Modeling,
Design, and Simulation
of Systems with Uncertainties

Mathematical Engineering, Volume 3

Editors: Andreas Rauh and Ekaterina Auer

Springer Berlin Heidelberg, 2011

DOI 10.1007/978-3-642-15956-5_2
Print ISBN 978-3-642-15955-8
Online ISBN 978-3-642-15956-5



Chapter 2

A New Method for Inner Estimation
of Solution Sets to Interval Linear Systems

Sergey P. Shary

Abstract For an interval system of linear equatiofs = b, we consider the prob-
lem of inner estimation of its solution set, formed by all #@dutions to point sys-
temsAx=b with AcA andb € b. The so-called “center approach” to the problem is
developed when the inner interval box is constructed ar@umal priori known cen-
ter point from the solution set. Determining the size of tier box is shown to be
reduced to a maximization problem for a special quasicamoayective function.

2.1 Introduction

In our work, we consider interval linear equations systefrte@form

a;;Xy + aiXe + ... + amXn = by,
A1X1 + aXe + ... + amXn = by,
(2.1)
amX1 + apXe + ... + amXn = bm,
or, briefly,
Ax=b, (2.2)

whereA = (&) is an intervamxn-matrix andb = () is an intervaim-vector. The
above interval systems are understood as families of ugaht” linear systems
Ax = b with the same structure, while the matricksare taken fromA and the
vectorsb are taken fronb.

It is well-known that, for interval equations systems, siolus and solution sets
can be defined in various ways (see e.g. [15-18]), but belowaméine ourselves
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only to the so-callednited solution sefior (2.1)—(2.2), the set formed by solutioxs
to the point systema&x= b with the matrixA and right-hand side vectbrindepen-
dently varying throughA andb respectively. The united solution set is rigorously
defined as

Z(Ab)={xeR"| (A€ A)(Ibec b)(Ax=Db)}, (2.3)

and it is called jussolution sefor (2.1)—(2.2) in the rest of the paper, insofar as the
other solution sets are not treated herein.

The solution seE (A, b) is known to be a polyhedral set, generally nonconvex,
while its intersection with each orthant of the sp&ds convex. An exact descrip-
tion of the solution set may grow exponentially as the din@mna increases, thus
being practically impossible even for several tens of unkma On the other hand,
in most real-life problem statements such an exact degmmipf the solution set is
not necessary. The practice is usually satisfied bgstimateof the solution set,
i.e. an approximate description that meets the requiresnafithe problem under
solution.

In this work, we are interested in computimger interval estimates (subsets) for
the solution seE (A, b), i. e. we solve the following problem:

Find a boxU (as wide as possible)
contained in the solution sé&t(A, b) (2.4)
of the interval linear systedwx = b.

There are several known approaches to solving the problémmef interval estima-
tion of the solution sets to interval linear systems progdasehe literature. Among
those, the so-called formal (algebraic) approach is eafgd@fficient for square
(i.e., with m = n) interval linear systems, developed in [8, 15, 17, 18]. Nbae
less, for arbitrary interval linear systems with rectaaguyhon-square) matrices,
i.e. whenm # n, inner interval estimation of the solution sets is an actunal sig-
nificant problem. Relying on vivid geometric consideratipwe propose a simple
and quite general technique for constructing a box insdrib® =(A,b) around an
a priori known point from this set (see Fig. 2.1). It is shovmattthe considered
problem reduces to computing maximum of a special quasaa@ntunction, and
its approximate value can be obtained by elementary means.

In the rest of the paper, we do not require regularity progeifor A and even
admit the case of unbounded solution SéA, b). The only mild condition orA is
that it must not have entirely zero rows.

Our notation follows the well-known project of informal @rhational standard
[6]. In particular, intervals and interval quantities aendted by boldface letters —
A,B,C,...,X,Y, z,— while non-interval (point) objects are not distinguidlie any
way. Arithmetical operations with the interval quantitee® those of the classical
interval arithmetidR (see, e.g., [1,9,10]). Underlining and overlining a-a —
denote lower and upper endpoints of the inteevalnd, additionally,
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Fig. 2.1: Inner estimation of the solution set.

mida = %(EJr a) — midpoint (center) of the interval,
rada= %(a—g) — radius of the interval,

|a| = max{ [a|,|]a] } — absolute value (modulus) of the interval,

min{ [al,|al}, f0 ¢ a, mignitude of the interval (antipode
(a) = { {1al.laf} 7 . — ofthe absolute value), the smallest
0, otherwise distance between its points and zero.

With respect to interval vectors and matrices, the opemnatad taking the midpoint,
radius and absolute value are applied in component-wisel@ntent-wise manner.

We expect that the reader is familiar with fundamentals terival analysis, e.g.
from the books [1, 9, 10].

2.2 Refinement of Problem Statement

In applications, the problem statement (2.4) often costaitiditional information

about the desired form of the bdd = (Ug,Us,...,Uy)T that has to estimate
Z=(A,b) from inside: the widths of the components dfare supposed to be pro-
portional to the respective components of a real positiatore
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W= (Wq,Wo,...,Wy), w; > 0.

In other words, the formulation (2.4) is additionally supglwith the weight co-
efficientsw; for the widths (or radii) of the components of the inner Rdxsuch
that

radUi/radU; = w; /w;j, i,j=12,...,n

Scaling the interval system (2.1)—(2.2) by the nonsingdiagonal matrix
W = diag{w1, Wy, ..., Wn}

with the entrieswvy, wo, ..., Wy along the main diagonal can reduce the problem to
the simplest case whem= (1,1,...,1) and the bo)U turns to a cube that we have
to inscribe into the solution set of a modified interval egurag system. Moreover,
we have

Proposition. LetA = AW. The interval vectot) with equal component widths, i.e.
such that 3 3
radUj = radUj, i,j=12,...,n,

is a solution of the inner estimation problgi4) for the modified interval system
Ax = b if and only if the interval vectotd = WU with the desired ratios of the
componentwidths is a solution to the inner estimation gotfP.4)for the original
systemAx = b.

Proof. We use Beeck’s characterization [10] of the solution setéanterval linear
system (2.1)—(2.2): fax € R"

xe Z(A,b) — AxNb+# @. (2.5)
In particular, for the modified equations system

%e =(A,b) —  Anb+£o. (2.6)

Multiplication by the matrixW defines a one-to-one correspondence between the
points of the boxel) andU according to the rule

X = X=WX

for x € U andxe U. Further, for every pair of the mutually correspondingndx;
there holds .
Ax=AWW 1x = A,

so that the relations from the right-hand sides of the edgmaes (2.5) and (2.6)
either fulfill or not fulfill simultaneously. Moreover, foraghi,j = 1,2,...,n, we
really have

radU;/radU; = w; /wj,

as was required.
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To sum up, in the rest of the paper we can consider the inniena#in problem
(2.4) with the additional requirement that the intervalteed) should have equal
component widths.

2.3 Idea of our Approach

If we find a point from the solution sef(A,b), then it can be further used as a
“center” around which the interval solution to the proble2m is to be constructed
somehow, by “inflation” etc. (see Fig. 2.1). This is the malea of the approach
developed, so that one can call it “center approach” in ayato what has been
done in [4, 16] for the inner estimation of th@erable solution setSo,

e we look for a pointt € = (A, b) first,

e then we use the coordinatestdbr the computation of
the size of the inner estimating cube with the centér in

The formula for the size of the interval solution of the perhl (2.4) is going to
be derived later (see Section 2.5). Computation accordairtis formula involves
taking maximum of a rational expression with moduli over &,z that the entire
solution of the inner estimation problem (2.4) boils dowratooptimization over a
box provided that a point € =(A,b) is known. We consider this in Section 2.6 in
details.

2.4 Choosing Center of Inner Estimate

The problem of recognition of whether the solution 3¢A, b) is empty or not and
the problem of finding a point from the solution $gtA, b) are known to be NP-hard
in general [7]. A universal method for solving these protderan exploit the fact
that intersections of the solution sets to interval lingaatams with every orthant
of the spaceR" are convex polyhedral sets whose boundary planes are ledcri
by equations one can easily write out from the interval marid right-hand side
vector of the system (see, e.g., [3,11]). Therefore, findngwhether the solution
set=(A,b) has empty or nonempty intersection with each orthari@'b€an be re-
vealed by developed linear programming techniques. Oyénalrecognition of the
solution sets to interval linear systems and finding a paorhfit requires no more
than 2' solutions of linear inequalities systems, and this resarnot be principally
improved.

Therefore, in the general situation, finding a point from sb&ution set and its
adjustment are not easy tasks. It makes sense to give afiattfular prescriptions
for the solution of the above problems in some specific cases.
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We consider first a square interval system witthann-matrix A. If it is regular
(i.e., allA € A are not singular), then the poinfrom = (A, b) can be obtained as the
result of solving a point linear systeAt = b with A from A andb from b, say, the
“middle system”

(mid A)t = midb.

Checking regularity of the interval matrik can be performed by the techniques
proposed e.g. in [12].

Let us consider now the case of a singular interval maiixhat is, when it
contains a singular point matrix. It is well-known that thet ef singular matrices
forms a smooth manifold with co-dimension 1 in the set ohall n-matrices, thus
being quite a meager set with zero Lebesgue measuRe"ifl. Hence, if all the
entries of the matriXA have nonzero widths, then we can always hope to arrive at
a regular point matribA as the result of proper varying entries of the paint n-
matrix within A. Again, it suffices to solve the systek= b with anyb € bin order
to find the “center” point.

What should we do in case of rectangular equation systemsi8ues, the
technique based on the so-calfedognizing functionahay help in this case, which
has been elaborated by the author in [14, 16]. We would rersamde facts and
concepts.

Theorem 2.1.LetA be an interval nx n-matrix,b be an interval m-vector, and the
expression

n
Uni(x,A,b) = ll;r}i<nm{ radb; — < mid bj — Z ajj Xj > }

defines a functionalni : R" — R. The membership of a point x in the solution set
to an interval linear systerAx = b is equivalent to nonnegativity of the functional
Uniin x,

xe Z(A,b) — Uni(x,A,b) >0,

i.e., the solution seE (A, b) of the interval linear system is Lebesgue §&tc R" |
Uni(x,A,b) > 0} of the functionalUni.

If itis clear from the context which interval system is meahéen we shall write
simply Uni(x) instead of Unix, A, b).

Proof. A point x belongs to the solution séi(A,b) if and only if there exists a
matrixA= (&;j) € A, such that N
Axe b.

After writing out the matrix-vector product and represagtihe right-hand side
intervals in the center-radius form, this membership takegrom

n
Zajxj € mid b + [ —radb;, radb; |, i=12....m
j:
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Adding (—mid by;) to both sides of the above inclusions, we get the equivaigdat r
tions

=}

&jx; —midb; € [—radb;, radb; |, i=1,2...,m,
1

i
which are, in its turn, equivalent to

=}

&jx; —midby
1

<radb; ,

i
and therefore

radb; — >0 (2.7)

n
mid bi — éinj
2

foreveryi=1,2,....m.

Hence,x € =(A,b) if and only if for each index there exist sucka| € ajj,
j=1,2,...,n, that the inequalities (2.17) are true. This amounts to tifdlfnent
of

n
max {radbi— midbi—za-jxj } >0 (2.8)
dij€aij, =1
j=12,...,n

fori=1,2,...,m. Bringing the maximum into the brackets and taking into aeto
that the natural interval extension of the expression urd®tule coincides with its
range of values, we get for=1,2,....m

dbj — idbj — i Xi >0 2.9
{ ra <m| JZla”xj> } (2.9)

instead of (2.8). Finally, taking the minimum, we can redooenditions (2.9) into
one, to get that the pointbelongs to the sef (A, b) only in the case when

n
1|;r}|<nm{ radb; — <m|d bi —lea.inj> } > 0,

as required.

One may see that the functional Uni “recognizes”, throughsiign of its values,
whether the point is in the solution s&tA, b) or not. This is why we use the term
“recognizing” with respect to it. Additionally, the followg properties hold [14]:

1) The functional Uni is concave in each orthani®f and if the matrixA
has entirely noninterval (point) columns, then UgA, b) is concave
on unions of several orthants.

2) The functional Un(ix, A, b) is continuous and attains a finite maximum
over the whole spadg".
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3) If Uni(x,A,b) > 0, thenx s a point from the topological interior i (A, b)
of the solution set.

4) Under some additional conditions &nb andx, the reverse is also true:
the membershix € int =(A,b) implies Uni(x,A,b) > 0.

The last two properties of the recognizing functional eaahls to use it for de-
ciding whether a point belongs to the interior of the solutset. This is especially
important inasmuch as our technique can construct a saligf iestimate of the so-
lution set only around the center pointhat lies in the interior of the solution set
int =(A,b).

As a consequence of the results obtained, we arrive at tlosvialy practical pre-
scription for the correction of the poitin our “center” approach to the solution of
the problem (2.4): find a starting guess and then, using gnadscent, try reaching
better value of the recognizing functional Uni. If the vafoend is strictly greater
than zero, then we are in the interior of the solution set.

We do not discuss the question of optimization (the bestoe)af the center of
the inner interval box, since it is closely related to speaieds of the customers
that solve a practical problem statement.

2.5 Formula for Size of Inner Estimate

Theorem 2.2.If a point t € R" belongs to the solution set of an interval linear
systemAx =D, i.e.te =(A,Db), then

n
radb; — | mid b — Z ajjt;
= min max )= >0 (2.10)
p= 1<i<m AeA n - ‘
> lail
=1
and the interval vectol = (t+ pe), e= ([-1,1],...,[—1,1]) T, with the center t is

entirely contained in the solution s&(A,b).

The expression under extrema in (2.10) looks very impres$ivt it has a clear
sense which is worth mentioning. The vectanid b — At| is composed of abso-
lute values of the deviations of the produdttcomponents from the center of the
right-hand side of the interval linear system considerdte $igns of the differ-
ences between the radii of the right-hand side and such ti@wa given by the
components of radb— |mid b — At|), show whether the imagt of the pointt
under the linear transformatioh belongs to the right-hand side vectarThis all
is familiar to us from the previous section, where we usedstirae technique to
derive the recognizing functional Uni. However, when dadcby the sumg ; |ajj |
of the moduli of the entries in the respective row#\pthe components of the vector
(radb— |midb— At|) produce a new characteristic, namely, sensitivity of tlee re
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ognizing functional with respect to variations of its firsgament. More precisely,
the minimum of such ratios over all the rowsAfjives a “perturbation robustness”
that shows how much we can shift the pdint order not to leave the solution set
of the interval linear systerx=h.

Proof. Since the matrix of the interval linear system does not have mws, then

D laij| >0

J

IM>

foreveryi=1,2,....,m, andp > 0 is equivalent to nonnegativity of the expression

2

which defines the values of the recognizing functional Urthie pointt € R" due
to the theorem of Section 2.4. It is indeed nonnegative (o (A, b).

Starting the substantiation of the second statement ohth@rém, suppose first
that the matrixA in the problem (2.4) has zero width, i.e. is noninterdal- A =
(aj). Denoting then

min max{ radb; —

1<i<m AeA

n
mid b — ajjt;
2

radb; —

n
midb — Y ajit;
[ le it

n
ai
J_le il

we represent every € U in the formx =t +y, wherey € R" and

pa = min : (2.11)

max < .
lgkgnkal < pa

In view of the fact that

radbj —

n
mid bj — ajjtj
4

lVi| < pa <
| aj|

M=

j=1

the following inequalities chain is valid for each-1,2,...,m:
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n
J;auyj

radb; —

n n
< Y laijllyil < pa- 3 lai]
=1 =1

IN

n
mid b — ajjtj
2

= radb; — | mid b; — (At); .
As far asAy = Ax— At, we get
(At); —radb; + | mid b — (At)i| < (Ax)i < (At)i+radb; — | mid b — (At); |
or, which is equivalent,
b, — (mid by — (At);) + | mid by — (At); |
< (AX)i < (2.12)
bi — ( mid by — (At);) — | mid by — (At); |.
Taking into account that
—z+|z2>0 and —-z—|Z<0
for any realz, the inequality (2.12) implies for every=1,2,....m
b < (AX)i <y,

i.e. Ax € b. This means that the poiris a member of the solution set to the interval
linear systemAx = b. So, the formula (2.10) is proved for the systems (2.1)}(2.2
with only the right-hand side being interval, not the matrix

We suppose now that the matixin the interval linear system (2.1)—(2.2) is
essentially interval, i.e. has nonzero width, the corresigtg solution sekE (A, b) is
nonempty and € =(A,b). We consider the totality of all the systerAg = b with
point matricesA € A and inner estimatédda of their solution set& (A, b). By virtue

of the fact that
Z(Ab)=J =(Ab),
AcA

the union of all or some of the inner estimates of the S&t& b) for A€ A is an
inner estimate oE (A, b) too.

Let Up be a cube, with the fixed centerincluded in the solution set dix = b.
Clearly, such inner estimates exist not for every solutien=yA,b) with A € A,
but only for those that contain the pointHowever, the union of the inner cubes
Ua € =(A b) that still exist for the giveri can be found in an especially simple
way: it is a cube with the same centeits size being equal to the maximum of sizes
of the cubes to be united (see Fig. 2.2). In particular, ifdlzes of the cubes are
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A

Fig. 2.2: Union of cubes with a common center is also a cuble thii2 same center

defined by the formula (2.11), then the box
U=t+pe

is also entirely included into the solution s&tA, b) for

rad bi —

n
midb — Y ajjt;
i 121 iti

p = mapr = rpeaAX 1r<r]|<nm (2.13)

|aj|

D

i

In this expression, we have the right to take the maximum reisipect taA over the
whole interval matrixA, no matter whethet € =(A, b) or not for specificA € A.
The point is thatpa < 0 in case oft ¢ =(A b), and such negative values of the
inner minimum in the expression (2.13) in no way affect therall nonnegative
maximum of (2.13).

Finally, we can rearrange the minimum and maximum in (2.48)ce, for dif-
ferent indices, the expressions in the curly braces havmintersecting sets of
argumentsnamely, they are taken over different rows of the maii¥inally,

n
radb; — | mid bj — ajjt
2

n
J;Iaijl

p = min max
1<i<m AeA
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This completes the proof of the theorem.

One cannot but notice a beautiful duality of the above resith the formula
derived in [4, 16] for the size of inner estimate of ttederable solution seto the
interval linear system (2.1)—(2.2). The tolerable soluset is defined as

Z0i(Ab) = {xeR"| (VA€ A)(3b € b)(Ax=b)}
= {xeR"| (VA€ A)(Axe b)}
={xeR"|AxCb}

and has many interesting practical applications (see £331P]). It turns out that,
if t € Z01(A,b) # @, then

n
radbj — | mid bj — Z ajjtj
. . =1
0 = min min A >0 (2.14)
1<i<m AcA
> laij
=1
and the interval vectdt + oe), e= ([-1,1],...,[-1,1]) T, isincluded into the toler-

able solution seE; (A, b). Changing the logical quantifier that stands at the matrix
in the definition of the solution set — fromi" to “ vV’ — leads to changing the sense
of the internal extremum in the expression (2.10) for the sizthe inner box: we
get minimum oveA € A instead of maximum.

An unpleasant feature of the formula (2.10) is that it pregfuzero, if the radius
of a right-hand side component is zero. This can be parttaliyected after substi-
tuting the coordinates of the center into the interval sys(@.1) and transferring
any interval column into the right-hand side, which acgsimenzero radius as the
result.

In the expression (2.10), taking the minimum over{1,2,...,m} involves no
difficulties, so that the main problem in the computatiorpds to find, for each,
the internal maximums

n
radbj — | mid b; — ajjt;
2

( DE(aL,-an) 4
8i1;---,8in ) €(8i1,--,&
n n Z|a”|
=1

or to estimate them from below.
For further convenience, we denote the jax, aj», .. .,an) through

(X15X27"'7Xn) :X7
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regardless of the indexe {1,2,...,m}, while the objective functio®R" — R, de-
fined by the expression inside the curly braces in (2.10) aridij, will be denoted
as

n
R—| M- Zthj
D(x) = =0 (2.15)

n
.
J;I il

whereR = radb;, M = mid b; are real constants. As the result, constructing inner
interval estimate of the seé(A,b) around the known center point reduces to the
solution of the following optimization problem

Find m(;:(\x ®(x) or, at least, its nonnegative estimate from belpow. (2.16)
Xe

Nonnegativity constraint is evidently implied by the piaat sense of the required
estimate as a radius of the inner box.

2.6 Computing Size of Inner Estimate

It is obvious that, in (2.16), the estimate of the soughtraxcx ®(x) from be-
low may be the value the objective functianx) takes at any point of the box.
Therefore, if we are not going to get involved into laboricosnputations, then the
simplest way to solve the problem (2.16) is to take maximurthefvalues of the
objective function in several special points of its dom4in

Let us denote

G(x) =R~ M—J;XJIJ' : H(X)=J;|XJI,
so that G
d(x) = %

G(x) andH (x) are quite simple expressions that have only one occurrereeeoy
variablex;, so that their extrema ove¢ can be easily computed as the lower and
upper endpoints of the natural interval extensiGiiX) andH (X) for the respective
expressions. In particular,

XeX

maxG(x) = G(X) = R—<M—JZlthj>

and
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xeX

nHK) = HO) = 3 (X)),
min H(x) = H(X) J;M)

Further, along with the values of these extrema, we can fiedtuments that they
deliver, tracing which of the endpoints of the intervAls Xo, ..., X, produce the
endpoints of the interval extensio@§X) andH (X) as the result of the operations
with them, i.e. addition, subtraction, multiplication aa#ting the modulus. Overall,
the simplest estimate of the solution to the problem (2.&6)e taken, for instance,
as maximum of the values of the objective funct®(x)

in the center (“most representative point”) of the Box
in the point where the denominatidi(x) attains its minimum,
in the point where the numerat@(x) attains its maximum.

If the centett of the inner box lies in the solution s8{A, b), then we have seen that
maxex G(x) > 0. So, the overall maximum of the values®fx) in the above three
points is greater or equal to zero, thus satisfying the ngatigty requirement in
the formulation (16).

We turn now to more developed techniques for the solutiomefdptimization
problem (2.16). Recall

Definition [2]. Let D be a convex set ifR". The functionf : D — R is referred to
asquasiconcavef for every x,y € D and 0< A < 1 there holds

F(Ax+ (1= A)y) > min{ f(x),f(y) }.

Fig. 2.3: Graphs of concave and quasiconcave functions

The functionf : D — R is known to be quasiconcave [2] if and only if its
Lebesgue sets
{xeD|f(x)>a}

are convex for everyr € R (see Fig. 2.3). In particular, a quasiconcave function
cannot have several local maxima that differ in value frorcheather. Computing
one local maximum of such functions is, at the same time, thatien of global
maximization problem.
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Theorem 2.3.Let 0 ¢ X C R". The set® of all the points fromX for which the
function @(x) defined by (2.15) takes nonnegative values is convex,@M is
guasiconcave o®.

Proof. For a given levelr > 0, we denote through
={xeXCR"|®(x)>a}

the Lebesgue set of the functi@n(x). In particular,S = .

If Sy is empty, there is nothing to talk about. & # &, then let the points,
y (not necessarily different) belong to the &t so that®(x) > a, ®(y) > a.
Therefore,

n
R—|IM-=Yxjtj| > a 1%,
2

n
R—|M=3%ytj| > a |yl
=1

Taking anyA € [0,1] and summing the above inequalities with the nonnegative
weightsA and(1—A), we come up with the inequality of the same sense:

M — ZthJ M— ZthJ

(1-2)

(2.17)
>a | AY X+A=-2) Yyl |-
= ( J:1|XJ| ( )J: |yJ|>

Further, applying the triangle inequality for the absohadues of intervals, we
can change the left-hand side of the inequality (2.17) tceatgr or equal quantity

—‘/\(M—ixj'tj)-l—(l—/\)(l\/l—iyjtj) ,
=1 =1

while the right-hand side (2.17) can be changed (due t00) to a smaller or equal

quantity
(ZMXJ +(1-2) yJ|>

n
<Z|/\xj+ 1-2) yJ|>

Finally, we have

=}

R— Axj+(1-2)yj

1

J
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which is equivalent to
P(Ax+(1-A)y)>a.

The pointAx+ (1—A)y thus lies within the se§; too, i.e. Sy is convex. This
completes the proof of the theorem.

It is worth noting that the condition of nonnegativity @nx) is not so burden-
some for applications of the above result, since negatofitg(x) for all x € X is
only possible for uninteresting cases when the center paioés not lie within the
solution set. This follows from that the negativity ®{x) is equivalent to negativity
of the numerator in the fraction (2.15) and, hence, of thedgmizing” functional
Uni in the pointt (see Section 2.4). Then we have to take care of a better cfuice
the center point.

The presence of moduli in the expression (2.15) makes thectizg function
®(x) nonsmooth, although it is continuous. The function is sfifferentiable al-
most everywhere over its domain of definition. Therefore, ¢uasiconcavity of
@(x) may result in gradient-type methods for the solution of thebfem (2.16).
For instance, if By means projection onto the bog we can apply the simplest
gradient projection method

w1 (0 4 (9 pr (ch(x(k))), k=0,12,..., (2.18)

with the appropriate choice of the step sjZ€ € R, (see e.g. [2]). The components
of the gradient]®(x) are easily seen to have the form

(ch(x))i -

) - SgNX;

n
M-y Xjt;
le il

where “sgn” means the usual sign function.

A good choice of the initial approximatiad? for the process (2.18) will be a
point where the objective functio®(x) is already nonnegative. How can we find
this?

As follows from the results of Section 2.4, the membershia @iintt in the
solution set= (A, b) is equivalent to

n
Uni(t,A,b) = 1r<nii<nm{ radb; — < mid b; — Z ajj t > } > 0,
<i< =
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which, in its turn, holds true if and only the same inequabktyalid for the separate
i-th row of the matrixA, i =1,2,...,m. Interms of the functio® defined by (2.15),
this means that

n
R- (M- Xjtj) >0, (2.19)
=1

whereX = (X1,Xz,...,Xn) = (&1,a2,..-,an), R=radb;, M = mid b; for a fixed
indexi. Therefore, to find nonnegativity points for the objectivadtion®(x), we
have to trace the endpoints of the intervgis Xo, ..., Xp, at which the value of the

expression
n
M — Xt
(-3 n)

is attained, similar to what has been recommended in thenbigj of the section.
The numbers thus obtained constitute components of thensdoigstarting approx-
imationx(© for the gradient ascending method (2.18).

2.7 Numerical Examples

Let us consider a numerical example with the interval lirsgatem

2,3 [0,1] (0,120
X= , (2.20)
(1.2 (2.3 (60,240
proposed by E. Hansen (see [5] and earlier works). Its soluiet is shown at
Fig. 2.4.
In formal-algebraic approach to inner estimation of theisoh set, we have to

carry our considerations into Kaucher complete intenigtharetic and organize the
so-called dualization equation

3,2 1,0\ ( [0.120
2.1 32 )"\ [6024q )’

having the matrix dualized and the right-hand side vectochanged, and then com-
pute its formal (algebraic) solution [8, 15,17, 18]. It cam tomputed by several
ways, and the most efficient subdifferential Newton methind2 iterations finds

the vector
[—12,60] 291
[24,90 | (2.21)

1 C-sources and executable files of its implementation fordafivs are downloadable frohitp:
Iliwww.nsc.ru/interval/shary/Codes/progr.htmi
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200

—100 100

.\

Fig. 2.4: Solution set of Hansen system (2.20)

One can make sure that this is an inclusion maximal innemeas# of the solution
set for Hansen system.
Inner interval estimation with the use of our “center apptdatarts from solving

the midpoint system
25 05 60
X= . (2.22)
15 25 150

Its solution is(13.636451.8182 " and, due to regularity of the matrix in (2.22),
this vector is within the estimated solution set and can kertas the centerof the
inner box?

When solving the optimization problem (2.15)—(2.16) faz fiist equation of the
system (2.20), we have to take

R=60, M=60  X=(]23,[0,1).

2
M- Xjtj ) =0,
(u-50)

and this value is attained .5,0.5) € X which can serve as a starting pokf for
the method (2.18).

Launched from thig(?, with &(x(?)) = 20, the gradient ascending (2.18) reaches
the boundary of the boX at the pointx™= (2.0,0.631581 (the exact number of

Then

2 We keep no more than six digits in the numerical data of thitice.
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steps depends on the specific choice of the stepysfze The point<turns out to
be maximum of® in X with ®(X) = 22.8.
For the second equation of (2.20), the optimization prol2rh5)—(2.16) corre-
sponds to
R=90, M = 150, X=([1,2],[2,3)]).

2
M — Xjtj ) =0,
< 2 >

which is attained af1.5,2.5). It is taken as the starting poirt® for the method
(2.18), while®(x(9)) = 225. The gradient ascending (2.18) reaches the boundary
of the domain boxX at the pointx= (1.0,2.63158 that delivers maximal value
®(X) = 24.7826 to the objective function.

According to Theorem 2 (Section 5) and formula (2.10), weageihner interval
estimate for the solution set of Hansen system in the form

We have

13.6364 _ (—1,1]
+min{22.8,24.7826} - :
51.8182 (—1,1]

that is,

[—9.1636436.4364
290182746187 |

This is slightly worse than (2.21), but no so bad at all!
Next, we consider the interval linear system

35 (0,2 [0,2] —1,1]
0,2 35 0,2 |x=| 11 |, (2.23)
0,2] [0,2] 35 —1,1]

with the solution set as in Fig. 2.5 (it is shown at the jackKehe book [10], but in
another projection).

Since the middle of the right-hand side vector(@0,0) ", the solution to the
midpoint system is the zero vector too, and we can take thiecehthe inner box
ast = 0. This crucially simplifies our technique, since then theneuator of the
expression (2.15) does not dependxaeny more. We have

max ®(x) = max(R_lw) = R=[M| R—[M|
xeX xeX

5 1| = (2.24)

Cominkex (351%]) - Xi(X))
which is easily computable.
For the system (2.23), the expressions (2.24) taken ovehi@ée rows of the
matrix coincide and equal
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X3

X2

X1

Fig. 2.5: Solution set for Neumaier system (2.23)

1-0 1
(35)+([0,2)) +{[0,2) 35

=0.285714

Therefore, the inner interval box for the solution set 028).should be

[—0.2857140.285714
[—0.2857140.285714 | . (2.25)
[—0.2857140.285714

It coincides with the inner estimate obtained by formalesigic approach, as a
proper formal solution to the interval linear system in Klagicarithmetic

35 [2,0] [2.0] ~1,1]
2,00 35 [2,0] |x=]| [-11]
2,0] [2,0] 35 ~1,1]

The cube (2.25) is actually an inclusion maximal inner ivdéestimates of the solu-
tion set to (2.23) that “exhaust” its central part adjacertht origin of coordinates.
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2.8 Conclusions

The work presents a new method (“center approach”) for imterval estimation
of the solution sets to interval linear systems, which is adgsupplement to the
earlier developed techniques.

For interval linear systems with square matrices, the guafithe results pro-
duced by the new method is slightly worse in comparison teehof formal-
algebraic approach. But the new method is conceptually Isirgnd has wider
applicability scope, being able to compute inner estimédeshe solution sets to
interval linear systems with general rectangular matriéesotable feature of the
“center approach” is the possibility to easily control tledtion of the inner box
within the solution set, through changing the position stiénter. Additionally, the
new approach can be adapted to interval linear systems ejibritlencies between
the entries of the matrix.

Acknowledgements The author is grateful to the referees for their valuablegesgons on im-
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