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Abstract

For interval linear algebraic systems Ax = b, the problem is considered of componentwise
evaluation of the set Σ∃∃(A,b) = {A−1b | A∈A, b∈b } formed by all solutions of Ax = b when
A and b vary independently in A and b, respectively. An iterative PSS algorithm is introduced
that computes optimal (exact) componentwise estimates of Σ∃∃ and its convergence is proved
under fairly general conditions on the interval system. We introduce the concept of a sequentially
guaranteeing algorithm, as a reasonable compromise between the requirements for the interval result
to be guaranteed and to be obtained in a practically acceptable time.
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Several interval problems are well known that naturally generalize the familiar linear algebraic
system

A x = b . (1)

All of them are usually denoted by one formal notation

A x = b , (2)

an interval linear algebraic system (ILAS) with interval m×n-matrix A ∋ A and interval right-hand
side m-vector b ∋ b, though the sense which is meant by this may be quite varied. For example, for
the system (2), a tolerable solution set

Σ∀∃(A,b) = { x ∈ R
n | (∀A ∈ A)(∃ b ∈ b)(Ax = b) }

exists, first considered in [20], as well as a controllable solution set

Σ∃∀(A,b) = { x ∈ R
n | (∀ b ∈ b)(∃A ∈ A)(Ax = b) },

recently introduced in [14, 31]. But the most popular and historically first of these generalizations is
the problem of finding “outer” componentwise estimates for the united solution set

Σ∃∃(A,b) = Σ∃∃ = { x ∈ R
n | (∃A ∈ A)(∃ b ∈ b)(Ax = b) },
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the solution set of all real linear algebraic systems contained in (2). This problem is often formulated
as follows:

Find an interval vector V that contains
the united solution set of the given ILAS.

(3)

If the components of V have the least possible length, i.e., coincide with the projections of Σ∃∃

on the coordinate axes, then V is called the optimal interval solution of the problem (3) and the
corresponding componentwise estimates of Σ∃∃ are called optimal. When referring to this problem one
sometimes speaks of solving interval linear algebraic systems [1, 17, 18] or even solving interval linear
equations [7, 27]. To my mind, the Russian term outer problem for interval linear algebraic system is
more suitable for this case.

A large number of papers are devoted to the problem (3); see for example [1, 3, 7, 8, 9, 11, 17, 18,
19, 21, 22, 27, 28] and the extensive references there. All the algorithms so far devised compute an
interval vector V guaranteed to contain the set Σ∃∃, but only few of them ensure optimality of V in
general, the enormous labor consumption of such algorithms not being even their main disadvantage.
The purpose of this work is to advance yet another, promising computational procedure — a PSS
algorithm — to compute optimal solutions of interval linear systems (i.e., of the problem (3)), to
demonstrate its efficacy, and discuss its advantages and shortcomings.

The plan of the paper is as follows. Section 1 presents necessary notation, reviews some facts
of interval analysis, and states the problem. Section 2 is devoted to the construction proper of the
simplest PSS algorithm, and §3 gives a proof of its convergence to optimal estimates of the united
solution set. In §4 the basic algorithm is improved to incorporate accuracy control and to save storage.
Section 5 discusses results of numerical experiments with the PSS algorithm. Of separate interest is
the parametric family of interval linear systems proposed in §5, which may be recommended as test
problems for algorithms solving the outer problem. Also, we substantiate the empirical conclusion
that the complexity of the PSS algorithm is exponential as a function of the dimensional of the system
in the worst case. Finally, §6 contains thorough comparison of the PSS algorithm with the other
existing computational approaches to finding optimal solutions of the outer problem. In particular,
we introduce the concept of a sequentially guaranteeing algorithm, as a reasonable compromise between
the requirements for the interval result to be guaranteed and to be obtained in a practically acceptable
time.

A good many of the results stated below were first published in abridged form in [29]. The author
is grateful to Prof. Vyacheslav Novikov for his critical comments on this work and to the referees for
their valuable suggestions.

1 Notation, conventions and problem statement

Let IR = the set of all real intervals [a; b] on R, a ≤ b,
IRn = the set of n-dimensional interval vectors.

In this paper intervals and other interval objects are denoted by boldface letters while non-interval
(real) objects are not distinguished in any way. Also, we need the following notation

a, a — upper and lower bounds of a, respectively,

mid a = (a + a)/2 — mean value (midpoint) of a,

rad a = (a − a)/2 — radius of a,

|a| = max{|a|, |a|} — absolute value (magnitude) of a,
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〈a〉 =

{

min{|a|, |a|}, if 0 /∈ a,
0, otherwise

— mignitude of a or the least
distance between points of a and
zero, in some sense the opposite
of the absolute value.

If a = (ai)
n
i=1 is an interval vector, then all of the operations defined above are to be understood

componentwise, so that rad a, for instance, is the real vector ( rad ai)
n

i=1. By ‖ · ‖ we designate some
monotonic vector norm.

Throughout the rest of this paper, all arithmetic operations with intervals and interval objects
are those of classical interval arithmetic [1, 16, 18] except for division by a zero-containing interval,
where we will make use of the extended Kahan arithmetic [15]. Besides common intervals of IR its
elements are sets of the form (−∞; p]∪ [q; +∞), p ≤ q, and (−∞; p], [q; +∞). We allow the equalities
p = −∞ and q = +∞, so that the former of these sets includes the latter ones. Results of the division
a/b, 0 /∈ b, and of all other operations on objects from IR are the same both in classical and in Kahan
interval arithmetics. For convenience, we write results concerning the division a/b, 0 ∈ b, in detailed
form:

1. b = 0.
If 0 ∈ a, then a/b = R — the whole real axis, and
if 0 /∈ a, then a/b = ∅.

2. b 6= 0.

(a) Let zero be one of the endpoints of b.
If 0 /∈ a, then
a/b = (−∞;−〈a〉/|b|] when a < 0 ≤ b or b ≤ 0 < a ,

and
a/b = [〈a〉/|b|; +∞) when both a and b are nonnegative

or nonpositive intervals.
If 0 ∈ a, then a/b = R.

(b) Let b < 0 < b.
If a > 0, then a/b = (−∞; 〈a〉/b] ∪ [〈a〉/b; +∞)

and
if a < 0, then a/b = (−∞;−〈a〉/b] ∪ [−〈a〉/b; +∞).
If 0 ∈ a the set a/b is the union (−∞; 0] ∪ [0;+∞), i.e., coincides with all of R.

It is worthwhile to note that in the Kahan arithmetic the fundamental property

a ◦ b = { a ◦ b | a ∈ a, b ∈ b } for ◦ ∈ { + , − , · , / }

holds (which is the basis of the classical interval arithmetic too) as well as inclusion monotonicity.
Let A be an interval m×n-matrix and b ∈ IRm. As was already noted, the united solution set of

the interval linear algebraic system (2) is

Σ∃∃(A,b) = Σ∃∃ = { x ∈ R
n | (∃A ∈ A)(∃ b ∈ b)(Ax = b) },

and the problem that concerns us is that of computing the most accurate “outer” componentwise
estimates for this set, i.e., the problem of evaluating min{xν | x ∈ Σ∃∃} from below and max{xν | x ∈
Σ∃∃} from above, ν =1, 2, . . . , n. In what follows, our attention will be focused on finding min{xν | x ∈
Σ∃∃} for arbitrary but everywhere below fixed index ν, because

max{ xν | x ∈ Σ∃∃(A,b) } = −min{ xν | x ∈ Σ∃∃(A,−b) }.
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Since throughout this paper we deal only with the united solution set of the interval system (2),
let us denote for brevity

Σ = Σ∃∃(A,b)

and speak simply of the solution set instead of the expanded term “united solution set”. Also, we shall
assume that some initial approximation interval vector V ⊇ Σ is already known. It may be found by
any of the algorithms presented in [1, 7, 17, 18, 28], and its size does not matter essentially in the
sequel, though, of course, the choice of more “narrow” initial approximation favors faster convergence
of the algorithm developed.

In interval analysis A is usually assumed to be square non-singular, that is, to contain non-
singular point matrices only in order to ensure boundedness of the solution set. We shall not restrict
our considerations to this condition and allow the possibility that A is rectangular, but in case the
solution set is unbounded the problem statement should be slightly changed. Namely, it is then
expedient to consider that the set Σ∃∃(A,b) is the intersection of the whole united solution set with
some interval vector U given beforehand. It would appear natural that V = U without loss in
generality.

2 Basic algorithm

Let l be a straight line in R
n with parametric equation














































x1 = r1,
...

xν−1 = rν−1,
xν = t ,

xν+1 = rν+1,
...

xn = rn (t ∈ R — parameter),

(4)

parallel to the νth coordinate axis. Each such line is defined completely by the (n−1)-dimensional
real vector r = (r1, . . . , rν−1, rν+1, . . . , rn)⊤, and to indicate these line parameters explicitly we will
sometimes denote the line as l(r). Let also

Ω(r) = min{ xν | x ∈ Σ ∩ l(r) }

be the least νth coordinate value of points from intersection of l(r) with the solution set of ILAS (2)
(if Σ ∩ l(r) = ∅, then set Ω(r) = +∞). How are the function values Ω(r) computed?

To answer this question we “substitute” the parametric equation (4) into the ILAS (2), which then
turns into a system of m linear equations with only one variable t and interval coefficients:



































a1νt +

n
∑

j=1, j 6=ν

a1jrj = b1,

...
...

amνt +
n
∑

j=1, j 6=ν

amjrj = bm,

(5)

or in matrix form
Aνt + Ãr = b, (6)

where Aν = the νth column of A,

Ã = the interval m×(n−1)-matrix obtained from A by removing
its νth column.
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The essence of this procedure is as follows. When substituting the parametric equation (4) into the
point system (1), we get a system of m one-dimensional equations that coincides with (5) in structure,
but has real coefficients. Then vary the elements aij of the matrix and the elements bi of the vector
within the prescribed bounds aij and bi, respectively. Clearly the set of all point systems so obtained
forms exactly (5)–(6).

-
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Figure 1: The solution set to (9).

It is easily seen that the solution of the ith equations of this system is the set



 bi −
n
∑

j=1, j 6=ν

aijrj





/

aiν , (7)

where “/” is, in general, the Kahan arithmetic division. Having solved separately each of one-
dimensional interval linear equations belonging to the system (5), intersect their solution sets (7)
with each other and with Vν . Since within all of the intervals entering into (5) the respective coeffi-
cients are varying independently from each other (as in the initial ILAS), the set we have thus gotten
gives νth coordinate values of points from Σ ∩ l. Note that it may prove to be empty if the system
(5) is incompatible, or disconnected (as shown in Fig. 1) if some of equations from (5) have solutions
(−∞; p] ∪ [q; +∞), p < q.

For the rest of this paper, the fact of fundamental importance is that of reformulating the outer
problem for interval linear algebraic system as an optimization problem —

min{ xν | x ∈ Σ }

= min

{

xν

∣

∣

∣ x ∈
⋃

l∩V 6=∅

(Σ ∩ l)

}

(8)
= min

{

min{ xν | x ∈ Σ ∩ l(r)}
∣

∣ r ∈ (V1, . . . , Vν−1, Vν+1, . . . , Vn)
}

= min{ Ω(r) | r ∈ (V1, . . . , Vν−1, Vν+1, . . . , Vn) },

i.e., as a problem of minimizing the objective function Ω(r) on some finite-dimensional compact set.
We have already seen how to compute the values Ω(r), and so one would think that the outer problem
may be solved successfully by any of the well known global optimization algorithms. The objective
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function Ω(r), however, has a disagreeable distinction: it is not even continuous in general. Given, for
instance, the interval system

(

[1; 2]
[

−3
4 ; 1

2

]

[

−3
4 ; 1

2

]

[1; 2]

)

x =

(

[−1; 1]

[−1; 1]

)

, (9)

(its solution set Σ is represented in Fig. 1), we have r = x2 and

lim
r→2−0

Ω(r) = −2 6= 4/3 = lim
r→2+0

Ω(r)

when estimating min{x1 | x ∈ Σ }. Furthermore, Ω(r) undergoes discontinuities of the second kind
(to +∞).

These circumstances crucially limit the range of global optimization algorithms applicable to the
problem (8). Currently popular nonuniform covering methods from [4] and [24] are obviously unfit for
solving (8), because they substantially exploit Lipschitz continuity of the objective function.

Nevertheless, we shall demonstrate that the outer problem can be solved by a sequential determin-
istic algorithm based on branch-and-bound techniques. In interval mathematics since the pioneering
work of Skelboe [32], this kind of method has been developed extensively by Asaithambi, Shen Zuhe
and Moore [2], Hansen [10], Ratschek [25], Ratschek and Rokne [26], Jansson [12] and many oth-
ers. We need only to construct effective ways to compute a domain minorant for Ω(r) (its inclusion
function’s left endpoint).

To put it another way, for any r = (r1, . . . , rν−1, rν+1, . . . , rn)⊤ ∈ IRn−1 we have to evaluate

min{ Ω(r) | r ∈ r } = min

{

⋃

r∈r

{ xν | x ∈ Σ ∩ l(r) }

}

(10)

from below. The simplest way of doing this is as follows. We proceed with the initial interval system
(2) just the same as in the case of determining Σ∩ l, but now the intervals r1, . . . , rν−1, rν+1, . . . , rn

are substituted for x1, . . . , xν−1, xν+1, . . . , xn in (2) rather than real numbers r1, . . . , rν−1, rν+1, . . . ,
rn. Then, as before, we shall compute the intersection S of all the solution sets to m one-dimensional
interval equations making up the system



































a1νt +

n
∑

j=1, j 6=ν

a1jrj = b1,

...
...

amνt +
n
∑

j=1, j 6=ν

amjrj = bm,

(11)

or
Aνt + Ãr = b

in the notation of (6). It is now fairly simple to realize that

S ⊇
⋃

r∈r

{ xν | x ∈ Σ ∩ l(r) }

inasmuch as
{

the solution set

of Aνt + Ã r = b

}

⊆

{

the solution set

of Aνt + Ãr = b

}

for all r ∈ r. Therefore
Ω(r) = min{S ∩ Vν} (12)



OPTIMAL SOLUTION OF INTERVAL EQUATIONS 616

gives the required low estimate for (10) (cf. the operator Γ in [18]). If the system (11) is incompatible
for some r (that corresponds to Σ ∩ l(r) = ∅ for all r ∈ r), then put Ω(r) = +∞.

We utilize the notation Ω(r) to emphasize that the procedure we have implemented is actually a
natural interval extension of Ω(r) [16]. We may even consider a function Ω : V → R

· to be defined,
with range in the semi-extended real axis R

· = R ∪ {+∞}, and with the set

V = { r ∈ IRn−1 | r ⊆ (V1, . . . , Vν−1, Vν+1, . . . , Vn) }

as its domain. It is worthwhile to note that Ω(r′) ≥ Ω(r′′) for r′ ⊆ r′′, and evaluating (10) through
Ω(r) becomes increasingly precise as the vector r becomes thinner, i.e., as ‖ rad r ‖ becomes smaller,
provided some natural restrictions on A, b, V, r are imposed. This assertion will be discussed at
length in §3.

Finally, we are ready to construct our algorithm for determining min{xν | x ∈ Σ }. This is an
iterative procedure for successively refining this low value estimate designed in accordance with the well
known “branch and bound method” strategy, similar to what has been done for optimization problems
in [2, 5, 10, 12, 24, 25, 26, 32] and other works. Here, bisections of the initial (n− 1)-dimensional box
(V1, . . . , Vν−1, Vν+1, . . . , Vn) (it contains all point vectors r corresponding to lines l(r) that have
nonempty intersection with Σ) to thinner ones P, amount to “branches”, while computing Ω(P) —
νth coordinate estimates of points from {Σ ∩ l(r) | r ∈ P} — stands for finding “bounds”.

The algorithm generates an ordered list L consisting of pairs

(

P,Ω(P)
)

,

P ⊆ (V1, . . . , Vν−1, Vν+1, . . . , Vn), so that the second members of all pairs increase. The first pair
(Q,Ω(Q)) of the list L is of special importance in our consideration. We will call it, as well as the
related box Q and estimate Ω(Q), the leading one. At the start of the algorithm the list L contains
the single pair ((V1, . . . , Vν−1, Vν+1, . . . , Vn),Vν). The following sequence of steps is then carried
out, each divided into several stages:

1. In the leading box Q, choose the largest component Qι, i.e. such one that

rad Qι = max
1≤i≤n

rad Qi.

If several components of Q have maximum width, then ι is the index of any one of these.

2. Bisect the leading box Q in the component ι to get descendants

Q′ = (Q1, . . . ,Qι−1, [Qι
; mid Qι ],Qι+1, . . . ,Qn),

Q′′ = (Q1, . . . ,Qι−1, [mid Qι; Qι ],Qι+1, . . . ,Qn),

3. Compute Ω(Q′) and Ω(Q′′).

4. Remove the late leading pair (Q,Ω(Q)) from the list L.

5. Insert the new pairs (Q′,Ω(Q′)) and (Q′′,Ω(Q′′)) into L in the proper order (of increasing second
member).

Thus, executing the algorithm yields a non-decreasing sequence (beginning with the second step)
of leading estimates which is shown in [25] to approximate the required min{xν | x ∈ Σ } from below.
In the next section we prove that this sequence converges to the exact value of min{xν | x ∈ Σ }. We
shall refer to this class of algorithms to solve the outer problem for interval algebraic equations, based
on adaptive Partitioning of the Solution Set, as PSS algorithms.
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3 Convergence proof

The proof of the convergence of the simplest PSS algorithms, as distinct from [2, 10, 32], is not
trivial because the objective function Ω(r) is not continuous in general. For discontinuous objective
function, global optimization algorithms of this type had already been investigated by Evtushenko
and Rat’kin [5] and Ratschek [25], however, the convergence criteria obtained by them are hardly
applicable directly to our situation.

Let E be a topological space. Remember that the function f : E → R
· is said to be lower

semicontinuous at y ∈ E if f(y) = lim x→yf(x). The function is called lower semicontinuous in E if
it is lower semicontinuous at any point of E. The equivalent definition of this property is as follows
[33]: f : E → R

· is lower semicontinuous iff for any c ∈ R the Lebesgue set {f(x) ≤ c} is closed in E.

Lemma 1 Let the interval linear algebraic system Ax = b and interval vector V ⊇ Σ be such that

(NZ)















































for each i = 1, 2, . . . ,m, the following condition holds:
zero is not an endpoint of aiν

or
for each r ⊆ (V1, . . . , Vν−1, Vν+1, . . . , Vn)

zero is not an endpoint of the interval


bi −
n
∑

j=1, j 6=ν

aijrj



 .

Then the function Ω : IRn−1 ⊇ V → R
· defined by (12) is lower semicontinuous.

Proof. Let B denote the set of all i ∈ {0, 1, 2, . . . ,m} for which 0 /∈ aiν , the solution sets of the
respective equations from (11) being bounded intervals [ ti; ti]. In doing this, we assume t0 = Vν and
t0 = Vν for the sake of convenience, so that B is always nonempty. Also denote U = {0, 1, 2, . . . ,m}\B,
and let (−∞; ti] ∪ [ ti; +∞) for i ∈ U represent unbounded solution sets of equations from (11) with
0 ∈ aiν , supposed to have ti = −∞ or ti = +∞ when the respective solution set is a ray in R, and
ti = ti = 0 when the solution set coincides with all of R.

In interval spaces the standard topology is set by the Hausdorff metric, and all interval arithmetic
operations are continuous relative to it [1, 16, 18]. Hence, ti and ti, i ∈ B, are continuous functions
of (r1, . . . , rν−1, rν+1, . . . , rn)⊤ from (11). But when 0 ∈ aiν , the real numbers ti and ti defining the
solution set of the one-dimensional equation

aiνt +

n
∑

j=1, j 6=ν

aijrj = bi,

also depend continuously on interval vector r = (r1, . . . , rν−1, rν+1, . . . , rn)⊤, if aiν < 0 < aiν or if
(bi −

∑n
j 6=ν aijrj) never has zero as one of its endpoints. This follows from (7) and the formulae of

Section 1 and is ensured by the condition (NZ) of the Lemma 1. We may therefore assume in the
sequel that the values maxi∈B ti, mini∈B ti, maxi∈U ti, mini∈U ti are continuous functions of the vector
r from (11) (as usual min ∅ = +∞, max ∅ = −∞).

Next we shall prove that the effective domain of the function Ω(r), i.e., the set dom Ω = { r ∈
V ⊂ IRn−1 | Ω(r) < +∞}, is compact. A vector r belonging to dom Ω means the compatibility of
the corresponding system (11). Then, first, the intersection

⋂

i∈B[ ti; ti] of all bounded solutions of
equations from (11) is nonempty. It is equivalent to mini∈B ti ≥ maxi∈B ti. Second,

⋂

i∈B[ ti; ti] has
nonempty intersection with the unbounded solutions (−∞; ti] ∪ [ ti; +∞), i ∈ U , of one-dimensional
equations of the system (11). The latter is equivalent to

(

min
i∈U

ti ≥ max
i∈B

ti

)

∨
(

max
i∈U

ti ≤ min
i∈B

ti

)

,
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∨ being a logical disjunction. Overall, dom Ω is described by the condition

min

{

min
i∈B

ti − max
i∈B

ti, max
{

min
i∈U

ti − max
i∈B

ti, min
i∈B

ti − max
i∈U

ti

}

}

≥ 0.

As long as the function in the left-hand side of this inequality is continuous with respect to r, we have
thus proved that dom Ω is closed. Obviously dom Ω is bounded as well, so it is compact.

minU t
i maxU ti

maxB t
i minB ti

-

minU t
i maxU ti

maxB t
i minB ti

-

minU t
i maxU ti

maxB t
i minB ti

-

Figure 2: Various situations in the definition of Ω(r).

As was already noted, the function Ω(r) is not even continuous on its effective domain in general.
If r ∈ dom Ω, then

Ω(r) = max
i∈B

ti if mini∈U ti ≥ maxi∈B ti,

and Ω(r) = max
{

max
i∈B

ti, max
i∈U

ti

}

if mini∈U ti < maxi∈B ti

(Fig. 2 depicts various situations). Let dom Ω = D0 ∪ D1, where

D0 =

{

r ∈ dom Ω ⊆ IRn−1
∣

∣

∣
min
i∈U

ti ≥ max
i∈B

ti

}

,

D1 =

{

r ∈ dom Ω ⊆ IRn−1
∣

∣

∣
min
i∈U

ti < max
i∈B

ti

}

.

Then the function Ω(r) can be defined in the following way:

Ω(r) =















max
i∈B

ti, if r ∈ D0,

max
{

max
i∈B

ti, max
i∈U

ti

}

, if r ∈ D1,

+∞, if r ∈ V \ (D0 ∪ D1),

and Ω(r′) < Ω(r′′) < +∞ for any r′ ∈ D0, r′′ ∈ D1.
Being described by non-strict inequality between continuous functions, D0 is closed, and Ω(r) is

continuous on both D0 and D1. So the Lebesgue set {Ω ≤ c} is closed for any c ≤ sup{Ω(r)| r∈D0}.
Suppose now that c > sup{Ω(r)| r∈D0}. Then all limit points of {Ω ≤ c} can belong to D0 ∪D1 only
because of the openness of the complement V \ (D0 ∪ D1). But the set {Ω ≤ c} ∩ D0 = D0 is closed
in IRn−1 and the set {Ω ≤ c} ∩ D1 is closed in D1. Hence {Ω ≤ c} ∩ D0 contains all limit points of
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{Ω ≤ c} belonging to D0, while {Ω ≤ c} ∩ D1 contains all limit points of {Ω ≤ c} belonging to D1.
Since

{Ω ≤ c} = ({Ω ≤ c} ∩ D0) ∪ ({Ω ≤ c} ∩ D1),

we thus get the closure of the Lebesgue set {Ω ≤ c} for c > sup{Ω(r)| r∈D0} as well. This completes
the proof of lower semicontinuity of Ω(r). 2

Lemma 2 In the PSS algorithm, the sums of the component lengths of the leading boxes tend to zero.

Proof. We will show that the sequence {ϑ(k)} of component length sums of the leading boxes is
majorized by some sequence {Θ(k)} → 0. Define

ϑ(P) = the sum of the component lengths of a box P,

λ(k) = the set of all boxes P such that the pair (P,Ω(P)) is contained in the list L at the
beginning of the kth algorithm step and then becomes the leading one at a step with some
number ≥ k.

It is not hard to see that if
Θ(k) = max{ ϑ(P) | P ∈ λ(k)}

then Θ(k) ≥ 0, and the sequence {Θ(k)} is non-increasing. Indeed, the set λ(k+1) contains all boxes
from λ(k) except the box Q that was the leading one at the kth step: instead of Q the set λ(k+1) may
contain or not contain its descendants Q′ and Q′′. Since

ϑ(Q) > ϑ(Q′) and ϑ(Q) > ϑ(Q′′),

we conclude

Θ(k) = max{ ϑ(P) | P ∈ λ(k)} ≥ max{ ϑ(P) | P ∈ λ(k+1)} = Θ(k+1) > 0.

Now, what is limk→∞ Θ(k), a limit which is known to exist by the well known Weierstrass’ theorem
?

When lim Θ(k) = δ > 0 there is positive integer µ such that

2n

2n − 1
δ > Θ(k) ≥ δ,

provided k > µ (n denotes dimension) and therefore

2n

2n − 1
δ > ϑ(P)

for all P ∈ λ(k), k > µ. Having fixed ̺ > µ, consider any box P ∈ λ(̺). Suppose the largest term in
the sum ϑ(P) corresponds to the jth component of P. According to the very definition of λ(̺) there
exists a positive integer µP, µP > ̺ > µ, such that P will become the leading box at the µPth step of
PSS algorithm. At the same time it will be bisected on its jth component, and for every descendant
P′ of P there holds

ϑ(P′) ≤ ϑ(P) − ϑ(P)/2n =
2n − 1

2n
ϑ(P) < δ.

If M = max{µP| P ∈ λ(̺)}, then this inequality is valid for all boxes from the set λ(M+1). But this
contradicts the assumption Θ(k) ≥ δ > 0. Therefore, lim Θ(k) = 0 as required. 2

The analogous result has been also obtained by Ratschek [25], but in another way.
Theorem. Let the interval linear algebraic system Ax = b and interval vector V ⊇ Σ be such

that the condition (NZ) holds. Then, in the PSS algorithm of §2 with the initial approximation V, the
sequence of the leading estimates converges to min{ xν | x ∈ Σ } from below.
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Proof. As we have mentioned, for leading boxes Q in the kind of algorithm under consideration,
the estimate

Ω(Q) ≤ min{xν | x ∈ Σ } (13)

has been already established by Ratschek [25] too, and so we are to prove the proper convergence of
the PSS algorithm.

Denote by W the set of all point vectors from V, i.e., the set V ∩ R
n−1. The further reasoning

depends heavily on whether we have W ∩ D0 6= ∅ or W ∩ D0 = ∅, where D0 and D1 are defined in
the proof of the Lemma 1.

If W ∩D0 6= ∅, then all leading boxes Q belong to D0. In fact, for any p ∈ W ∩D0, the inequality
Ω(p) ≥ min{xν | x ∈ Σ } is valid. In case Q ∈ D1 we would have Ω(Q) > Ω(p), and so

Ω(Q) > min{ xν | x ∈ Σ },

which is contrary to (13).
Whenever r ∈ D0,

min{ Ω(r) | (r ∈ R
n−1)& (r ∈ r) } = Ω(ř) (14)

for some real ř ∈ r, ř ∈ R
n−1, as long as the lower semicontinuous function Ω(r) attains its smallest

value on the compact set { r ∈ R
n−1 | r ∈ r } [33]. But ‖ ř − r ‖ ≤ 2 ‖ rad r ‖. So, due to uniform

continuity of Ω(r) on D0, for any ǫ > 0 there exists a δ > 0 such that

0 ≤ min{ Ω(r) | r ∈ r } − Ω(r) ≤ ǫ (15)

when ‖rad r‖ ≤ δ (therefore, under the condition (NZ), we have rigorously substantiated the assertion
of §2 that the accuracy of estimating (10) by means of Ω(r) is higher the thinner the vector r is).

Now the convergence of the PSS algorithm of §2 can be easily proved. If {Q(k)} is the sequence of
leading boxes (as before, k is a step number), then ‖ rad Q(k) ‖ → 0 by the Lemma 2. Hence for any
ǫ > 0 there is a positive integer Kǫ, such that, in analogy to inequality (15),

0 ≤ min{ Ω(r) | r ∈ Q(k)} − Ω(Q(k)) ≤ ǫ

holds for k ≥ Kǫ. Also making use of

Ω(Q(k)) ≤ min{ xν | x ∈ Σ }

= min{ Ω(r) | r ∈ (V1, . . . , Vν−1, Vν+1, . . . , Vn) }

≤ min{ Ω(r) | r ∈ Q(k)},

we may conclude that

0 ≤ min{ xν | x ∈ Σ } − Ω(Q(k)) ≤ ǫ for k ≥ Kǫ.

This means convergence of the simplest PSS algorithm.
Evidently the above conclusion remains valid if D0 = ∅ (in which case dom Ω = D1). To prove

this we need only replace D0 by D1 in all of the preceding arguments beginning from (14).
Consider now the case D0 6= ∅ and W ∩D0 = ∅. Let

min{ ‖ r − r ‖ | (r ∈ D0)& (r ∈ W)} = 2τ.

It is clear that τ > 0, since W and D0 are nonintersecting compact sets. Then the set

{

r ∈ dom Ω
∣

∣

∣
min
r∈W

‖ r− r ‖ ≤ τ
}

(16)
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also does not intersect D0, i.e., it is wholly contained in D1. For any r and r, obviously ‖ r − r ‖ ≥
‖ rad r ‖, so that

min
r

‖ r − r ‖ ≥ ‖ rad r ‖.

Hence the set (16) as well as D1 contains the subset

Dτ = { r ∈ dom Ω | ‖ rad r ‖ ≤ τ },

to which all leading boxes beginning with some iteration belong. The rest of the argument is analogous
to that of the previous case: since the function Ω(r) is uniformly continuous on the compact set Dτ ,
inequality (15) holds and so on.

The theorem is thus completely proved. 2

The second term of the disjunctions in the assumption (NZ) is hardly verifiable in the original
form, but using interval arithmetic a simple sufficient condition can be given for (NZ) to be fulfilled:

for each i = 1, 2, . . . ,m,

zero is not an endpoint of aiν or 0 /∈ (bi −
∑n

j=1, j 6=ν aijVj).

We would like to emphasize, however, that one should not overestimate the practical significance of
the simplest PSS algorithm (see §5). The main idea of the basic method described above ought to be
further developed and updated to result in highly perfected computational procedures.

4 Improvements

Applying the simplest PSS algorithm directly to practical problems would evidently be unwise,
notwithstanding its above convergence proof. This algorithm can be considerably improved in many
ways which are already standard for this kind of method. Usually, such algorithms contain the fol-
lowing modifications (see [2, 5, 10, 26] and other works):

• tracing values of the objective function at some points of boxes along with evaluating over
entire boxes enables one to control the precision of the approximation to min{xν | x ∈ Σ }
and to delete useless pairs (that never become leading pairs) from the list L; thanks to the last
property, growth of the list L size is confined to some extent;

• after revealing monotonicity of the objective function in some variables, one reduces the dimen-
sion of boxes from the list L;

• based upon local characteristics of the objective function, one employs minimization procedures
in appropriate boxes which are more effective than bisection;

• one constructs a higher quality (more accurate) inclusion function for the objective function.

The latter three improvements are involved ones, and we postpone their careful consideration until a
future part of this work, so as not to overload our account. Here we confine ourselves only to the first
of the above items, since without it the realization of the simplest PSS algorithm may turn out rather
difficult even for systems of small dimension (see the next section).

Now, let ξ(P) be a point from P and let us compute Ω(ξ(P)) along with the estimate Ω(P)
for boxes P constructed by the algorithm. It is evident that Ω(ξ(P)) ≤ Ω(P) and values Ω(ξ(P))
approximate min{ xν | x ∈ Σ } from above: if for each step of the algorithm we define

ω = min Ω(ξ(P)), (17)
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where the minimum is taken over all such boxes P of which corresponding pairs have ever been in the
list L up to the current step, then, always,

min{ xν | x ∈ Σ } ≤ ω.

On the other hand, given a leading box Q,

Ω(Q) ≤ min{ xν | x ∈ Σ },

and we may now terminate iteration when the quantity (ω − Ω(Q)) is sufficiently small.
Therefore a pair (P,Ω(P)) that satisfies

Ω(P) > ω (18)

at a some step, never becomes a leading one, and deleting it from the list L has no effect on the
algorithm’s performance. This condition is a priori contended for boxes P with Ω(P) = +∞ (it
immediately implies Ω(ξ(P)) = +∞) and corresponding pairs do not even need to be placed into L.
Altogether, by means of (18) we have to test all newly generated pairs at each step of the algorithm,
but complete cleaning of the list L — running through it and deleting pairs satisfying (18) — makes
sense only after the parameter ω changes (i.e., decreases).

The ideal choice for ξ(P) is, of course,

ξ(P) ∈ Arg min { Ω(r) | r ∈ P }.

In general, however, finding such lucky ξ(P) is at any rate no easier than solving the initial problem, so
we shall take ξ(P) = mid P to minimize any possible deviation of ξ(P) from the set Arg min {Ω(r) |
r ∈ P }.

To summarize, we come to a slightly more perfect version of the PSS algorithm to compute
min{ xν | x ∈ Σ }. As before it operates with the list L of pairs

(

P,Ω(P)
)

,

P ⊆ (V1, . . . , Vν−1, Vν+1, . . . , Vn), ordered in terms of increasing values Ω(P). In addition, the
real parameter ω defined by (17) is associated with the algorithm. At the start the list L consists of
the single pair

(

(V1, . . . , Vν−1, Vν+1, . . . , Vn), Vν

)

,

and ω is set equal to Vν . One step of execution of the algorithm is made up of the following stages:

1. If (ω − Ω(Q)) ≤ ǫ, then stop.

2. In the leading box Q choose the largest component Qι.

3. Bisect the leading box along the component ι to subboxes Q′ and Q′′.

4. Remove the previous leading pair (Q,Ω(Q)) from the list L.

5. Compute Ω(Q′).

6. If Ω(Q′) ≤ ω, then insert the new pair (Q′,Ω(Q′)) into L in the proper order (of increasing
second member).

7. Compute Ω(Q′′).

8. If Ω(Q′′) ≤ ω, then insert the new pair (Q′′,Ω(Q′′)) into L in the proper order.
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9. Compute

η′ =

{

Ω(mid Q′), if (Q′,Ω(Q′)) ∈ L,
+∞, otherwise,

η′′ =

{

Ω(mid Q′′), if (Q′′,Ω(Q′′)) ∈ L,
+∞, otherwise,

and η = min{ η′, η′′ }.

10. If ω > η, then set ω = η and clean the list L: remove from it all pairs (P,Ω(P)) such that
Ω(P) > ω.

Here ǫ is the prescribed absolute accuracy. In case ensuring relative accuracy ǫ is required, the
termination criterion at stage 1 should be taken as

(ω − Ω(Q))/Ω(Q) ≤ ǫ

or
(ω − Ω(Q))/ rad Vν ≤ ǫ,

or in some other way in conformity with practical needs.

5 Numerical experiments

In this section we summarize numerical experiments carried out with the PSS algorithm using Turbo
C on a PC AT/386 in standard double precision floating point arithmetic. The model test problem
was the following interval system:



























[n−1; N ]x1 + [α−1; 1−β ]x2 + . . . + [α−1; 1−β ]xn = [ 1−n; n−1 ],

[α−1; 1−β ]x1 + [n−1; N ]x2 + . . . + [α−1; 1−β ]xn = [ 1−n; n−1 ],

...
...

. . .
...

...

[α−1; 1−β ]x1 + [α−1; 1−β ]x2 + . . . + [n−1; N ]xn = [ 1−n; n−1 ],

(19)

where n denotes dimension (n ≥ 2), 0 < α ≤ β ≤ 1 and N is a real number ≥ n−1.
For n=2 and α = 1

4 , β = 1
2 , the solution set of this system is shown in Figure 1, for n=2, α =

1
4 , β=1, i.e., for the system

(

1
[

−3
4 ; 0
]

[

−3
4 ; 0
]

1

)

x =

(

[−1; 1]

[−1; 1]

)

, (20)

it is shown in Figure 3, and Figure 4 displays it for n = 2 and α = β = 1
4 , i.e., for the system

(

1
[

−3
4 ; 3

4

]

[

−3
4 ; 3

4

]

1

)

x =

(

[−1; 1]

[−1; 1]

)

. (21)

Varying the values α, β, n and N , it is easy to obtain from (19) a broad range of interval linear
systems to test algorithms solving the outer problem for ILAS. When β diminishes to zero, the matrix
of the system (19) becomes more and more close to singular, and the solution set increases indefinitely
in size. Changing the ratio of α and β, we can modify the shape of the solution set and so on.

The structure of the solution set Σ̃ to (19) may be easily revealed from symmetry considerations.
To begin with, this ILAS is invariant with respect to sign inversion of all the solution components,
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Figure 3: The solution set to (20).
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Figure 4: The solution set to (21).

since the right-hand side interval vector is symmetric around the zero. Hence, the solution set Σ̃ is
centrally symmetric with respect to the origin of coordinates, and, in particular,

min{xi | x ∈ Σ̃ } = −max{xi | x ∈ Σ̃ }, i = 1, 2, . . . , n. (22)

Further, after the change of xi for xj and vice versa for any i, j ∈ {1, 2, . . . , n}, the ILAS (19)
also remains the same. We can conclude from this that the set Σ̃ is symmetric around the bisectrix
of the positive and negative orthants of R

n and

min{xi | x ∈ Σ̃ } = min{xj | x ∈ Σ̃ },

max{xi | x ∈ Σ̃ } = max{xj | x ∈ Σ̃ }

for any i, j ∈ {1, 2, . . . , n}. Combining this relationships with (22), we obtain finally that the interval
hull of the set Σ̃, i.e., the optimal interval solution of the ILAS (19), is a hypercube with the center
in the origin of coordinates. To determine its size, we put x1 = x2 = . . . = xn in (19) and then all the
equations of this system merge into one

[n − 1; N ] · x1 + (n − 1)[α − 1; 1 − β ] · x1 = [ 1 − n; n − 1 ],
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or
[ 1; N/(n − 1) ] · x1 + [α − 1; 1 − β ] · x1 = [−1; 1].

When solving the outer problem for this equation the variable x1 is to be treated as a real number,
and so, due to distributivity [1, 16, 18], we come to

[α; 1 − β + N/(n − 1) ] · x1 = [−1; 1].

The solution set to this interval equation is

x1 = [−1/α; 1/α ],

and so the optimal (exact) componentwise estimates for the solution set of the system (19) are

min{xi | x ∈ Σ̃ } = −1/α,

max{xi | x ∈ Σ̃ } = 1/α, i = 1, 2, . . . , n,

no matter what the value of N is.
Now let us consider and comment results of the test computations with the PSS algorithm of

§4 applied to the model ILAS (19) with variable dimension for α = 1
4 , β = 1 (Table 1) and for

α = β = 1
4 (Table 2). It follows from the foregoing that the interval hull of the solution sets of these

systems is the interval vector ([−4; 4], . . . , [−4; 4])⊤, but we wittingly took the nonsymmetric intervals
([−5; 6], . . . , [−5; 6])⊤ and ([−7; 10], . . . , [−7; 10])⊤ as the initial approximation vectors. In view of
the features of the PSS algorithm and the model problem, the Tables below report expenditures for
computing the estimate of min{x1|x ∈ Σ } only, since for symmetry reason they are the same for any
other component. The termination criterion was (ω−Ω(Q)) ≤ 0.1, i.e., the condition of achieving the
absolute accuracy no less than 0.1. As a summarizing expenditure measure (though very subjective
one), running times of the algorithm are included in the Tables.

As is seen from these Tables, the running expenditures of the PSS algorithm grow exponentially
with the dimension of the problem. This thesis may be substantiated through conceptual reasoning
as well.

The complexity of the PSS algorithms as applied to each specific ILAS depends on the structure
of its solution set, but the worst case is provided for the PSS algorithm by the model system (19) with
α = β. In fact, let us simulate the PSS algorithm as a process of global optimization of the function
Ω(r) from the representation (8). At the beginning of the algorithm’s performance the leading boxes
concentrate around local minimums of the objective function Ω(r) on (V1, . . . , Vν−1, Vν+1, . . . , Vn).
Further, as the sufficient improvement of these local minimums is being achieved (i.e., as the leading
boxes become thiner), the algorithm gradually discards those of them which are not global minimums.
More exactly, the nonglobal local minimums have neighborhoods into which the leading boxes does
not already fall beginning with some step. Sooner or later, all the leading boxes will concentrate
around the global minimums only (there can be several of them), the algorithm accomplishing the
final refinement of the result. Naturally, some stages may fail in this scheme for concrete ILAS.

If 0<α=β<1 , the solution set to the system (19) is symmetric in every respect, its intersections
with all orthants of R

n being congruent to each other. Correspondingly, there is just one local minimum
of the objective function Ω(r) from the representation (8) in each of intersections of the domain vector
(V1, . . . , Vν−1, Vν+1, . . . , Vn) with orthants of R

n−1 (so that there are 2n−1 altogether), with
magnitudes of all these local minimums being the same and equal to −1/α. The execution of the PSS
algorithm as applied to (19) with α = β proceeds in accordance with the described above standard
scenario: after some iterations the list L breaks up into nonintersecting subsets L′, L′′, . . . of records,
belonging to which boxes thicken in neighborhoods of local minimums of the objective function Ω(r).
But now, since all the local minimums are equal to each other, their refinement, however thorough,
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Table 1: Solving the test system (19) with α = 1/4, β = 1.

Dimension Number of iterations Time Maximum list size

initial approximation ([−5; 6], . . .)⊤

2 11 — 8
3 36 0.06 s 23
4 96 0.44 s 58
5 369 2.42 s 232
6 1203 11.4 s 787

initial approximation ([−7; 10], . . .)⊤

2 12 — 9
3 43 0.11 s 27
4 177 0.36 s 91
5 573 3.79 s 397
6 2073 20.5 s 1430

Table 2: Solving the test system (19) with α = β = 1/4.

Dimension Number of iterations Time Maximum list size

initial approximation ([−5; 6], . . .)⊤

2 22 0.05 s 14
3 164 0.38 s 113
4 931 4.12 s 613
5 5986 57.3 s 4007

initial approximation ([−7; 10], . . .)⊤

2 25 0.05 s 9
3 191 0.5 s 65
4 1272 5.54 s 508
5 7507 66.1 s 2966
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can detect neither smallest (i.e., the best) nor useless of them, and each of L′, L′′, . . . never becomes
empty.

As a matter of fact, the objective function Ω(r), corresponding to the ILAS (19) with α = β,
has the number of local extrema that increases exponentially with the dimension n, and each of
them requires from the algorithm separate refinement, for which nondecreasing time and storage are
expended. Therefore, the complexity of executing the PSS algorithm, which is necessary for attaining
any given absolute or relative accuracy, is proportional to at least 2n at the worst.

6 Discussion

At present three computational approaches exist for computing optimal solutions of the outer problem
for general ILAS (for an overview of partial results on this subject see [21]). The first one originates
from the work by Oettli [22], who had discovered that the intersection of the solution set with each
orthant of R

n is a convex polyhedron. Thus the exact value of min{xν | x ∈ Σ } can be found through
solving some linear programming problem in each of the orthants and then picking the minimum of
the results. Some aspects of this approach are also discussed in [3, 11]. The algorithm, however, is
seen to be based upon a passive exhausting strategy while its complexity is exponential in dimension
n, and owing to this it is of low practical significance.

The next computational approach to optimal solution of the outer problem for square interval
linear systems is the recently advanced PPS algorithm [30]. With the “branch and bound method”
as a basis, it has become a logical completion of ideas by Hansen [8], Nickel [19] and some other
researchers. Though in the worst case the complexity of the PPS algorithm may prove proportional
even to 2n2

, it is an adaptive (sequential) algorithm as opposed to the previous approach. That is,
when executing each subsequent step of the PPS algorithm, the information about its earlier steps is
utilized in full scale. This type of algorithm is preferable in practical computation, as long as it has
flexible computational scheme that allows to accommodate itself to each specific problem. By and
large the PPS algorithm looks very promising, but at present it is not sufficiently elaborated yet.

Finally, the third and for the time being the most developed approach to optimal solution of the
outer problem is due to Rohn [27] (see also [18]). Starting from the Oettli-Prager characterization of the
solution set, he shows that, in the case of square nonsingular matrix A, the required min{xν | x ∈ Σ }
and max{xν | x ∈ Σ }, ν=1, 2, . . . , n, are reached on the set of at most 2n solutions to the equation

|mid A · x − mid b | = rad A · |x| + rad b. (23)

Computing all these solutions and comparing them with each other, we shall get optimal estimates
of the solution set after finite number of steps. Since the process of determining each next solution
to (23) in no way depends upon the solutions found earlier, the Rohn’s algorithm as a whole is not
adaptive (i.e., it is similar to exhausting methods), whereas its complexity is proportional to 4n at the
worst.

Thus, all the approaches so far advanced to compute the optimal solutions of the outer problem for
general ILAS as well as the above constructed PSS algorithm have exponential complexity. This fact,
however, is not the fault of these algorithms, but reflects profound properties of the very united solution
set to interval linear system. Large labor requirements that the problems dealt with estimation of the
united solution set establish, actually, combinatorial character of these problems have been repeatedly
pointed out by many researchers. At last, Lakeyev and Noskov have proved that the recognition of
whether Σ = ∅ or not is NP-complete [14], and Kreinovich has established recently that the optimal
solution of the outer problem (3) is NP-hard too [13]. Therefore, the exponential complexity of all the
algorithms listed above is essential and can not be overcome (provided P 6= NP) [6].

What are advantages and shortcomings of the PSS algorithm as compared to the other approaches
to compute optimal solutions of the outer problem ? The numerical experiments demonstrate that
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it is of low efficiency, though, in my opinion, having realized the modifications mentioned in §4, we
can crucially improve the situation. On the other hand, the PSS algorithm is adaptive (sequential),
and this is not all yet. The other important feature of the PSS algorithm is that it generates the
sequence of estimates to the sought-for values from the necessary sides, i.e., for min{xν | x ∈ Σ } from
below and for max{ xν | x ∈ Σ } from above. Just such estimates are required in accordance with
the sense of the outer problem. The process of the PSS algorithm’s performance decomposes into a
sequence of efficiently computed stages, and as the result of each one we have a solution of the outer
problem. Hence, having stopped the PSS algorithm at any moment after some sufficient time, we will
altogether get more or less exact solution to the outer problem in the form of current leading estimate.
In other words, if we have sufficient computer capacity at our disposal, then employing the PSS
algorithm we may be fairly confident that an answer to the outer problem will be obtained for sure,
though perhaps not optimal one. Such is the PPS algorithm too, and we propose to designate their
common aforementioned property by a special term, speaking that the PSS algorithm and the PPS
algorithm are sequentially guaranteeing. Taking into account the intractability of the outer problem,
this radically distinguishes the PSS and PPS algorithms from all the other methods for determining
optimal solutions.

Nowadays the notion “efficiently computed” is equivalent to “polynomially computed”, i.e., com-
puted for the time (or the number of elementary computer operations) bounded by a polynomial
function of the input length. In view of this, we can reformulate the definition of sequentially guar-
anteeing algorithm more precisely in the following way: an algorithm is said to be a sequentially
guaranteeing if, when executed, it generates a sequence (finite or infinite) of polynomially computed
correct answers to the problem under solution. In particular, an algorithm is a priori sequentially guar-
anteeing if it is polynomially complex by itself. The final result may be the limit of infinite sequence
of intermediate answers (in common with the PSS algorithm) or the last term of a finite sequence of
intermediate answers (as for the PPS algorithm) or somehow otherwise.

On the contrary, the other two of the approaches reviewed above for computing optimal solution of
the outer problem, having exponential complexity at the worst, provide the desired “outer” estimates of
the solution set only in the final, when their performance is naturally finished, since earlier we can not
guarantee that the calculated estimate is really ≤ min{ xν | x ∈ Σ } (or ≥ max{ xν | x ∈ Σ }). For this
reason it would be advisable to refer to such algorithms as finally guaranteeing. If the dimensionality
of interval linear system is sufficiently large (a mere several tens), then, by virtue of intractability
of the outer problem, the number of arithmetical and logical operations which is necessary for the
problem to be certainly solved is much more than the number of operations a computer can execute
during any reasonable time. In these conditions, one can not be sure that the finally guaranteeing
algorithm will have completed its work and, consequently, that an answer will be obtained to the
problem posed. Put otherwise, in applying the finally guaranteeing algorithm we risk wasting time
and money without getting any answer to the problem.

This pessimistic forecast is especially telling for passive exhaustive algorithms, that is, for the
approaches by Oettli and by Rohn to the optimal solution of the outer problem. If these algorithms
were adaptive (sequential), things would get somewhat better, since then their exponential complexity
would be reached only at the worst and this may not be the case for our concrete problem. In any
event, however, finally guaranteeing algorithms appear to be of limited utility for practical solution of
large intractable problems to which an answer must meet some qualitative requirement. A natural way
out of this difficulty is to reconstruct the algorithm so that it produces some inexpensively computed
intervening results before its full completion, which are more or less accurate proper solutions to our
problem. This is just what is implied by the definition of sequentially guaranteeing algorithm.
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