave functions

The function f : D → R is known to be quasiconcave [2] if and only if its
Lebesgue sets

{ x∈ D | f (x)≥ α }
are convex for everyα ∈ R (see Fig. 2.3). In particular, a quasiconcave function
cannot have several local maxima that differ in value from each other. Computing
one local maximum of such functions is, at the same time, the solution of global
maximization problem.
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Theorem 2.3.Let 0 6∈ X ⊆ Rn. The setD of all the points fromX for which the
functionΦ(x) defined by (2.15) takes nonnegative values is convex, andΦ(x) is
quasiconcave onD.

Proof. For a given levelα ≥ 0, we denote through

Sα = { x∈ X ⊂ R
n | Φ(x) ≥ α }

the Lebesgue set of the functionΦ(x). In particular,S0 =D.
If Sα is empty, there is nothing to talk about. IfSα 6= ∅, then let the pointsx,

y (not necessarily different) belong to the setSα , so thatΦ(x) ≥ α, Φ(y) ≥ α.
Therefore,

R−
∣∣∣∣∣M−

n

∑
j=1

x j t j

∣∣∣∣∣ ≥ α
n

∑
j=1

|x j |,

R−
∣∣∣∣∣M−

n

∑
j=1

y j t j

∣∣∣∣∣ ≥ α
n

∑
j=1

|y j |.

Taking anyλ ∈ [0,1] and summing the above inequalities with the nonnegative
weightsλ and(1−λ ), we come up with the inequality of the same sense:

R−λ

∣∣∣∣∣ M−
n

∑
j=1

x j t j

∣∣∣∣∣−(1−λ )

∣∣∣∣∣M−
n

∑
j=1

y j t j

∣∣∣∣∣

≥ α

(
λ

n

∑
j=1

|x j |+(1−λ )
n

∑
j=1

|y j |
)
.

(2.17)

Further, applying the triangle inequality for the absolutevalues of intervals, we
can change the left-hand side of the inequality (2.17) to a greater or equal quantity

R−
∣∣∣∣∣ λ

(
M−

n

∑
j=1

x j t j

)
+(1−λ )

(
M−

n

∑
j=1

y j t j

)∣∣∣∣∣ ,

while the right-hand side (2.17) can be changed (due toα ≥ 0) to a smaller or equal
quantity

α

(
n

∑
j=1

|λx j +(1−λ )y j |
)
.

Finally, we have

R−
∣∣∣∣∣M−

n

∑
j=1

(λx j +(1−λ )y j)t j

∣∣∣∣∣ ≥ α

(
n

∑
j=1

|λx j +(1−λ )y j|
)
,
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which is equivalent to
Φ
(

λx+(1−λ )y
)
≥ α.

The pointλx+ (1− λ )y thus lies within the setSα too, i.e.Sα is convex. This
completes the proof of the theorem.

It is worth noting that the condition of nonnegativity onΦ(x) is not so burden-
some for applications of the above result, since negativityof Φ(x) for all x ∈ X is
only possible for uninteresting cases when the center pointt does not lie within the
solution set. This follows from that the negativity ofΦ(x) is equivalent to negativity
of the numerator in the fraction (2.15) and, hence, of the “recognizing” functional
Uni in the pointt (see Section 2.4). Then we have to take care of a better choicefor
the center pointt.

The presence of moduli in the expression (2.15) makes the objective function
Φ(x) nonsmooth, although it is continuous. The function is stilldifferentiable al-
most everywhere over its domain of definition. Therefore, the quasiconcavity of
Φ(x) may result in gradient-type methods for the solution of the problem (2.16).
For instance, if PrX means projection onto the boxX, we can apply the simplest
gradient projection method

x(k+1) := x(k)+ γ(k)PrX
(

∇Φ(x(k))
)
, k= 0,1,2, . . . , (2.18)

with the appropriate choice of the step sizeγ(k) ∈R+ (see e.g. [2]). The components
of the gradient∇Φ(x) are easily seen to have the form

(
∇Φ(x)

)
i
=

ti ·sgn

(
M−

n

∑
j=1

x j t j

)
·
(

n

∑
j=1

|x j |
)
−
(

R−
∣∣∣∣∣M−

n

∑
j=1

x j t j

∣∣∣∣∣

)
·sgnxi

(
n

∑
j=1

|x j |
)2 ,

i = 1,2, . . . ,n,

where “sgn” means the usual sign function.
A good choice of the initial approximationx(0) for the process (2.18) will be a

point where the objective functionΦ(x) is already nonnegative. How can we find
this?

As follows from the results of Section 2.4, the membership ofa pointt in the
solution setΞ(A,b) is equivalent to

Uni(t,A,b) = min
1≤i≤m

{
radbi −

〈
mid bi −

n

∑
j=1

ai j t j

〉 }
≥ 0,
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which, in its turn, holds true if and only the same inequalityis valid for the separate
i-th row of the matrixA, i = 1,2, . . . ,m. In terms of the functionΦ defined by (2.15),
this means that

R−
〈

M−
n

∑
j=1

X j t j

〉
≥ 0, (2.19)

whereX = (X1,X2, . . . ,Xn) = (ai1,ai2, . . . ,ain), R= radbi , M = mid bi for a fixed
index i. Therefore, to find nonnegativity points for the objective functionΦ(x), we
have to trace the endpoints of the intervalsX1, X2, . . . ,Xn, at which the value of the
expression 〈

M−
n

∑
j=1

X j t j

〉

is attained, similar to what has been recommended in the beginning of the section.
The numbers thus obtained constitute components of the sought-for starting approx-
imationx(0) for the gradient ascending method (2.18).

2.7 Numerical Examples

Let us consider a numerical example with the interval linearsystem
(

[2,3] [0,1]

[1,2] [2,3]

)
x=

(
[0,120]

[60,240]

)
, (2.20)

proposed by E. Hansen (see [5] and earlier works). Its solution set is shown at
Fig. 2.4.

In formal-algebraic approach to inner estimation of the solution set, we have to
carry our considerations into Kaucher complete interval arithmetic and organize the
so-called dualization equation

(
[3,2] [1,0]

[2,1] [3,2]

)
x=

(
[0,120]

[60,240]

)
,

having the matrix dualized and the right-hand side vector unchanged, and then com-
pute its formal (algebraic) solution [8, 15, 17, 18]. It can be computed by several
ways, and the most efficient subdifferential Newton method1 in 2 iterations finds
the vector (

[−12,60]

[24,90]

)
. (2.21)

1 C-sources and executable files of its implementation for Windows are downloadable fromhttp:
//www.nsc.ru/interval/shary/Codes/progr.html
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−100

−50

200

100

Fig. 2.4: Solution set of Hansen system (2.20)

One can make sure that this is an inclusion maximal inner estimate of the solution
set for Hansen system.

Inner interval estimation with the use of our “center approach” starts from solving
the midpoint system (

2.5 0.5

1.5 2.5

)
x=

(
60

150

)
. (2.22)

Its solution is(13.6364,51.8182)⊤ and, due to regularity of the matrix in (2.22),
this vector is within the estimated solution set and can be taken as the centert of the
inner box.2

When solving the optimization problem (2.15)–(2.16) for the first equation of the
system (2.20), we have to take

R= 60, M = 60, X =
(
[2,3], [0,1]

)
.

Then 〈
M−

2

∑
j=1

X j t j

〉
= 0,

and this value is attained at(2.5,0.5)∈X which can serve as a starting pointx(0) for
the method (2.18).

Launched from thisx(0), with Φ(x(0)) =20, the gradient ascending (2.18) reaches
the boundary of the boxX at the point ˜x = (2.0,0.631581) (the exact number of

2 We keep no more than six digits in the numerical data of this section.
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steps depends on the specific choice of the step sizeγ(k)). The point ˜x turns out to
be maximum ofΦ in X with Φ(x̃) = 22.8.

For the second equation of (2.20), the optimization problem(2.15)–(2.16) corre-
sponds to

R= 90, M = 150, X =
(
[1,2], [2,3]

)
.

We have 〈
M−

2

∑
j=1

X j t j

〉
= 0,

which is attained at(1.5,2.5). It is taken as the starting pointx(0) for the method
(2.18), whileΦ(x(0)) = 22.5. The gradient ascending (2.18) reaches the boundary
of the domain boxX at the point ˜x = (1.0,2.63158) that delivers maximal value
Φ(x̃) = 24.7826 to the objective function.

According to Theorem 2 (Section 5) and formula (2.10), we getan inner interval
estimate for the solution set of Hansen system in the form

(
13.6364

51.8182

)
+min

{
22.8,24.7826

}
·
(
[−1,1]

[−1,1]

)
,

that is, (
[−9.16364,36.4364]

[29.0182,74.6182]

)
.

This is slightly worse than (2.21), but no so bad at all!
Next, we consider the interval linear system




3.5 [0,2] [0,2]

[0,2] 3.5 [0,2]

[0,2] [0,2] 3.5


x=




[−1,1]

[−1,1]

[−1,1]


 , (2.23)

with the solution set as in Fig. 2.5 (it is shown at the jacket of the book [10], but in
another projection).

Since the middle of the right-hand side vector is(0,0,0)⊤, the solution to the
midpoint system is the zero vector too, and we can take the center of the inner box
as t = 0. This crucially simplifies our technique, since then the numerator of the
expression (2.15) does not depend onx any more. We have

max
x∈X

Φ(x) = max
x∈X

(
R−|M|
∑ j |x j |

)
=

R−|M|
minx∈X

(
∑ j |x j |

) = R−|M|
∑ j〈X j〉

, (2.24)

which is easily computable.
For the system (2.23), the expressions (2.24) taken over allthree rows of the

matrix coincide and equal
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x3

x1

x2

Fig. 2.5: Solution set for Neumaier system (2.23)

1−0
〈3.5〉+ 〈[0,2]〉+ 〈[0,2]〉 =

1
3.5

= 0.285714.

Therefore, the inner interval box for the solution set of (2.23) should be



[−0.285714,0.285714]

[−0.285714,0.285714]

[−0.285714,0.285714]


 . (2.25)

It coincides with the inner estimate obtained by formal-algebraic approach, as a
proper formal solution to the interval linear system in Kaucher arithmetic




3.5 [2,0] [2,0]

[2,0] 3.5 [2,0]

[2,0] [2,0] 3.5


x=




[−1,1]

[−1,1]

[−1,1]


 .

The cube (2.25) is actually an inclusion maximal inner interval estimates of the solu-
tion set to (2.23) that “exhaust” its central part adjacent to the origin of coordinates.
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2.8 Conclusions

The work presents a new method (“center approach”) for innerinterval estimation
of the solution sets to interval linear systems, which is a good supplement to the
earlier developed techniques.

For interval linear systems with square matrices, the quality of the results pro-
duced by the new method is slightly worse in comparison to those of formal-
algebraic approach. But the new method is conceptually simpler and has wider
applicability scope, being able to compute inner estimatesfor the solution sets to
interval linear systems with general rectangular matrices. A notable feature of the
“center approach” is the possibility to easily control the location of the inner box
within the solution set, through changing the position of its center. Additionally, the
new approach can be adapted to interval linear systems with dependencies between
the entries of the matrix.

Acknowledgements The author is grateful to the referees for their valuable suggestions on im-
proving the presentation of the paper.
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