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1 Introduction

Consideration is given to the interval systems of linear algebraic equations (ISLAE) of the form























a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,

...
...

. . .
...

...

am1x1 + am2x2 + . . . + amnxn = bm

(1)

with the interval coefficients aij and right-hand sides bi,i = 1, 2, . . . ,m, j = 1, 2, . . . , n, or, briefly,

Ax = b, (2)

where A = (aij) is the interval (m× n) matrix and b = ( bi) is the interval m-vector. Systems (1)–(2)
are understood as families of point linear systems Ax = b of the same structure with the matrices A ∈ A

and vectors b ∈ b.
By the solution set of the interval linear equation system is meant the set

Ξ(A, b) =
{

x ∈ R
n | (∃A ∈ A)(∃ b ∈ b)(Ax = b )

}

, (3)

made up by all possible solutions of the point systems Ax = b with A ∈ A and b ∈ b [1, 2, 3]. This object
is also called the united solution set because the interval equations may also have other solution sets
[2, 4]. They are not treated here, and therefore we briefly refer to (3) as the “solution set”. We discuss
below how to check the solution sets Ξ(A, b) for emptiness or nonemptyness and to determine a point
in it. In the most general situation, these problems are NP-hard [4, 5].

The notation used in the paper follows the informal international standard for interval analysis [6].
In particular, the set of all closed intervals of the real axis is denoted by IR, the intervals and interval
values are denoted by bold letters A, B, C, . . . , x, y, z, whereas the noninterval (point) values are not
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specified in any special manner. Underlining a and overlining a denote the lower and upper endpoints
of the interval a so that a = [a,a] = { a ∈ R | a 6 a 6 a}. In addition, we need

mid a = 1
2(a+ a) is midpoint of the interval

rad a = 1
2(a− a) is radius of the interval,

〈a〉 =

{

min{ |a|, |a| }, if 0 6∈ a,

0, otherwise,

is mignitude of the interval, the least
distance from its points to zero.

Apart from the set of real intervals, we denote by IR the classical interval arithmetics, an alge-
braic system made up by the intervals of the real axis with the operations of addition, subtraction,
multiplication, and division defined “by representatives”, that is, according to the following principle:

a ⋆ b = {x ⋆ y | x ∈ a, y ∈ b } for ⋆ ∈ {+ ,− , · , / }.

In other words, the resulting interval of any arithmetic operation is a set, also an interval, made up by all
possible results of this operation between the elements of the operand intervals. The expanded formulas
for the interval addition, subtraction, multiplication, and division are as follows [1, 2, 3]:

a+ b =
[

a+ b, a+ b
]

,

a− b =
[

a− b, a− b
]

,

a · b =
[

min{a b,ab,a b,ab}, max{ab,ab,ab,ab}
]

,

a/b = a ·
[

1/b, 1/b
]

for b 6∋ 0.

The interval vector is defined as a vector, that is, column or row, with interval components. Its geo-
metrical image is represented by a rectangular parallelepiped in R

n with edges parallel to the coordinate
axes which is often called the box. Similarly, the interval matrix is a rectangular table of the intervals
which is considered as a set of all possible point matrices with elements from the given intervals. The
set-theoretical relations of membership, “∈”, and inclusion, “⊆”, are defined in a natural way for the
interval vectors and matrices. The arithmetic operations between the interval vectors and matrices are
analogs of the corresponding operations for the point case. In particular, the sum of two interval vectors
or matrices of the same size is the interval vector (matrix) of the same size made up by the elementwise
sums of operands. The same is true for the difference of the interval vectors or matrices. Multiplication
of a scalar by the interval vector (matrix) amounts to the multiplication of this scalar by each element
of the vector (matrix).

2 Theory

2.1 Problem Formulation and its Basic Properties

The interval equation system Ax = b of the form (1)–(2) is said to be solvable (consistent if there are
A ∈ A and b ∈ b such that the point equation system Ax = b has a solution. This solvability quite
often is called the “weak solvability” [4]. Since the present paper disregards other types of solvability
of the interval equation systems, the adjective “weak” is omitted without prejudice to understanding.
One can easily see that the solvability of the interval equation system is equivalent to the nonemptyness
of its solution set Ξ(A, b). This formulation of the problem was first stated, although without the
interval terms, in [7] where the study of solvability was reduced to the solution of a system of nonlinear
inequalities which later were christened the “Oettli–Prager inequalities”.

A universal method of solving the solvability recognition problem may be based on the fact that
the intersections of the solution set with each orthant (coordinate angle) of the space R

n are convex
polyhedral sets for which the equations of the boundary hyperplanes are readily put down using the
matrix and the right-hand side of ISLAE (see e.g. [2]). As the result, emptiness or nonemptyness of the
intersection Ξ(A, b) with each orthant R

n may be detected by solving a system of linear inequalities
using, for example, the well-developed linear programming techniques. Overall, the employment of the
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above method for recognizing nonemptyness of the solution set to the interval linear system of (m× n)
equations and determining its point require at most 2n solutions of the systems of linear inequalities of
size 2m+n. This result cannot be radically improved, which, as was noticed in the Introduction, reflects
intractability, that is, NP-hardness, of the considered problem [4, 5, 8]. It is also clear that this method
is of passive nature and practicable only for problems of small dimensions.

One more approach to solvability of the interval system of linear equations relying on the Oettli–
Prager inequalities [7] was described in [4] and [9]. However, its has the same exponential laboriousness
proportional to 2n and is also passive.

2.2 Method of Recognizing Functional

The proposed approach is based on the following proposition.

Proposition 1 Let A be an interval (m×n) matrix and b be an interval m-vector. Then, the

expression

Uni (x,A, b) = min
16i6m







rad bi −

〈

mid bi −

n
∑

j=1

aij xj

〉







(4)

defines the functional Uni : Rn → R such that the membership of the point x ∈ R
n to the solution

set Ξ(A, b) of the interval linear equation system Ax = b is equivalent to the nonnegativeness of the

functional Uni in x:

x ∈ Ξ(A, b) ⇐⇒ Uni (x,A, b) > 0.

The proofs of Proposition 1 and some other results established in the present paper can be found in
the Appendix.

If it is clear from the context what system is meant, then one can set down simply Uni (x), and not
Uni (x,A, b).

It is as if the functional Uni “recognizes” by the sign of its values the membership of its argument
set in the set Ξ(A, b). That is why the epithet “recognizing” is applied to it. It follows from the proof
of Proposition 1 (see the Appendix) that it retains its validity if the Uni is taken in the modified form

Uni γ(x,A, b) = min
16i6m







γi



rad bi −

〈

mid bi −

n
∑

j=1

aij xj

〉











, (5)

where γi, i = 1, 2, . . . ,m, are positive numbers. As will be seen below, this form of the recognizing
functional is sometimes preferable to the original form.

Proposition 2 The functional Uni is concave in x in each orthant R
n. If in the matrix A the

columns with numbers from the set J = {j1, j2, . . . , jl}, l 6 n are interval ones, the rest of them being

wholly point (noninterval) ones, then the functional Uni (x,A, b) is concave on each of the 2l sets like

{x ∈ R
n | xj ≷ 0, j ∈ J }, where “≷” denotes one of the relations “>” or “6”.

Proposition 3 The functional Uni (x,A, b) is polyhedral, that is, its graph is made up of a finite

number of the hyperplane pieces.

As an illustrating example, Figure 1 shows the graph of the recognizing functional for the interval
linear equation system





[2, 3] [−1, 1]

[−1, 1] [2, 3]

[0, 1] [1, 2]



 x =





[−2, 2]

[0, 1]

[−1, 0]



 . (6)

Proposition 4 The functional Uni (x,A, b) reaches a finite maximum with respect to x over the

entire space R
n.
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Fig. 1: Graph of the recognizing functional of the solution set to the interval system (6).

It is also possible to show that if Uni (x̃,A, b) > 0, then x̃ is the point of topological interior
int Ξ(A, b) of the solution set, that is, belongs to Ξ(A, b) together with some its neighborhood. Under
some additional constraints on A, b, and x̃, the inverse is true as well: Uni (x̃,A, b) > 0 follows from
the membership x̃ ∈ int Ξ(A, b) (see a detailed proof in [10]). The properties of the recognizing
functional enable one to use it for studying the membership of the points of the solution set interior,
which may be especially important at determining the bodily internal estimate of the solution set around
the point-center using the procedure of [2, 11].

As the consequence of the above results, we naturally come to the following technique of studying
solvability of the interval linear equation systems. We solve the problem of unconditional maximization
(over the entire R

n) of the recognizing functional Uni. If the resulting maximum of the functional is
greater than or equal to zero, then, first, the system under consideration is solvable and, second, the
arguments of the recognizing functional giving rise to negative values lie within the system solution set.
If the maximum of the recognizing functional is negative, then the solution set of the system at hand is
empty.

2.3 Correction of the Interval Equation System

The maximum of the recognizing functional M = maxx∈Rn Uni (x,A, b) is an important characteristic
of the interval system of linear equations enabling one to correct the system solvability.

We notice that the variables rad bi are included as addends in all expressions

rad bi −

〈

mid bi −

n
∑

j=1

aij xj

〉

whose lower envelope is the recognizing functional Uni. Therefore, a simultaneous change in all rad bi
by the same value leads to the same change in the value of the recognizing functional. In particular,
if C > 0 and e = ([−1, 1], . . . , [−1, 1])⊤, then for the system Ax = b + Ce with the right-hand side
expanded to Ce we get Uni (x,A, b+ Ce) = Uni (x,A, b) + C , and, consequently,

max
x

Uni (x,A, b+ Ce) = max
x

Uni (x,A, b) + C.
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If the solution set Ξ(A, b) is empty so that M < 0, then by increasing by C > |M | the radii of
all components in the right-hand side the set becomes nonempty because maxx∈Rn Uni (x,A, b + Ce)
already becomes nonnegative. If the identical expansion of the right side components is unacceptable,
then a positive weight (κ1,κ2, . . . ,κm), κi > 0 is introduced such that an increase in the radius bi must
be proportional to κi. Then, for the modified recognizing functional (5) with γi = κ

−1
i , i = 1, 2, . . . ,m,

it is required to determineMγ = maxx∈Rn Uni γ(x,A, b) and increase the radius of each bi by κiC, where
C > |Mγ |.

The possibility of correcting the interval linear system by varying its matrix relies on the following
simple property of the interval mignitude: for any real numbers p and q such that 0 6∈ p+ q [−1, 1],

〈 p+ q [−1, 1] 〉 = |p| − |q|. (7)

Indeed, p + q [−1, 1] = [ p − |q|, p + |q| ], and if 0 6∈ p + q [−1, 1], then one has to admit that |p| > |q|.
Then, 〈 p + q [−1, 1] 〉 = min{|p − |q||, |p + |q|| } = |p| − |q|.

As a consequence of (7), if U = Uni (x,A, b) < 0, then for each i ∈ {1, 2, . . . ,m} such that the
corresponding braced expression in (4) is negative we obtain

rad bi −

〈

mid bi −

n
∑

j=1

aij xj

〉

=

= rad bi −

〈

mid bi −

n
∑

j=1

(

mid aij + [−1, 1] · rad aij

)

xj

〉

=

= rad bi −

〈

mid bi −

n
∑

j=1

(mid aij)xj + [−1, 1]

n
∑

j=1

( rad aij)xj

〉

=

= rad bi +

n
∑

j=1

( rad aij) |xj | −

∣

∣

∣

∣

∣

∣

mid bi −

n
∑

j=1

(mid aij)xj

∣

∣

∣

∣

∣

∣

.

For x 6= 0, increasing the radii of all elements aij of the matrix A by C such that

C

n
∑

j=1

|xj| > |U |,

we get Uni (x,A + CE, b) > 0 for the interval (m × n) matrix E = ([−1, 1]) all of whose elements are
[−1, 1]. Therefore, the point x belongs to the nonempty solution set Ξ(A + CE, b). It is obvious that
the original system may be corrected by an unequal expansion of the elements of the matrix A at the
expense of insignificant complication of this construction.

3 Application to data analysis under uncertainty

3.1 Parameter Estimation Problem

The above technique to study ISLAE for solvability may be applied to the problem of estimating the
parameters of a linear dependence from inexact data. Let there be an object whose inputs and outputs
are described, respectively, by the finite-dimensional vector ( a1, a2, . . . , an) ∈ R

n and the scalar b ∈ R,
and the “input-output” dependence be linear, that is,

b = x0 + a1x1 + a2x2 + . . .+ anxn (8)

with some real constants xk, k = 0, 1, . . . , n. It is required to determine or somehow estimate the values
of xk, that is, to identify the object parameters.

Each observation (measurement) of inputs and outputs of an object generates an expression relating
the desired xk, that is, is an equation in these xk. If a series of such observations is “sufficiently
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representative”, then one may try to solve the resulting equation system with resect to the unknowns
xk and determine their values. The result of the ith measurement of the object inputs is denoted for
convenience by ( ai1, ai2, . . . , ain), and the outputs, by bi. The problem of parameter estimation comes
to determining the solution x = (x0, x1, x2, . . . , xn)

⊤—ordinary or in a certain generalized sense—for
the interval equation system



















x0 + a11x1 + a12x2 + . . .+ a1nxn = b1,

x0 + a21x1 + a22x2 + . . .+ a2nxn = b2,
...

...
...

. . .
...

...

x0 + am1x1 + am2x2 + . . .+ amnxn = bm,

where m is the total number of measurements (observations).
Now we turn to a more general practical situation where the object inputs and/or outputs are not

known precisely, and known are only their interval estimates, that is, the memberships of aij and bi in
some intervals:

aij ∈ aij = [aij ,aij] and bi ∈ bi = [ bi, bi], (9)

i = 1, 2, . . . ,m, j = 1, 2, . . . , n. This uncertainty is the result not only of the inevitable measurement
errors, but also can follow from the basic difficulties involved in determination of the values of some
variables or their probabilistic characteristics (see, for example, a detailed discussion of these reasons
in [12, 13]). It is only natural that under these new conditions we encounter the need to consider the
problem of parameter estimation from the interval data (9). The tradition of formulating such problem
may be traced from the pioneering paper of L.V. Kantorovich [14], and the idea of the state-of-the-art
in this field can be gained from [12, 13, 15, 16, 17, 18, 19, 20, 21] and their bibliographies.

In what follows, we keep to the usual definition, saying that a set of parameters x0, x1, x2, . . . , xn
of the object described by (8) is consistent with the experimental interval data (ai1,ai2, . . . ,ain) and
bi, i = 1, 2, . . . ,m if within the limits of the measured intervals for each i, that is, each observation,
there exist point representatives ai1 ∈ ai1, ai2 ∈ ai2, . . . , ain ∈ ain, and bi ∈ bi such that the relation

x0 + ai1x1 + ai2x2 + . . . + ainxn = bi (10)

is satisfied.
If A = (aij) is the (m×(n+1)) interval matrix composed of m results of measurements of inputs and

the first column with unit elements and b = ( b1, b2, . . . , bm)⊤ is the interval vector of m measurements
of outputs, then the family of all vectors of the parameters consistent with the experimental data given
in the interval form is representable as

{

x = (x0, x1, x2, . . . , xn)
⊤ ∈ R

n+1 |
(

∃(aij) ∈ (aij)
)(

∃(bi) ∈ (bi)
)

(Ax = b )
}

,

that is, as a set of solutions to all possible point systems Ax = b with A = (aij) ∈ A and b = (bi) ∈ b.
The experts in data analysis and identification call this set as the information set, the (a posteriori) set

of all possible values of parameters [15], and so on. It is of importance below that this set is nothing
else but the solution set Ξ(A, b) of the interval linear equation system Ax = b constructed from the
observation (measurement) data.

As was already mentioned, this solution set is a union of at most 2n+1 polyhedral sets. Therefore,
the length of its direct description can grow exponentially with the dimensionality (n + 1) of the in-
terval system built from the measurement data. For those reason, they usually confine themselves to
determining its estimates in one or another sense, that is, replace the precise description Ξ(A, b) by
some approximation in compliance with the sense of the practical problem at hand. In what follows,
the present author does disregards this formulation and focuses only on the determination of one (“most
representative”) point of the information set.

3.2 Paradox of the Interval Estimation

In the general case, the direct use of this approach leads to a paradox which was noticed first by
E.Z. Demidenko [22] and may be characterized as “the worse, the better”. Indeed, data uncertainty is
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undesirable because it distorts the true picture of reality. Therefore, reduction of uncertainty, that is,
contraction of the data intervals, is a boon that is welcome for practice. On the other hand, for wider
intervals of the source data, the solution set of the interval system also is wider, and, therefore, there
are more possibilities to select from it the model parameters than in the case of narrow interval data
where the solution set may be empty at all. So, the higher precision of the source data and the lower
the interval uncertainty, the worse the parameter estimation. And vice versa, the wider the uncertainty
interval and the smaller our knowledge of the precise values of the measured variables, the better the
parameter estimation process and the richer the set of the results that may be obtained. This situation
is depicted in Figs. 2 and 3 where the uncertainty intervals in Fig. 3 are obtained by contracting the
intervals of Fig. 2. At the same time, the possibility is lost to draw a straight line passing through all
uncertainty boxes, that is, coordinated with all data.

a

b

Fig. 2: Wide uncertainty intervals enable one to construct many models consistent with the data.

?

a

b

Fig. 3: For narrow uncertainty intervals, a model consistent with the data may not exist.

There are two basic ways to overcome the aforementioned paradox. The first one is based on the
assumption that the intervals of the data adequately represent the boundaries of the measurement errors,
so that the reduction of their width-uncertainty is positive. Hence, the impossibility of choosing model
parameters consistent with these interval data (where the solution set of the interval system is empty)
indicates to the inadequacy of the model used to describe the object. As the result, the model must be
replaced, and the process of parameter estimation repeated using another model.
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The second way assumes that the intervals of data uncertainty do not to reliably represent the set of
possible values of the corresponding variables. Therefore, one does not have to obtain full consistency
with the experimental data for the selected model of the object. As in the traditional case of noisy
point (noninterval) data, a certain inconsistency (disagreement) is acceptable, and further one have to
solve the problem of minimizing this inconsistency. Yet another situation where one has to follow this
way stems from the need to retain the selected model, form of the functional dependence between the
considered variables about which it is given or known a priori that “this must be the case”. Following
this way, one has to select a numerical “inconsistency measure” between the data and object parameters.
Then, for example, a point of the parameter space where the inconsistency (disagreement) is minimal
can be taken as the desired estimate.

3.3 Maximal Consistency Method

What “measure of consistency/inconsistency” between the data and model parameters can be taken?
There exist natural requirements to be satisfied by such an consistency/inconsistency measure. For
a nonempty information set, this measure must be positive for those points of the set, at which the
“consistency” is actually attained. At that, for the points of the interior of the solution set the consis-
tency measure, obviously, must be not smaller (or even greater) than on the boundary. Inconsistency
(data contradiction) may be regarded as the “negative consistency”, and on the whole the measure of
consistency/inconsistency may be a functional taking values from the real axis R.

It follows from Sec. 2.2 that the recognizing functional Uni perfectly suits the role of the consistency
measure. Along this way we get an approach to parameter estimation that might be called the “method
of consistency maximization” (or “maximal consistency method”): the point argmaxUni where the
recognizing functional Uni of the information set has the highest value is taken as the desired parameter
estimate. At that,

• if max Uni > 0, then this point lies in the nonempty set of the parameters consistent with the
data;

• if max Uni < 0, then the set of parameters consistent with the data is empty, but this point
minimizes the inconsistency.

Further informal interpretations of the maximal consistency method follow from Sec. 2.3. If the set
of parameters consistent with the data is empty, then argmaxUni is the first point appearing in this set
at uniform expansion of the right-hand side vector with respect to its midpoint. Therefore, for the empty
information set this method selects as the values of the desired parameters the point where an increase in
the interval uncertainty of the output variables makes this set nonempty. This principle of coordinating
the contradictory data underlies the method of parameter estimation of S.I. Zhilin, et al. [16, 17, 18]. In
the approach proposed in this paper, this principle follows mechanically as the result of the general rule
for selection of the estimated parameters. We also notice that the considered procedures of processing
the contradictory data are akin informally to the methods of correction of the inconsistent systems of
linear inequalities developed by the Ekaterinburg scientific school of I.I. Eremin (see, for example, [23]).

3.4 Practical Implementation

Practicability of the above approach to parameter estimation depends largely on the available possibil-
ity to determine the maximum of the recognizing functional. Being a problem of optimization of the
nonsmooth and multiextremal objective function, in the most general case this problem is very complex
and even intractable. Appropriate global optimization methods can be used for solving it. They may be
taken adaptive, that is, adjustable to the problem under solution in distinction to the passive approaches
to studying the ISLAE solvability mentioned in Sec. 2.1.

The most important special case is represented by the exact values of the input variables aij and the
interval uncertainty existing only at the outputs bi. For the time being, this case is better developed by
the theory of nonstatistical parameter estimation (see, in particular, [12, 13, 16, 17] and their bibliogra-
phies). We also notice that under additional statistical assumptions this special case corresponds to the
prerequisites of using the traditional regression analysis, for which, in particular, the strongest results
on optimality of the popular least-squares method were obtained.
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Fig. 4: Graph of the recognizing functional for the ISLAE with a point matrix.

In the case where the values of the input variables are precise, we get the interval linear system
Ax = b with the point matrix A = (aij) where the intervality is concentrated only in the right side. As
the result, the recognizing functional takes a simpler form:

Uni (x,A, b) = min
16i6m







rad bi −

∣

∣

∣

∣

∣

∣

mid bi −

n
∑

j=1

aij xj

∣

∣

∣

∣

∣

∣







,

and at that it is globally concave over the entire space R
n in virtue of Proposition 2. Instead of the

multiextremal configuration of Fig. 1, we obtain a unimodal functional looking approximately as in Fig. 4
depicting the graph of a recognizing functional of the solution set for the ISLAE





3 −1

−1 2

1 2



 x =





[−2, 2]

[0, 1]

[−1, 0]



 .

Good characteristics of the functional Uni in the case of the point matrixA enable one to determine its
maximum using, for example, the advanced methods of nonsmooth convex optimization (see [24, 25] and
other publications). A freely distributed program implementing this version of the maximal consistency
method for the computer mathematics systems Scilab and Matlab and using as basis the ralgb5

code of P.I. Stetsyuk (Institute of Cybernetics, Ukrainian Academy of Sciences, Kiev, Ukraine) are
downloadable form the server of Institute of Computational Technologies of the Siberian Branch of
Russian Academy of Sciences at http://www.nsc.ru/interval/Programing .

Another possible way to maximize the recognizing functional in the case of the point matrix lies in
solving the linear programming problem of determining the maximum of u for the pairs (x, u) ∈ R

n+1,
x ∈ R

n, u ∈ R, belonging to the convex polyhedral subgraph of the recognizing functional Uni:

determine maxu for

{

u 6 a(i)x− bi,

u 6 −a(i)x+ bi,
i = 1, 2, . . . ,m,

where a(i) denotes the ith row of the matrix A of the considered ISLAE. On the whole, for precise
input data we have an effective procedure for processing data with interval uncertainties in the output
variables.
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If in the general case l is the total amount of the input variables with uncertainties, then, as is shown
by Proposition 2, the recognizing functional Uni has 2l concavity domains. Therefore, in the general case
of small l it is possible to determine the global maximum of the recognizing functional by enumeration of
all its concavity domains and maximization of each of them with the use of the nonsmooth optimization
methods of [24, 25].

4 Conclusions

By introducing the recognizing functional of the solution set, the problem of studying for solvability
the interval system of the linear algebraic equations is reduced to a convenient analytical form enabling
one to examine in more detail the original system and correct it. The maximal consistency method is
a promising technique for processing data with interval uncertainty. It is based on maximization of the
recognizing functional of the solution set (problem information set) and can serve a good alternative to
the methods of regression analysis based on the probability-theoretical models of data errors.

This work was supported by the Grant of the President of Russia for Support of the Leading Scientific
Schools, project no. NSh-6068.2010.9.

APPENDIX

Proof of proposition 1. The point x ∈ R
n lies, obviously, in the solution set Ξ(A, b) if and only

if there is the matrix Ã = (ãij) ∈ A = (aij) such that Ãx ∈ b. After expansion of the matrix-vector
product in the left side and representation of the intervals in the right side as “midpoint-radius”, this
membership is given by

n
∑

j=1

ãijxj ∈ mid bi +
[

−rad bi, rad bi
]

, i = 1, 2, . . . ,m.

By adding now (−mid bi) to both sides of the resulting inclusions, we get the relations

n
∑

j=1

ãijxj −mid bi ∈
[

−rad bi, rad bi
]

, i = 1, 2, . . . ,m,

which in turn are equivalent to
∣

∣

∣

∣

∣

∣

n
∑

j=1

ãijxj −mid bi

∣

∣

∣

∣

∣

∣

6 rad bi ,

and therefore

rad bi −

∣

∣

∣

∣

∣

∣

mid bi −

n
∑

j=1

ãijxj

∣

∣

∣

∣

∣

∣

> 0, i = 1, 2, . . . ,m. (11)

So, x ∈ Ξ(A, b) if and only if there are ãij ∈ aij , j = 1, 2, . . . , n, i = 1, 2, . . . ,m, such that all
inequalities (11) prove to be valid. This is equivalent to satisfying, for i = 1, 2, . . . ,m, the conditions

max
ãij∈aij ,
j=1,2,...,n







rad bi −

∣

∣

∣

∣

∣

∣

mid bi −
n
∑

j=1

ãijxj

∣

∣

∣

∣

∣

∣







> 0, (12)

and if the maximum is put within the braces, then

rad bi − min
ãij∈aij ,
j=1,2,...,n

∣

∣

∣

∣

∣

∣

mid bi −

n
∑

j=1

ãijxj

∣

∣

∣

∣

∣

∣

> 0.
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Taking into account that the natural interval extension of the expression under the sign of module
coincides with its domain of values and replacing the minimum by the interval mignitude, we obtain, for
i = 1, 2, . . . ,m, from (12):

rad bi −

〈

mid bi −

n
∑

j=1

aijxj

〉

> 0. (13)

Finally, if by minimizing with respect to i m pieces of conditions (13) can be convoluted into one relation,
then one may conclude that indeed the point x belongs to the solution set if and only if

min
16i6m







rad bi −

〈

mid bi −
n
∑

j=1

aijxj

〉







> 0.

Proof of proposition 2. It suffices to carry out it for all functions

ψi(x) = rad bi −

〈

mid bi −

n
∑

j=1

aij xj

〉

, i = 1, 2, . . . ,m,

because Uni is their lower envelope.
Let λ ∈ [0, 1] and the points x, y belong to one orthant in R

n so that xjyj > 0 for all j = 1, 2, . . . , n.
In this case, the interval multiplication is distributive in summation (see [1, 2, 3])

n
∑

j=1

aij

(

λxj + (1− λ)yj
)

= λ

n
∑

j=1

aijxj + (1− λ)

n
∑

j=1

aijyj , (14)

thereby

ψi

(

λx+ (1− λ)y
)

=

= rad bi −

〈

λ

(

mid bi −
n
∑

j=1

aij xj

)

+ (1− λ)

(

mid bi −
n
∑

j=1

aij xj

)〉

>

> rad bi − λ

〈

mid bi −
n
∑

j=1

aij xj

〉

+ (1− λ)

〈

mid bi −
n
∑

j=1

aij xj

〉

=

= λψi(x) + (1− λ)ψi(y),

where we took advantage of the property of mignitude 〈a+ b〉 6 〈a〉+ 〈b〉 [2, 3].
In the general case, it is impossible to do the above calculations because of the lack of distributiveness

in (14). Yet if for a certain index k ∈ {1, 2, . . . , n} all aik are point (noninterval) coefficients, then (14)
is valid independently of the signs of xk and yk. Consequently, if an entire kth column in A is a point
column, that is, all aik, i = 1, 2, . . . ,m, then all functions ψi(x) (and together with them also Uni) are
concave on the sets {x ∈ R

n | x1 ≷ 0, . . . , xk−1 ≷ 0, xk+1 ≷ 0, . . . , xn ≷ 0 } of which each is a union
of two orthants in R

n. The generalization of this reasoning to the case of more than one noninterval
columns in A is evident.

Proof of proposition 3. Denoting by

hypUni =
{

(x, u) | x ∈ R
n, u ∈ R, Uni (x) > u

}

the subgraph of the functional Uni, we can reformulate the main result of Proposition 2 in the following
equivalent geometrical terms. For any orthant O in R

n, the intersection hypUni ∩(O×R) is convex. We
demonstrate that indeed the sets hypUni ∩(O×R) are polyhedral in R

n+1, that is, they are intersections
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of a finite number of half-spaces in R
n+1. Taking into consideration that 〈a〉 = max{0,a,−a} for any

interval a, we have a right to set down a chain of equalities

ψi(x) = rad bi −max







0 , mid bi −

n
∑

j=1

aijxj , −



 mid bi −

n
∑

j=1

aijxj











=

= rad bi + min







0 ,
n
∑

j=1

aijxj −mid bi , mid bi −
n
∑

j=1

aijxj







=

= min







rad bi ,

n
∑

j=1

âijxj − bi , bi −

n
∑

j=1

ǎijxj







,

where the corteges (âi1, âi2, . . . , âin) and (ǎi1, ǎi2, . . . , ǎin) are made up of the endpoints of the components
of the interval vector (ai1,ai2, . . . ,ain), that is, the ith row of the matrix A), fixed for each particular
orthant O. This fact follows from the rule of multiplication of an interval by a number. One can see
from the last representation that really in O the functional Uni = mini ψi is for i = 1, 2, . . . ,m the lower
envelope of the linear expressions under the sign of minimum. Consequently, the graph of the functional
Uni is “pasted” from a finite number of pieces of the hyperplanes in R

n+1, and for any orthant O in R
n

the set hypUni ∩ (O × R) is polyhedral indeed.

Proof of proposition 4. We prove that the recognizing functional reaches the final maximum in
each orthant O ⊂ R

n. The polyhedral set hypUni ∩ (O × R) in R
n+1 is representable [26] as a convex

combination of the extreme points (sj, tj), sj ∈ R
n, tj ∈ R, j = 1, 2, . . . , p, and extreme rays with the

directing vectors (dj , ej), di ∈ R
n, ei ∈ R, j = 1, 2, . . . , q, so that

hypUni ∩ (O × R) = (15)

=







p
∑

j=1

λj(sj, tj) +

q
∑

j=1

µj(dj , ej)

∣

∣

∣

∣

λj > 0, µj > 0,

p
∑

j=1

λj = 1







.

Since Uni (x) 6 min16i6m rad bi, there must be ej 6 0 in the representation (15). Otherwise, points
with arbitrarily great (n+ 1)st coordinate are in the set hypUni ∩ (O × R). Consequently,

max
x∈O

Uni (x) = max
{

(n+ 1)st coordinate of the points from hypUni ∩ (O × R)
}

=

= max







p
∑

j=1

λjtj +

q
∑

j=1

µjej

∣

∣

∣

∣

λj > 0, µj > 0,

p
∑

j=1

λj = 1







=

= max







p
∑

j=1

λjtj

∣

∣

∣

∣

λj > 0,

p
∑

j=1

λj = 1







= max16j6p tj

and is reached at the extreme point of the set hypUni ∩(O×R) having the greatest (n+1)st coordinate.
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