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A new approach to the analysis of static
systems under interval uncertainty

Sergey P. Shary

0 Problem statement

The subject of this work is some mathematical and computational aspects of modeling
of static systems under interval uncertainty, and our main practical example will be
the inverse problem of the systems analysis:

Given the input and output of the system,
find (or somehow estimate) its states.

The peculiarity of the situation we deal with is that the input and output of the
system are only supposed to be within some bounds, lower and upper, or, which is
equivalent, we are given merely intervals of their possible variations. We shall denote
intervals and interval objects (vectors, matrices) by boldface letters (for instance,
A B C,... x,y,z). Also, x and X designate the lower and upper endpoints of the
interval x.

disturbing regulated
Aty ..., Ak bl,...,bl
INPUTS b OUTPUTS
Q41y -+ Qp bl+1,...7bs
controlling stabilized

F(a,x)

Let the system input, state and output be described by the vectors a € R", = €
R™ and b € R respectively. In the set of all inputs, we distinguish perturbations

ai,-..,ar, which are independent of our will, acting within the intervals ay, ..., ay,
as well as controls ax41, ..., a,, which we can choose from the intervals agy1,...,a,.
Similarly, the set of all system outputs is divided into the components by, bo, ..., 0

(regulated outputs) that we must be able to transform to any values from the prescribed
attainability intervals bq,...,b; and the components bj41,...,bs (stabilized outputs)
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that must fall into some intervals b;yq,...,bs with guarantee. The input-output
relationship is assumed to be of the form

F(a,z) =Db, (1)

where the components F;(a,x), i =1,2,..., s, are rational expressions that we will un-
derstand from now on as finite combinations of variables a, x and some constants with
elementary arithmetical operations (cf. [9, 10]). Also, we assume all F; to be contin-
uous over their domains. The question that inspired the mathematical constructions
of our work is as follows:

For what system states x can we choose, for any perturbations ay, . . .,
ar, which are inside the limits of ay, . .., ay respectively and for any a
priori given output values by, ..., b; from the respective attainability
intervals by, ..., by, the corresponding controls axy1 € agyi, ..., (2)
a, € a, such that the output response of the system F(z,a) would
be exactly equal to by, ..., b; in the regulated outputs and would be
inside byy1, ..., bs in the stabilized outputs?

Some people mind using the terms “control”, “controlling”, etc. in the situations
like the above described. They argue that what we mean is something different from
the respective notions of the classical automatic control theory. That is so indeed.
However, the automatic control theory is not the only discipline that has to do with
“controls”. We would like to remind that in the operations research the following
definition is generally adopted [1]: an operation is a purposeful action that can be
characterized as
U = f( Xi? Y7)7

where U is a utility or a value of the criterion that gives a quality of system functioning,
X; are the variables that we can control and Y} are the variables that can not be
controlled (i.e., they are uncontrolled, or, in other words, disturbing). Thus, the sense
in which we use the term “control” (and related terms) is rather the sense in which
these words are used in the operations research. Anyway, they are quite rightful.

In the special case of all inputs and outputs of the system being determined precisely,
the solution of the problem (2) reduces to the solution of the equation (1) with respect
to x. If the input and output values have interval uncertainty, then, according to the
terminology tradition of the interval analysis, we shall also refer to the solution process
of the problem (2) as the solution of the interval equations

F(a,z) =b (3)

with a = (aj,as,...,a,)" and b= (by,ba,...,b,)", but we must first specify what
is meant by the “solution set” to (3).
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Formally, the set of all states = that satisfy the requirement (2) is described by the
following definition:

{zeR"|
( Vap€ea; ) -+ (Vag€ag)( Vbr€by ) -+ (Vb €by)
(Jag+1 €ag1) -+ (Jar €a, ) (41 €bipr) -+ (s €by)
(F(a,z)=0) }.

(4)

The property which is written out as a predicate behind the vertical line in the record
(4) selects some values of = that constitute the solution set and therefore, we call this
property selecting predicate of the set (4). We emphasize that apart from setting the
function F' and interval vectors a, b, the key point in the definition (4) is indication of
quantifiers at various elements of the system (3), or, to put it differently, determination
of the r-vector a = ( ;) and s-vector 8 = (f;) made up of quantifiers and such that

(5)

a; = the quantifier standing at a; in the record (4),
B; = the quantifier standing at b; in the record (4).

One could arrive at introducing the general definition of the solution sets (4) from
the abstract standpoint as well. Notice that the interval uncertainty of a parameter
may be interpreted in two ways in accordance with the dual understanding of what
the interval is. In some cases, when we say that a real-life quantity is described by
an interval, we mean that all values from this interval are possible; in some other
cases, the interval means the bound on the (unknown) value, i.e., that some values are
possible, and all these possible values belong to the given interval. Mathematically,
this difference is expressed by using the universal quantifier ¥V and existential quantifier
3: in the first case we write Vo € x, while in the second 3z € x. When strictly defining
the solution set to an interval problem, one must clearly demarcate these two types of
uncertainty.

Overall, the mathematical object defined by (4) has a significance of its own, and it
makes sense to single it out as a separate notion. But, before doing this, it should
be recognized that the definition (4) is still not the most general. Since different
quantifiers do not commute with each other, we may form the other solution sets to
interval equations through combining V and 3 with the parameters of the equation
and changing their order. Generally, these solution sets can be practically interpreted
as solutions to some games or multistep decision-making processes under interval un-
certainty. In this work, we shall consider only the solution sets of the form (4), or, in
other words, the solution sets with the selecting predicate in which all occurrences of
the universal quantifier ¥V precede all occurrences of the existential quantifier 3.

Definition 1. Let for the interval equation F(a,z) = b the distribution of various
uncertainty types of its interval elements be represented by the quantifier vectors «
and 3 defined by (5). We will call the set (4) af-solution set to the interval equation
F(a,z) = b and denote it by X,5(F,a,b).
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The particular cases of the above definition are the following three solution sets which
have been the subject of (more or less) active research in the modern interval analysis:

O the united solution set, formed by solutions of all point equations F(a,z) = b
with @ € a and b € b, i.e., the set

S15(F,a,b) = {2 € R" | (3a € a)(3b € b)(F(a,z) = b) }, (6)

historically first and undoubtedly the most popular of the solution sets; some-
times it is called simply as solution set;

Q the tolerable solution set, formed by all point vectors x such that the image
F(a,z) € b for any a € a, i.e., the set

Sva(F,a,b) = { z € R" | (Ya € a)(3b € b)(F(a,z) = b) } (7)
(See, e.g., [10, 14]);
Q the controllable solution set
Sav(Fa,b) = {z € R" | (Ybeb)(Jaca)(F(a,z) =b)}, 8)

formed by all point vectors x € IR"™, such that for any desired b € b we can find
a corresponding a € a satisfying F'(a,z) = b (see [13]).

Even in the simple practical situations, a direct computation and description of a/3-
solution sets prove, as a rule, arduous and sometimes almost impossible. For instance,
the length of the direct description of ¥,5(F, a,b) grows exponentially with n in the
linear case, when F(a,z) = Az with some s x n-matrix A. It makes sense to confine
ourselves to the problem of an approximate description of the solution sets by simpler
sets, and, taking into account our practical interpretation, we shall consider an inner
estimation, i.e., by subsets.

Why subsets? The point is that other estimating sets may contain points which
have nothing to do with the solutions to the main problem (2). The other relevant
explanation is that only for subsets II C ¥,3(F,a,b) the answer to the question (2)
remains positive for all points x € II.

Taking the simpler subsets in the form of the axis-aligned boxes (interval vectors), we
thus arrive at the problem of inner interval estimation of the solution sets (4):

Find an interval vector that is included in the solution
set Xo3(F,a,b) of the interval equation F(a,z) = b.

(9)

So far, these problems have been solved only by minimax methods of mathematical
programming (see, e.g., [3]). We propose a new interval approach to the problem,
which we call the algebraic approach, and, on its basis, we develop (for some specific
cases) a number of efficient numerical algorithms that enables us to compute an interval
solution to (9) fast and with high quality.
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1 Analytical characterization of af-solution sets

To describe the distribution of various types of uncertainty in interval elements of the
system F'(a,z) = b, it is reasonable to introduce, along with the quantifier vectors «

and B, the following interval vectors a” = (af) and a® = (a7) and interval vectors

b" = (bY) and b= = (b7) of the same size as a and b:

v a;, if 07} ZV, 3 a;, if 07 ZE,
0, otherwise, 0, otherwise,

bV: {bZ7 if ﬁZ:V, bH: {bz; if ﬂz:37

0, otherwise, 0, otherwise.

In particular,

a=a"+a’, b=b"+b7,

and ala; =0, b!bj =0 for all i.

Proposition 1. Let the mapping F be be such that each controlling parameter
Qk+41s- - -5 Gr, which correspond to 3-type of uncertainty, occurs in at most one of the
components F;(a,z). Then the membership © € X,a(F,a,b) is equivalent to the
following system of inequalities:

min max Fi(a,z) >
aleav alleaﬂ

=

> o

max min_ Fj(a,z) <

a’ca” a’ca3 - 2

— for the regulated outputs, i = 1,...,1,

min max Fi(a,z) > b
a’eav¥ a'’ca3

max min Fj(a,z) < by,
aleav alleaﬂ

— for the stabilized outputs, i =1+ 1,...,s,

where we denoted a = a’ +a”, a’,a” € R".

Proof. Let b = (b1,ba,...,bs) = b +b", ¥, b" € R*. We perform the following equiv-
alent transformations with the selecting predicate of the solution set to the interval
equation:

Eag(F,a,b)
={zeR"|(Va' € a”) (Wb € b")(Fa" € a?)(I" € b)(F(a,z) =b) }
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={xeR"|(Va €a")(W € b")(3a" € a°)
( Fl(a,x) = b1 &

&

F(a,z)=b &
Fiyi(a,r) € by &

&

Fi(a,z) €bs ) }

={zeR"[(Va' € a") (W' € b")(3a" € a?)
( Fi(a,2) > by & Fi(a,z) < b &
F‘l(aax)zbl&ﬂ(a,f)gbl& B
Fiyi(a,x) 2 by & Fipa(a,z) <bjga &

Fy(a,z) > b, & Fy(a,r) <b,) }

={ze€R"|(Va' €a”)(VV €Db")
( (3a" € a3)(Fi(a,z) > b1) & (3a” € a7)(Fi(a, ) < b)) &
&
(3a” € a%)(Fi(a,x) > b)) & (3a” € a7)(Fy(a,z) < b) &
(Fa" € a¥)(Fit1(a,2) 2 byyy) & (3a” € @) (Fiya(a,2) <) &
&
(3a” € a7)(Fs(a,x) > b,) & (3a” € a7)(Fs(a,r) < by)) },

the last equality being true due to the restriction we impose upon F: the sets of
variables from non-zero components of a3 that occur in different components of F
simply do not intersect with each other.

Notice that for functions f which are continuous over a we have the following equiva-
lences:

Gaea)(fa)=b) =  maxf(@)>0h,
Gaea)(fa)<b) =  minf(e) <D

Hence, we may continue our transformations:
Eaﬂ (F, a, b)

={zcR"|(Va' €a”)(VV €b)
( (maxgreas Fi(a,z) > b1) & (mingreas Fi(a,xz) < b)) &
&
(maxgreas Fi(a, ) > b)) & (mingreas Fi(a,z) <b) &
(max,ieas Fiyi(a, ) 2 by ) & (mingrcas Fiyi(a, ) < b)) &
&

(max,»cas Fs(a,r) >b,) & (ming cas Fs(a,z) <by) ) }
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Further,
(Vbeb)(fla)>b) <= f(a)>D,
(Vbeb)(fla)<b) <= fla)<hb,
so we have
EQB(F, a,b)

={zeR"|(Vd €a") B
( (maxgreqs Fi(a,z) > by) & (mingreas Fi(a,2) <b;) &
(max,.cas Fi(a,z) > b;) & (ming.ca3 Fi(a,r) < b)) &
(maxa//€a3 E+1(a7x) > hl+1) & (mina”eaﬂ E+1(a7x) <
&
(max,.cas Fs(a,z) >b,) & (ming cas Fs(a,z) < by) ) 1.

bi11) &

Finally,
(Vae€a)(f(a)>b) = meigf(a)zb,
a
(Vaea)(f(a) <D) = meag(f(a)gb,
and we get
EQB(F, a, b)
_ n . N .
={z€R"[((min max Fi(a,z)2b1)& (max min Fife,z) <b,)&
&
i F >by) & in_F; <b) &
(P nes il m) 2 b & Qo i, File o) < B
(min max Fiii(a,2) 2biy) & (max min Fiyi(a,z) <bia) &
&
(min max Fi(a,z) > b,) & (max min Fy(a,r) < b)) },
aleav alleaa aleav aueaﬂ
which coincides with the system (10). O

2 Kaucher interval arithmetic

One can readily see from the characterization (10) that the problems (2), (9) are min-
imax by their nature. Then, to solve minimax problems we need a special “minimax”
interval arithmetic, that is, an interval arithmetic which implements computation of



A new approach to the analysis of systems 125

minimax at each elementary arithmetical operation — addition, subtraction, multipli-
cation and division. Classical interval arithmetic and its well-known generalizations —
Kahan arithmetic, Hansen arithmetic and some others — are designed for evaluation
of the range of operations and can not be directly used for our purposes. Luckily, such
a minimax arithmetic does exist and we do not need to construct it by ourselves on a
bare place. It is Kaucher interval arithmetic.

The classical interval arithmetic is known to be the algebraic system (IR, +, —,-, /),
where IR is the set of all real intervals [z, T ], x < T, while the binary operations
— addition, subtraction, multiplication and division — are defined according to the
following fundamental principle:

xxy={zxylzex yecy} (11)

for all intervals x, y such that (z xy), x € {4+, —, -, / } makes sense for any z € x,
y €y [2,9, 10]. The explicit formulas of the interval arithmetical operations are

Algebraic properties of the classical interval arithmetic are meager. It is not even
a group both with respect to addition and multiplication [4]: intervals with nonzero
width, that is, the majority of elements of IIR, do not have algebraic opposite and
inverse ones (in the group sense). Besides, IR is not a lattice [4] with respect to the
natural inclusion ordering. The first of the operations

x Ay =[max{x,y}, min{X,y} |, —join,

XxVy= [min{g, v}, max{X, y}} , —meet,

is not always applicable in the classical interval arithmetic.

“Incompleteness” both of the algebraic and of the order structures of IIR naturally
stimulated attempts to create a “more convenient” interval arithmetic based on it.
The joint order-algebraic completion of IR carried out in the works by Kaucher [6, 7]
resulted in the algebraic system called “the extended interval arithmetic IIR”. We
shall also use this term as well as “Kaucher interval arithmetic”. Afterward, Gardenes
and Trepat studied this arithmetic and established some its helpful properties and
important applications [5].

Elements of TR are pairs of real numbers [z, ], that are not necessarily related by the
condition z < Z. Thus, IR is obtained by adjoining improper intervals [z, T ], > T,
to the set IR = {[z,T] |z, T € R, < T} of proper intervals as well as real numbers,
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which are identified with the corresponding degenerate intervals. Elements of the
Kaucher extended interval arithmetic and other objects formed of these elements shall
be denoted by boldface letters, like the common intervals.

The proper and improper intervals, the two “halves” of IR, change places as the result
of dualization mapping dual : IR — IR, such that

dual x = [X,x].
As in classical interval arithmetic, we can define the inclusion as
xCy <<= x>y&x<y. (12)

This definition makes Kaucher arithmetic IR a lattice [4] with respect to the inclusion
order relation, in contrast to IIR.

Addition and multiplication by real numbers are defined on IR by
x+y:=[x+y,X+¥],

N oxe [Ax,AX], if Ae RT,
T [AX, Ax], otherwise.

Thus, each element x from IR has a unique algebraic opposite element [—x, —X],
and with respect to addition, Kaucher interval arithmetic IR is a commutative group,
which is isomorphic to the additive group of the standard linear space R?.

To write out explicit formulas for the multiplication, we separate in IR the following
subsets:

G:={xelR|(x>0) & (X>0)}, H:={xeclR|-xcG},

U:={xclR|x<0<X}, V:={x€lR |dual x € },

so that IR = GUH UU UV. Then the multiplication in Kaucher arithmetic is de-
scribed by the following table [7]:

Multiplication in Kaucher interval arithmetic

yEG yeu yeH yev
xeG | [xy,X¥] Xy, X¥] [(Xy.x¥] [(xy,x¥]
xeu | xyxy) BRIV xyasy] 0
xeH | [x7,Xy] [(x¥,xy] Xy, xy] Xy, Xy]
xeV | [xy,Xy] 0 [Xy,x¥] [ma}ﬁ%g@’z}]
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As one can see, multiplication in Kaucher arithmetic allows nontrivial zero divisors.
For instance, [—1, 2] - [5, =3] = 0. The extended interval multiplication is both
commutative and associative, like its predecessor in IIR, but the multiplicative group
of IR is formed only by intervals x with xX > 0 (i.e. G U H), since the cancellation
law does not hold on any wider subset of IIR [6].

Definitions of the interval subtraction and division in Kaucher arithmetic are similar
to those in the traditional interval arithmetic IIR:

x-y=x+(-1),
x/y=x-[1/y,1/y] for yy > 0.

It is important that the inclusion monotonicity holds in Kaucher interval arithmetic
too:
xCx,yCy = xxyCx'xy

for x € {+,—,-,/} and any x, X', y, y’ € IRR. It should be mentioned that in
general the distributivity property of the multiplication with respect to addition is
not valid in Kaucher interval arithmetic [5, 7]. Besides, there is no distributivity of
the multiplication with respect to the lattice operations V and A.

Vector and matrix operations in Kaucher interval arithmetic are defined similarly to
the same operations on IR (see, e.g., [2, 9, 10]) and inclusion orderings on the sets of
interval vectors and matrices are the direct product [4] of inclusion orders on separate
components, that is,

xCy <<= x;Cy; foralli.

Similarly, the action of the dualization operation “dual” upon interval vectors and
matrices will be understood componentwise.

The most wonderful fact with Kaucher arithmetic is that the following representation
holds that generalizes the formula (11):

X y
xoy= U U @) (13)
zepro X yEproy

— conditional lattice operation,

Mx . { \/, if x is proper,

/\, otherwise,

X, if x is proper, o .
pro x := . — proper projection of the interval.
dual x, otherwise,

This representation expresses the connection between the interval operation x xy and
the results of the point operations x x y for z € pro x and y € proy.

Notice that, as follows from (13), Kaucher interval arithmetic is the desired minimax
interval arithmetic! Indeed, in Kaucher arithmetic, endpoints of the resulting interval
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are minimax and maximin of the results of the arithmetical operation, if the intervals
under operation have different directions. It is fairly simple to conclude from (13),
using induction, that, if a rational expression f(z,y) = f(x1,...,Zp,y1,-..,Yq) has
only one occurrence of each variable (if at all) and to the first power only, then for
any proper interval vectors x, y, we have

[glelg(l max f(z,y), max min f(fc,y)} = f(x,dual y). (14)

The more complex case which can also be proved by induction: given a rational
expression f(x,y) = f(z1,...,%p,Y1,--.,Yq) that has only one occurrence of each
variable y; (if at all) and to the first power only, for any proper interval vectors x, y,
we have

i i C .
[glel;g max f(@,y), max i f(w,y)} C f(x,dualy) (15)

3 Algebraic approach

The basis of the algebraic approach to the solution of the problem (9) (i.e., a procedure
for the analysis of static systems under interval uncertainty) is the following results:

Proposition 2. Let the mapping F' be such that each of the variables ag41,...,a,
that represent 3-type of uncertainty occurs only once and to the first power in at most
one of the component expressions Fy, Fs, ..., Fs. If for the vector x € R™ the inclusion

F(a” +dual a?,2) C dual b” + b? (16)

holds, then © € ¥,3(F,a,b).

If each of the variables a1, a9, ... ,a, occurs only once and to the first power in only
one of the component expressions Fy, Fs, ..., Fy, then the inverse assertion is also true,
that is, x € Yo is equivalent to the inclusion (16).

Proof. Relying on the definition (12) we rewrite conditions (10) in terms of Kaucher
interval arithmetic. They are equivalent to

[ min max Fj(a,z), max min_ Fj(a,z) } C dual b;, 1=1,2,...,1,

a/eav a//eaa a/eav a//eaa

[ min max F;(a,z), max min_F;(a,x) } C by, 1=1+1,...,s,
a/eav a//eaa a/eav a//eaa

or, uniformly,

[ min max F;(a,x), max min Fz-(a,:n)} C (dual bY 4+ b7),, (17)
a/EaV aueaa a/EaV aueaa

1=1,...,s.
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If for some point = (16) holds, then combining it with (15) results in (17), that is,
z € Xop(F,a,b).

The second assertion follows directly from the equality (14). O

The key concept in our consideration is that of algebraic solution to the interval equa-
tion first considered in [11, 12]:

Definition 2. An interval vector is called an algebraic solution to the interval equa-
tion if substituting this vector into the equation and executing all interval operations
according to the rules of the interval arithmetic result in the equality.

Thus, the notion of algebraic solution corresponds to the usual concept of a solution
to an equation. The essence of our algebraic approach is to change the problem
(2) to the problem of finding an algebraic solution to a special equation in Kaucher
interval arithmetic TR, thus reducing the initial problem to a traditional problem of
the numerical analysis. This reduction is a very attractive feature, notwithstanding
that the algebraic solution to the auxiliary interval equation does not need to exist
even if the corresponding original problem (9) has solutions.

Proposition 3. Let the mapping F' be such that each of the variables ag1,...,a,
that represent 3-type of uncertainty occurs only once and to the first power in at most
one of the component expressions Fy, Fy, ..., Fs. If the proper interval vector X is an
algebraic solution to the equation

F(a" + dual a®,2) = dual b” + b? (18)

then x C X,3(F,a,b), that is, x is a solution to the problem (9).

Definition 3. For the interval system F(a,x) = b, we will call the equation (18) the
dualization equation that corresponds to its a3-solution set.

Proof. Let a proper interval vector x be the algebraic solution to the dualization
equation (18) and Z € x. So, [Z,Z] C x and, in view of inclusion monotonicity of the
arithmetical operations in IR, we have

F(a" 4 duala®,#) C F(a" + dual a®,x) = dual b” 4 b?.

Thus, T € 3¥,3(F, a,b) by Proposition 2. Since it is true for any Z € x, we get x C Yo
as required. O

Let us now describe important particular cases of the above general statements that
relate to the inner interval estimation of the united, tolerable and controlled solution
sets (6)—(8):

e Let the mapping F be such that each of the variables aq,as, ..., a, occurs only
once (if at all) and to the first power in at most one of the component expressions
Fy, Fs, ... Fs. If the proper interval vector x is an algebraic solution to the
equation

F(dual a,z) = b,
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then x C X¥33(F,a,b), that is, x is an inner interval estimate of the united
solution set to the equation F'(a,z) = b. This result is applicable, in particular,
to interval linear systems, i.e., when F(a,z) = Az with some matrix A = (a;;)
(see [17]).

e If the proper interval vector x is an algebraic solution to the equation
F(a,z) = b,

then x C 3y3(F,a,b), that is, x is an inner interval estimate for the tolerable
solution set to the equation F(a,z) = b (or, in other words, a solution to the
tolerance problem [10, 14]).

e Let the mapping F' be such that each of the variables ai,ao,...,a, occurs on-
ly once and to the first power in at most one of the component expressions
Fy, Fs, ... Fs. If the proper interval vector x is an algebraic solution to the
equation

F(dual a,z) = dual b,

then x C ¥gy(F, a,b), that is, x is an inner interval estimate of the controllable
solution set to the equation F(a,z) = b.

Finally, the last question we are going to study in this part of our work is that of how
“good” the inner interval estimate of ¥,5(F,a,b) obtained by using the algebraic
approach is.

Proposition 4. If all the components F;(a,x) are bilinear in a, x (that is, F(a,z) =
Az with some s x n-matrix A) and each a; occurs only in one of the component
expressions F;, then the inclusion-maximal algebraic solution to the dualization equa-
tion (18) is an inclusion-maximal inner estimate for the solution set g, that is, an
inclusion-maximal solution to the problem (9).

Proof can be found in [17].

4 What is next?

The proposed algebraic approach enables us to reduce the problem of inner interval
estimation of the generalized solution set to solving one non-interval equation — du-
alization equation, — i.e., to a traditional numerical analysis problem. One would
naturally like to have this reduction available for the widest possible class of mappings
F and not only for those with simple occurrences of the control variables as specified in
Proposition 3. It turns out that, using fine Gardenes-Trepat theorem about reduction
of the dependency widening [5] and some other results, we are able to get free consid-
erable enlargement of the set of mappings F' for which the algebraic approach can be
applied. The corresponding results will be presented in the expanded and elaborated
version of this paper.
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Overall, the practicality and efficiency of the algebraic approach crucially depend on
efficiency of the numerical algorithms solving the dualization equation (18). It is
important to note that, when solving the dualization equation, in very few cases, we
could use symbolic and algebraic manipulation (computer algebra) algorithms, etc.
The explanation is that algebraic properties of IR are still poor. Though they are
better than those of the classical interval arithmetic, the lack of distributivity makes
it impossible even such simplest operation as the reduction of similar terms. This
is the reason why the algorithms which implement our algebraic approach should be
essentially numerical.

Recently, Lakeyev managed to prove that finding algebraic solutions even to the in-
terval linear equations in Kaucher interval arithmetic is NP-hard [8]. Nonetheless, in
spite of this unfavorable fact, there has been constructed a number of efficient nu-
merical methods, which work well providing the input intervals are not “too wide”.
These are subdifferential Newton method [17] (which turns into quasidifferential New-
ton method in the general case) and various versions of single-step iteration methods
based on splitting of the interval matrix of the equation [16]. The construction of
numerical procedures for the solution of the dualization equation in the general non-
linear case is an interesting important open problem and, in solving it, the decisive
role should play impetus and needs from practice and industry.
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