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For the data fitting problem under interval uncertainty, we introduce the concept of
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interval data, taking into account the strong compatibility requirement.
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1 Introduction

1.1 Problem statement

The subject of our work is the development of methods for analyzing data that are inaccurate
and have interval uncertainty. We consider a linear regression model

y = β0 + β1x1 + β2x2 + . . .+ βmxm, (1)

in which x1, x2, . . . , xm are independent variables (also called exogenous, explanatory, input
or predictor variables), y is a dependent variable (also called endogenous, response or criterion
variable), and β0, β1, . . . , βm are some coefficients. These unknown coefficients should be
determined from a number of measurements (observations) of the values x1, x2, . . . , xm and y.

The measurement results are not accurate, and we suppose that they are intervals, i. e., they
provide us with two-sided bounds for the exact values of the measured quantities. Therefore,
the i-th measurement results in such intervals x

(i)
1 , x

(i)
2 , . . . , x

(i)
m , y(i) that the actual value of

x1 is within x
(i)
1 , the actual value of x2 is within x

(i)
2 , and so on, up to y, the actual value of

which is within y(i).
In total, there are n measurements, so that the index i can take values from the set

{1, 2, . . . , n}. We need to find or somehow estimate the coefficients βj, j = 0, 1, . . . ,m, for
which the linear function (1) would “best approximate” the data. The ideal is, of course, the
case when the graph of the constructed function (1) “passes through all measurement points”,
i. e., when the approximation of the data is indeed complete, in exactly the same way as, for
example, in the interpolation.

1.2 Main ideas and results of the work

In the case when the data are inaccurate, when each measurement or observation represents
an entire set of possible values rather than a single point, the very concept of “passing through
measurement points” must be rethought. The fact is that now the sets of measurement un-
certainty acquire a structure that makes it necessary to distinguish between different cases of
passing a function graph through these sets. This is due, in particular, to that the inputs
and outputs of the system (corresponding to independent arguments of the function and the
dependent variables) differ from each other in their purpose. Additionally, the measurements
of the inputs and outputs can be performed in different ways, or even at different moments of
time.

In order to take into account these new realities, we introduce the concepts of weak com-
patibility and strong compatibility of data and parameters of the functional dependence. The
set of all parameters having weak compatibility with the data forms a set, which is known in
interval analysis as the united solution set for an interval system of equations constructed from
interval measurement data. On the other hand, the set of model parameters that satisfy the
strong compatibility conditions is the so-called tolerable solution set for an interval system of
equations constructed from interval measurement data. The tolerable solution sets for interval
systems of linear algebraic equations is relatively well studied. It is always a convex polyhedral
set. There are practical methods for recognizing whether a tolerable solution set is empty or
non-empty, as well as for its inner and outer estimation. It is also interesting to note that
testing the emptiness/non-emptiness of the tolerable solution set for an interval linear system
of algebraic equations is a polynomially complex problem, whereas for the united solution set
the same problem is NP-hard.
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In our work, we discuss practical methods for the solution of the data fitting problem under
the strong compatibility requirement. Our main tool is a technique that uses the so-called
recognizing functional of the tolerable solution set to the interval system of linear equations
constructed from the measurement data.

Although we study in detail the situation, when all the measurements are subject to the
same compatibility conditions, the most general case in processing interval data is that some
measurements with strong compatibility are combined with those where the usual weak com-
patibility takes place. Then the data fitting problem becomes even more complicated, and
its analysis makes it necessary to consider the so-called AE-solutions and AE-solution sets for
interval systems of equations. The corresponding mathematical theory, in fact, has already
been developed, and there are computational methods for solving problems of recognition and
estimation of the AE-solution sets (see e.g. [27, 30]). We postpone the detailed exposition of
these results until future publications.

This work continues and supplements the article [34], and our notation system corresponds
to the informal international standard [8]. In particular, intervals and interval objects are
throughout indicated in bold type, while noninterval (point) values, quantities and variables
are not designated in any special way.

2 Data fitting under interval uncertainty

2.1 Short review

The data fitting problem is a popular and practically important problem, in which we are
required to construct, according to empirical data, a functional dependence of a given type
between “input” and “output” quantities. In our work, we consider in detail the simplest linear
function of the form

y = β0 + β1x1 + β2x2 + . . .+ βmxm, (1)

although many constructions and conclusions are also valid in the general nonlinear case. It is
necessary to determine the unknown coefficients βi so that the resulting linear function “best
fits” a given set of values of the independent arguments and dependent variable

x
(1)
1 , x

(1)
2 , . . . , x

(1)
m , y(1),

x
(2)
1 , x

(2)
2 , . . . , x

(2)
m , y(2),

...
...

. . .
...

...

x
(n)
1 , x

(n)
2 , . . . , x

(n)
m , y(n).

(2)

The above problem is often referred to as “linear regression problem” in statistics or as “pa-
rameter identification problem” in engineering language.

Substituting data (2) in equality (1), we obtain, after renaming xij := x
(i)
j and yi := y(i),

the system of equations 
β0 + x11β1 + . . . + x1nβm = y1,

β0 + x21β1 + . . . + x2nβm = y2,
...

...
. . .

...
...

β0 + xn1β1 + . . . + xnmβm = yn,

(3)

with the unknowns β0, β1, . . . , βm, or briefly

Xβ = y (4)
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Figure 1: Illustration of the data fitting problem

with n×(m+ 1)-matrix X = (xij), (m+ 1)-vector β = (βi) and n-vector y = (yi) such that

X =


1 x11 . . . x1m
1 x21 . . . x2m
...

...
. . .

...

1 xn1 . . . xnm

 , β =


β0
β1
...

βm

 , y =


y1
y2
...

yn


(where the columns of the matrix X are, apparently, more convenient to be numbered from
zero). A solution to systems (3) and (4), either ordinary or in a generalized sense, is taken
as an estimate of the parameters β0, β1, . . . , βm. A graphical illustration of the data fitting
problem is shown in traditional Fig. 1: we have to find a straight line that “best approximates”
the set of points with the coordinates (2).

In the practical data fitting problems, the data is almost always inaccurate, since the re-
sults of measurements and observations are influenced by external uncontrolled factors, the
measuring devices themselves are not absolutely accurate, etc. Thus, in reality, we must deal
with this or that uncertainty — the state of partial knowledge of the measured quantity, when
we know some value, but it is approximate, and there is also some information (qualitative or
quantitative) about the error of this value.

How to describe this uncertainty? In other words, what “uncertainty model” do we accept
for the data? The traditional choice is a probabilistic model of errors, the foundations of
which were laid at the turn of the eighteenth and nineteenth centuries by C.F. Gauss and
P.-S. Laplace. According to this approach, the errors in measurements and observations are
random quantities that can be adequately described by the mathematical probability theory,
and we (more or less) know the characteristics of these random variables. Over the past two
centuries, the probabilistic model of measurement errors has been intensively developed by
many outstanding mathematicians and statisticians. It has become very popular, turning into
the main tool for data processing. Nevertheless, the application of this model puts a lot of non-
trivial questions for both engineers and mathematicians, the answers to which are sometimes
not entirely satisfactory.

In general, if the probabilistic description of the measurement errors is inadequate, it is
often more convenient to work with uncertainties and inaccuracies in the data using interval
analysis methods. In this approach, we suppose that interval estimates of the measurement
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Figure 2: Illustration of the compatibility between parameters of a linear model
and interval measurement data for exact values of the independent variable.

results are given instead of probabilistic distributions, that is, we know the smallest and largest
bounds of possible values of the quantities of interest. In our data fitting problem, it is assumed
that interval estimates are given for xij and yi:

xij ∈ xij = [xij,xij] and yi ∈ yi = [y
i
,yi].

The pioneer of the new approach to data processing was Leonid Kantorovich in 1962, who
first articulated the above principles, briefly outlined the formulation of the new problem and
some methods for solving it in the article [7]. The first Western article on this topic was authored
by F.S. Schweppe [22]. Later, a significant contribution to the development of the theory was
made by many researchers, and the interested reader can find the necessary information on
the current state of this area e. g. in [2, 6, 12, 17, 44, 45] (see also the references in the
above articles). The author’s publications [32, 33, 37], which develop the so-called maximum
compatibility method, are devoted to this same problem.

2.2 Definition of compatibility between parameters and data

In the formulation of Kantorovich and his followers, the data fitting problem under interval
uncertainty did not cover the most general case: the inaccuracies in the input data were absent,
i. e., it was supposed that xij = xij. Then, for the linear function (1), there should be

y
i
≤ β0 + β1xi1 + . . .+ βmxim ≤ yi, (5)

i = 1, 2, . . . , n. The compatibility of parameters and data was understood as the passage of the
graph of the constructed functional dependence, i. e., of a straight line, through all the corridors
of data uncertainty for the output variable (see Fig. 2). This particular case, nevertheless, is
practically very important, and its careful solution facilitated the wide dissemination of the
new approach. Mathematically, relations (5) form a system of linear inequalities, which can be
solved, for example, by linear programming methods (this was proposed in [7]). In the general
case, when both input and output data have interval uncertainty, the following definition seems
to be natural:
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Figure 3: Illustration of compatibility between parameters of a linear model
and interval measurement data in the general case.

Definition 1. The parameters β0, β1, . . . , βm of the linear function (1) are called compatible (or
weakly compatible) with the interval experimental data (xi1, xi2, . . . , xim, yi), i = 1, 2, . . . , n,
if, for each measurement i, there exist such representatives xi1 ∈ xi1, xi2 ∈ xi2, . . . , xim ∈ xim
and yi ∈ yi within the measured intervals, that the equality

β0 + β1xi1 + . . .+ βmxim = yi

is valid.

According to this definition, the data of each measurement is a large point “inflated” to an
axis aligned box in the space Rm+1. The fact that the graph of the constructed dependence
“passes” through such a point is understood as its intersection with this box (see Figure 3).

Using the formal language of predicate logic (see, e.g., [1]), the definition of the set of
parameters β = (β0, β1, . . . , βm)> compatible with the data (2) looks as follows{

β ∈ Rm+1 | (∃x11 ∈ x11) · · · (∃x1m ∈ x1m)(∃y1 ∈ y1)(β0 + x11β1 + · · ·+ x1mβm = y1)

& (∃x21 ∈ x21) · · · (∃x2m ∈ x2m)(∃y2 ∈ y2)(β0 + x21β1 + · · ·+ x2mβm = y2) (6)

& · · · · · · · · · · · ·
& (∃xn1 ∈ xn1) · · · (∃xnm ∈ xnm)(∃yn ∈ yn)(β0 + xn1β1 + · · ·+ xnmβm = yn)

}
.

Next, we transform the separating predicate, i. e., the logical formula that stands after the
vertical line in the above definition of the set.

If P and Q are propositional formulas depending on the same variable v, then, as is well
known,

(
∃v P (v)

)
&
(
∃v Q(v)

)
is not equivalent to ∃v

(
P (v) &Q(v)

)
[1]. But the sets of

variables that are members of individual conjunctions in formula (6) do not intersect each
other. Because of this, we can use the weaker equivalence:(

∃v′ P (v′)
)

&
(
∃v′′ Q(v′′)

)
⇐⇒ ∃v′ ∃v′′

(
P (v′) &Q(v′′)

)
.

5



As a consequence, we obtain the formula equivalent to the separating predicate in (6):

(∃x11 ∈ x11) · · · (∃x1m ∈ x1m) (∃y1 ∈ y1)
(∃x21 ∈ x21) · · · (∃x2m ∈ x2m) (∃y2 ∈ y2)

· · · · · ·
(∃xn1 ∈ xn1) · · · (∃xnm ∈ xnm) (∃yn ∈ yn)

(
(β0 + x11β1 + · · ·+ x1mβm = y1)

& (β0 + x21β1 + · · ·+ x2mβm = y2)

& · · · · · · · · ·
& (β0 + xn1β1 + · · ·+ xnmβm = yn)

)
.

(7)

If we organize, from the input data of the problem, an n× (m + 1)-matrix X = (xij) and
an n-vector y = (yi), then the large quantifier prefix of formula (7) can be written briefly in
the form

(∃X ∈X)(∃y ∈ y),

where X is an n×(m+ 1)-matrix with the elements xij, and y = (yi) is an n-vector. Instead of
the large formula (7), we thus get

(∃X ∈X)(∃y ∈ y)
(

(β0 + x11β1 + · · ·+ x1mβm = y1)

& (β0 + x21β1 + · · ·+ x2mβm = y2)

& · · · · · · · · ·
& (β0 + xn1β1 + · · ·+ xnmβm = yn)

)
.

But the resulting conjunction of equalities is nothing more than the vector equality Xβ = y.
Therefore, we can finally conclude that the set of parameters that are compatible with the data
in the sense of the first definition is a set determined as{

β ∈ Rm+1
∣∣ ( ∃X ∈X

)(
∃y ∈ y

)(
Xβ = y

) }
.

In interval analysis, it is called united solution set to the interval system of linear equations
Xβ = y, denoted by Ξuni(X,y), and informally we can describe it as

Ξuni(X,y) =
{
β ∈ Rm+1 | Xβ = y for some X ∈X and y ∈ y

}
.

2.3 Strong compatibility between parameters and data

An important new circumstance is that the “swollen” data points acquire an additional struc-
ture that the initial infinitesimal points did not have. They become direct Cartesian products
of intervals having different meanings, which correspond to input (independent) variables and
output (dependent variable). As a consequence, the different faces of the measurement uncer-
tainty box have different meanings (in Figure 3, these are the vertical and horizontal sides of
the rectangles), and the data fitting problem under interval inaccuracy can take on various con-
texts. It becomes important how exactly the graph of the constructed function passes through
the uncertainty box, which was first noticed, apparently, in [5].

If the process of measuring the values of the input and output is broken in time and, hence,
divided into stages, when the outputs are measured after fixing the values of the inputs, then
another understanding of “compatibility” is more adequate, in which the output constraint
must be met uniformly at any value of the inputs. Formally, this situation is described by
another definition:
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Definition 2. The parameters β0, β1, . . . , βm of the linear function (1) are strongly compatible
with the interval experimental data (xi1, xi2, . . . , xim, yi), i = 1, 2, . . . , n, if, for each mea-
surement i and for any representatives xi1 ∈ xi1, xi2 ∈ xi2, . . . , xin ∈ xim, there exist yi ∈ yi
within the measured intervals, that the equality

β0 + β1xi1 + β2xi2 + . . .+ βmxim = yi

is valid.

x

y

Figure 4: Illustration of the strong compatibility between parameters
of a linear model and interval measurement data.

The set of parameters which are strongly compatible with the data according to the second
definition is described, in the formal language, as follows:{

β ∈ Rm+1 | (∀x11 ∈ x11) · · · (∀x1m ∈ x1m)(∃y1 ∈ y1)(β0 + x11β1 + · · ·+ x1mβm = y1)

& (∀x21 ∈ x21) · · · (∀x2m ∈ x2m)(∃y2 ∈ y2)(β0 + x21β1 + · · ·+ x2mβm = y2) (8)

& · · · · · · · · · · · ·
& (∀xn1 ∈ xn1) · · · (∀xnm ∈ xnm)(∃yn ∈ yn)(β0 + xn1β1 + · · ·+ xnmβm = yn)

}
.

We perform equivalent transformations with the selecting predicate of this set, analogous to
those carried out previously for Definition 1, using additionally the equivalence(

∀u P (u)
)

&
(
∀v Q(v)

)
⇐⇒ ∀u ∀v

(
P (u) &Q(v)

)
.

It turns out that the set (8) coincides with the set specified as{
β ∈ Rm+1

∣∣ ( ∀X ∈X
)(
∃y ∈ y

)(
Xβ = y

) }
,

where X is an n×(m+ 1)-matrix with the elements xij, and y = (yi) is an n-vector. In interval
analysis, this set is called the tolerable solution set Ξtol(X,y) of the interval linear system of
equations Xβ = y, since historically it originated from the practical problems in which the
“tolerances” appear on the parameters of the object [29, 31, 35]. Informally,

Ξtol(X,y) = { β ∈ Rm+1 | for any X ∈X, there holds Xβ ∈ y }.
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Figure 5: Illustration of the weak (below) and strong (above) compatibility
between parameters of a nonlinear model and interval measurement data.

As one can see, the definition of the tolerable solution set differs from the definition of the
united solution set by only one logical quantifier, which is applied to the matrix. But this leads
to the fact that the properties of the tolerable solution set are strongly unlike the properties of
the united solution set.

2.4 Plan of the solution

The specificity of the traditional data fitting problem, where we operate with the point (non-
interval) values of measurements and observations, is the fact that the compatibility (consis-
tency) between the parameters of the model and the data is an exceptional event that almost
never takes place. In addition, even if the compatibility occurs, it collapses after an arbitrarily
small perturbation of the data. But with essentially interval uncertainty, the set of parameters
that are compatible (consistent) with data in typical situations has a nonzero measure, being
stable to small perturbations in the data.

The solution of the data fitting problem from inaccurate data will be carried out according
to the following general scheme:

1) we introduce a quantitative “measure of strong compatibility”
between parameters and data,

2) as an estimate of the parameters, we take the point in which
the maximum of this measure is achieved.
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It is clear that, for a reasonable choice of the “compatibility measure”, the evaluation of
the parameters will always be performed by this method. But it is completely unessential that
the actual compatibility of the obtained parameters and data will in fact take place. Similar to
the traditional non-interval case, sometimes there may not exist a set of parameters that are
compatible with the data in accordance with Definition 1 or Definition 2. In other words, then
there is no line passing through all the uncertainty measurement boxes in the sense we need,
either ordinary or strong.

The main question arising in connection with the intended plan is how to take the “measure
of strong compatibility / incompatibility” of the data and parameters of a regression line?

There are natural requirements that this measure should satisfy. With a non-empty solution
set, it must be positive (or at least nonnegative) for points from this set on which “strong
compatibility” is actually achieved. For points outside the solution set on which there is no
“strong compatibility”, it can be negative.

3 Interval linear systems of equations

In this section of the paper, we consider in more detail the interval linear systems of equations,
i. e., the main object that arises in the solution of the data fitting problem under interval
uncertainty for the case of linear functional dependence.

3.1 United and tolerable solution sets

Applying the notation traditional for numerical analysis and linear algebra, we write an interval
system of linear algebraic equations in the form

a11x1 + a12x2 + . . . + a1mxm = b1,

a21x1 + a22x2 + . . . + a2nxm = b2,
...

...
. . .

...
...

an1x1 + an2x2 + . . . + anmxm = bn,

or, briefly,
Ax = b

with interval n×m-matrix A = (aij) and n-vector b = ( bi) is a formal entry denoting a family
of point linear systems Ax = b of the same structure with A ∈ A and b ∈ b. Each system of
linear algebraic equations Ax = b, whose matrix is taken from the interval matrix A and whose
right-hand side b belongs to b, can have solutions, and in many practical situations it makes
sense to consider them together, as a single set, i. e., taking their union. In this way, we obtain
the so-called united solution set

Ξuni(A, b) = {x ∈ Rm | there exist such A ∈ A and b ∈ b, that Ax = b }.

It corresponds, apparently, to the simplest and the most natural understanding of what is a
“solution” to an interval system of equations. A large number of works are devoted to this
solution set and various numerical methods for its computation and finding its estimates. In
the formal language,

Ξuni(A, b) =
{
x ∈ Rm | (∃A ∈ A)(∃b ∈ b)(Ax = b)

}
,
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or
Ξuni(A, b) =

{
x ∈ Rm | (∃A ∈ A)(Ax ∈ b)

}
.

But strong compatibility between parameters and data dictates a different understanding
of the solution to the interval system of equations. It corresponds to the so-called tolerable
solution set of the interval linear system of equations, the set defined as

Ξtol(A, b) =
{
x ∈ Rm | for any A ∈ A, there holds the membership Ax ∈ b

}
.

This is the set of solutions to all point systems Ax = b, for which the product Ax falls into the
right-hand side intervals b for any A ∈ A. In the formal language,

Ξtol(A, b) =
{
x ∈ Rm | (∀A ∈ A)(∃b ∈ b)(Ax = b)

}
,

or
Ξtol(A, b) =

{
x ∈ Rm | (∀A ∈ A)(Ax ∈ b)

}
.

It is not hard to realize that if the membership Ax ∈ b is valid for every A ∈ A, then it
certainly holds for some A ∈ A, that is,{

x ∈ Rm | (∀A ∈ A)(Ax ∈ b)
}
⊆
{
x ∈ Rm | (∃A ∈ A)(Ax ∈ b)

}
.

The latter means that the following inclusion holds

Ξtol(A, b) ⊆ Ξuni(A, b), (9)

i. e., the tolerable solution set is always a subset of the united solution set. In terms of the
data fitting problem under interval uncertainty, the above implies that if there is a strong
compatibility between parameters and data, then the usual compatibility (which can be called
“weak”) obviously takes place.

The tolerable solution set and the united solution set coincide with each other if the matrix
of the system is a point matrix, i. e., its width is zero:

Ξtol(A, b) = Ξuni(A, b) for any point matrix A.

When the matrix of the system expands, that is, its width grows, then the tolerable solution
set decreases in size, while the united solution set increases, which is their principal distinction.
For essentially interval matrices A, the difference between the solution sets Ξtol(A, b) and
Ξuni(A, b) can be considerable (see examples below).

The tolerable solution set can be empty if the intervals of the right-hand side are too
narrow in comparison with the interval elements of the matrix. Then the product Ax gets
“large range”, which may not fit into the corridors of the right-hand sides of the system. For
example, for the interval equation [1, 2]x = [2, 3], the tolerable solution set is empty, since, for
any nonnegative real t, the ratio of the upper endpoint to the lower one is 2 in the product
[1, 2] t = [t, 2t], whereas this ratio is only 3/2 for the right-hand side.

3.2 Analytical descriptions of the tolerable solution set

The definitions of the solution sets given in the preceding section by means of logical formulas
are convenient and well understood by practitioners. Nevertheless, they are not very suitable
for solving some mathematical questions. For example, the needs to compute with the solution
sets as well as to find their estimates require defining these sets through traditional arithmetic
and analytical operations.
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Ξuni(A, b)

Ξtol (A, b)

−2

3

−3

4

Figure 6: United solution set and tolerable solution set
for the interval system of linear equations (10)

For the united solution set, there exist quite a lot of such equivalent reformulations of its
definition (see [11, 15, 20, 35]). Also, its structure has been studied in detail. Below, we are
presenting the results that give analytic descriptions of the tolerable solution set to interval
linear systems of equations.

The Rohn theorem [19, 20, 35] A point x ∈ Rm belongs to the tolerable solution set of the
interval system of linear algebraic equations Ax = b if and only if x = x′−x′′ for some vectors
x′, x′′ ∈ Rm that satisfy the system of linear inequalities

Ax′ −Ax′′ ≤ b,

−Ax′ + Ax′′ ≤ −b,
x′, x′′ ≥ 0.

To formulate the next result, we need the following notation. Let verta denote the set of
vertices of the interval vector a ∈ IRm, that is,

verta =
{
a ∈ Rm | either ai = ai or ai = ai, i = 1, 2, . . . ,m

}
.

Also, card S will denote the cardinality of a finite set S, that is, the number of elements of S.

Theorem on the structure of the tolerable solution set [23]
Let Ai: be the i-th row of the interval matrix A. For the interval m×n-system of linear algebraic
equations Ax = b, the tolerable solution set Ξtol(A, b) can be represented in the form

Ξtol(A, b) =
n⋂
i=1

⋂
a∈vertAi:

{x ∈ Rm | ax ∈ bi},
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i. e., as the intersection of hyperstrips, the number of which does not exceed∑n
i=1 card vertAi:

and, moreover, does not exceed n · 2m.

The term “hyperstrip” in the formulation of this theorem is quite adequate and justified by
the fact that each of the inclusions ax ∈ bi for a ∈ Ai: is equivalent to the two-sided inequality

bi ≤ ai1x1 + ai2x2 + . . .+ aimxm ≤ bi,

which actually determines a “strip” between two hyperplanes in Rm. The theorem of Irene
Sharaya gives, in essense, a representation of the tolerable solution set in the form of a solution
set to a system of two-sided linear inequalities whose number is substantially smaller than
the total number of extreme (“vertex”) inequalities of the interval system, equal to 2m(n+1).
Overall, it follows from the above results that the tolerable solution sets for an interval system
of linear algebraic equations is a convex polyhedral set.
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Figure 7: United solution set for the interval system (11).

Example 1. As an illustrative example, we consider the interval linear system of equations(
[2, 4] [−2, 1]

[−1, 2] [2, 4]

)
x =

(
[−1, 2]

[−1, 2]

)
. (10)

Its united solution set and tolerable solution set are depicted at Fig. 6.
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Figure 8: Tolerable solution set for the interval system (11).

Example 2. An expressive three-dimensional example is provided by the interval system of
linear algebraic equations [2, 3] [−0.75, 0.65] [−0.75, 0.65]

[−0.75, 0.65] [2, 3] [−0.75, 0.65]

[−0.75, 0.65] [−0.75, 0.65] [2, 3]

x =

 [−2, 2]

[−2, 2]

[−2, 2]

 , (11)

which is a particular case of the test parametric system proposed by the author in [28]. Its
united and tolerable solution sets are shown in Figures 7–8, and they are visualized with the
use of the software packages IntLinInc3D [25].

Although the interval linear system of equations in the last example is square (m = n),
while general rectangular systems are most common in data fitting problems (with m 6= n), the
form of the solution sets in Figures 7–8 (and in Fig. 6 as well) is quite typical. They all are
polyhedral sets that are bounded by pieces of hyperplanes. But the tolerable solution set is also
convex, whereas the united solution set has only a convex intersection with each orthant of the
space Rm, and it can be non-convex as a whole (see details in [11, 15, 35]). Moreover, the united
solution set of interval linear systems with matrices of incomplete rank can be disconnected or
unbounded, which is very unnatural for identification problems and data fitting. Readers can
see specific examples in the manual for the software package IntLinInc3D [25].

The problem of solving systems of linear inequalities is known to have polynomial complexity
(see, for example, [21]). As a consequence, it follows from the Rohn theorem that in general
the recognition of the emptiness / non-emptiness of the tolerable solution set for interval linear
systems (as well as finding a point from it) is also a polynomially solvable problem. Answering
the same question for the united solution set is generally an NP-hard problem [9]. It is equally
intractable to obtain outer estimates (enclosures) of the united solution set.
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3.3 Boundedness of the tolerable solution set

To conclude this section, we give a simple and useful result on the tolerable solution set that
allows us to investigate whether it is bounded or unbounded, i. e., whether the tolerable solution
sets is finite in size or extends infinitely.

Recall that a set of vectors of a certain linear space is said to be linearly dependent if one of
the vectors in the set can be expressed as a linear combination of the others. If no vector in the
set can be expressed in this way, then the vectors are called linearly independent. An equivalent
definition: a finite set of vectors is said to be linearly dependent, if there exist scalars, not all
of which are zeros, such that the linear combination of the vectors with these scalars is equal
to zero vector.

Irene Sharaya’s criterion for boundedness of the tolerable solution set [24]
Let the tolerable solution set to an interval linear system Ax = b be nonempty. It is unbounded
if and only if the matrix A has linearly dependent noninterval columns.

The criterion of boundedness shows that the tolerable solution set is unbounded, in fact,
under exceptional circumstances, which are almost never fulfilled in practice, when working
with real-life interval data. That is, the tolerable solution set is mostly bounded.

4 The method of recognizing functional

The results from the previous section — the Rohn theorem and the structural theorem of Irene
Sharaya, in principle, provide tools for investigating the tolerable solution set and working with
it. In some situations, the first result is more convenient and preferable, while in other cases the
second result is more appropriate. Nevertheless, the representation of the tolerable solution set
through a system of linear inequalities has certain disadvantages. In particular, it is desirable
to investigate the tolerable solution set and work with it in terms of entire data intervals from
the problem statement, and not with their individual endpoints that have multiple occurrences
in the system of inequalities.

In this section of our work, we briefly present the known results on the tolerable solution
set published earlier in [29, 31, 35].

In the sequel, the classical interval arithmetic IR plays an important role. IR is an algebraic
system formed by the intervals x = [x,x ] ⊂ R so that the result of any arithmetic operation
“?” between the intervals is defined “by representatives”, as

x ? y =
{
x ? y | x ∈ x, y ∈ y

}
, ? ∈ {+ ,− , · , / }.

Expanded constructive formulas for interval arithmetic operations are as follows (see e.g. [11,
13, 15, 35]):

x + y =
[
x + y, x + y

]
,

x− y =
[
x− y, x− y

]
,

x · y =
[

min{xy,xy,xy,xy}, max{xy,xy,xy,xy}
]
,

x/y = x ·
[

1/y, 1/y
]

for y 63 0.

14



4.1 Derivation of the recognizing functional

The starting point for the further constructions is the following characterization of points from
the tolerable solution set (see e. g. [14, 24, 29]): for the interval system of linear algebraic
equations Ax = b, a point x̃ ∈ Rm belongs to the tolerable solution set Ξtol(A, b) if and only if

A · x̃ ⊆ b, (12)

where “ · ” is the interval matrix multiplication. The validity of this characterization follows
from the properties of interval matrix-vector multiplication and the definition of the tolerable
solution set. We transform the relation (12) into an analytical form.

First of all, we rewrite (12) as an equivalent system of componentwise inclusions. By
definition of the interval matrix-vector product

(A · x)i =
m∑
j=1

aijxj, i = 1, 2, . . . , n,

and then, instead of (12), we can write

m∑
j=1

aijxj ⊆ bi, i = 1, 2, . . . , n.

Each right-hand side of these inclusions may be represented as the sum of the midpoint mid bi
and the balanced (symmetric with respect to zero) interval

[
−rad bi, rad bi

]
:

m∑
j=1

aijxj ⊆ mid bi +
[
−rad bi, rad bi

]
, i = 1, 2, . . . , n.

Adding (−mid bi) to both sides of the above relations, we get

m∑
j=1

aijxj −mid bi ⊆
[
−rad bi, rad bi

]
, i = 1, 2, . . . , n.

But inclusion of an interval into the balanced interval
[
−rad bi, rad bi

]
is equivalent to the

inequality on the absolute value. So,∣∣∣∣∣
m∑
j=1

aijxj −mid bi

∣∣∣∣∣ ≤ rad bi, i = 1, 2, . . . , n,

which implies

rad bi −

∣∣∣∣∣
m∑
j=1

aijxj −mid bi

∣∣∣∣∣ ≥ 0, i = 1, 2, . . . , n.

Therefore,

Ax ⊆ b ⇔ rad bi −

∣∣∣∣∣mid bi −
m∑
j=1

aijxj

∣∣∣∣∣ ≥ 0, i = 1, 2, . . . , n.

Finally, we can convolve, over i, the conjunction of the inequalities in the right-hand side of
the logical equivalence obtained:

Ax ⊆ b ⇔ min
1≤i≤n

{
rad bi −

∣∣∣∣∣mid bi −
m∑
j=1

aijxj

∣∣∣∣∣
}
≥ 0.
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We thus arrive at the following result:

Theorem. Let A be an interval n×m-matrix and b be an interval n-vector. Then the expression

Tol (x,A, b) = min
1≤i≤n

{
rad bi −

∣∣∣∣∣ mid bi −
m∑
j=1

aijxj

∣∣∣∣∣
}

determines the mapping Tol : Rm × IRn×m × IRn → R, such that the membership of a point
x ∈ Rm in the tolerable solution set Ξtol(A, b) to the interval linear system of equations Ax = b
is equivalent to nonnegativity of the mapping Tol in the point x, i. e.

x ∈ Ξtol(A, b) ⇐⇒ Tol (x,A, b) ≥ 0.

The tolerable solution set Ξtol(A, b) to the interval linear systems is therefore the “level
set” (also called “Lebesgue set”){

x ∈ Rm | Tol (x,A, b) ≥ 0
}

of the mapping Tol . We call this mapping the recognizing functional of the tolerable solution
set, since the range of values of the mapping is the numerical set R, i. e., the real number line,1

and Tol “recognizes”, by means of the sign of its values, whether a point belongs to the solution
set Ξtol(A, b).

4.2 Properties of the recognizing functional

Below, we outline the main properties of the recognizing functional. Their detailed proofs can
be found in [29, 31, 35].

Proposition 1 The functional Tol is continuous over all variables.
The functional Tol is also Lipschitz continuous, i. e., continuous in a stronger sense.

This follows from the continuity of operations from which the expression for the recognizing
functional Tol is constructed.

Proposition 2 The functional Tol is concave with respect to x everywhere in Rm.

We remind the reader that a function is called concave if its graph lies no lower than any
straight line segment connecting two points of this graph.

Proposition 3 The functional Tol (x,A, b) is a concave polyhedral function, i. e., its hypo-
graph is a polyhedral set and its graph is made up of pieces of hyperplanes.

As an illustration, Fig. 9 depicts the graph of the recognizing functional of the tolerable
solution set for the interval system (10). It is clearly seen from the figure that the graph of the
functional Tol really has a polyhedral shape.

The form of the expression for the functional Tol obviously implies that the functional is
bounded from above:

Tol (x,A, b) ≤ min
1≤i≤n

rad bi,

since the subtracted absolute values are always nonnegative. In reality, even a stronger assertion
is true:

1In mathematics, a functional is a mapping defined on an arbitrary set and having a numeric range of values,
usually the set of real numbers R or complex numbers C.
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Figure 9: The graph of the recognizing functional
of the tolerable solution set to the system (10).

Proposition 4 The functional Tol (x,A, b) attains a finite maximum over the entire space
Rm.

Proposition 5 If Tol (x,A, b) > 0, then the point x belongs to the topological interior of the
tolerable solution set, i. e. x ∈ int Ξtol(A, b).

It should be clarified that any point of topological interior is a point of the set that be-
longs to it together with a ball (with respect to some norm) having the center at this point.
Consequently, points from the interior of the set are “robust” points of the set, that is, they
remain within this set even after their small “perturbations”. This fact often turns out to be
important for practice.

The statement, which in a sense is the inverse of the above property, is also true:

Proposition 6 Let the interval linear system of equations Ax = b be such that, for each index
i = 1, 2, . . . , n, either there exists at least one nonzero element in the i-th row of the matrix A
or none of the endpoints of the corresponding component of the right-hand side bi is zero. Then
the membership x ∈ intΞtol(A, b) implies the strict inequality Tol (x,A, b) > 0.

4.3 Solvability investigation

As a consequence of the above results, we can use the recognizing functional to investigate
whether the tolerable solution set is empty or non-empty. This can be done according to the
following scheme:
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For the interval linear system of equations Ax = b, we solve the unconstrained
maximization problem for the recognizing functional Tol (x,A, b), with respect to x.

Let U = maxx∈Rm Tol (x,A, b), and it is attained at a point τ ∈ Rm. Then

• if U ≥ 0, then τ ∈ Ξtol(A, b) 6= ∅, that is, the tolerable solution set
to the system Ax = b is not empty and τ lies in it;

• if U > 0, then τ ∈ intΞtol(A, b) 6= ∅, and the membership of the point τ
in the tolerable solution set is stable under small perturbations of A and b ;

• if U < 0, then Ξtol(A, b) = ∅, that is, the tolerable solution set
to the interval linear system Ax = b is empty.

Next, we answer the question of what is the meaning of specific numerical values of the
recognizing functional Tol.

As we have already seen, the criterion for the membership of a point x̃ in the tolerable
solution set is the inclusion (12):

A · x̃ ⊆ b.

It is not difficult to show that the reserve of this inclusion, that is, how strongly and with what
margin this inclusion is fulfilled, is determined precisely by the value of the functional Tol at
the point x̃ [27]. One can say that the values of the recognizing functional give a quantitative
measure of the compatibility of the point x̃ and the data of the interval linear system, A and
b, with respect to its tolerable solution set.

5 Maximum compatibility method:

the “strong version”

5.1 Formulation

The results of the previous section can be used as a basis for the approach to computing
such solutions to the data fitting problem under inaccuracy and uncertainty that satisfy the
requirement of strong compatibility between data and parameters.

In accordance with the plan outlined at the end of Section 1 of our work, we need to
introduce a “measure of strong compatibility / incompatibility” between parameters and data.
It is clear that, for a non-empty tolerable solution set, it must be positive for points from this
set, on which the “strong compatibility” is actually achieved. For points outside the tolerable
solution set, on which there is no “strong compatibility”, it can be negative. Recalling the
properties and meaning of the recognizing functional Tol presented in Section (4), we can see
that it is very suitable for the role of the compatibility measure. In particular, Propositions 5–6
show that Tol distinguishes the boundary and interior of the tolerable solution set.

If the interval data of the data fitting problem is specified by the interval matrix X = (xij
and vector y = (yi), then we have to construct the recognizing functional of the tolerable
solution set for the interval system of linear equations Xβ = y, that is,

Tol (β,X,y) = min
1≤i≤n

{
rad yi −

∣∣∣∣∣ mid yi −
m∑
j=1

xijβj

∣∣∣∣∣
}
,

which should serve as the “strong compatibility measure” between the data X, y and the
parameters β.
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The above motivates the following method for estimating the parameters of a linear func-
tional dependence from inaccurate data, which we will call the “strong version” the maximum
compatibility method or simply the maximum compatibility method for brevity:

As an estimate β? of the parameters of the linear function (1), we take

the point where the maximum of the recognizing functional Tol is reached
.

In mathematical terms,
β? = arg max

β∈Rm
Tol (β,X,y).

As a consequence of the theory of Section 3,

I if max Tol ≥ 0, then the argument of the maximum lies in the set
of parameters strongly compatible with the data;

I if max Tol < 0, then the set of parameters having strong compatibility
with the data is empty, but the argument of the maximum minimizes
the incompatibility (inconsistency) between the parameters and data.

The usual (“weak”) version of the maximum compatibility method developed earlier in
the works [10, 32, 33, 37, 38] is based on similar ideas. We need to maximize a measure of
compatibility between the data and the parameters of the function, which is also expressed by
means of some recognizing functionals, called Uni and Uss.

x

y

Figure 10: Expanding the data uncertainty boxes along
the output variables leads to the strong compatibility.

5.2 Interpretation of the maximum compatibility method

Yet another interpretation of the maximum compatibility method in the case of the empty
solution set Ξtol(X,y) can be, for example, as follows: estimate of the parameters, i. e., the
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argument on which max Tol is reached, is the first point that appears in the nonempty tolerable
solution set after the uniform widening of the right-hand side vector with respect to its midpoint.

In fact, let us consider the expression for the recognizing functional Tol:

Tol (β,X,y) = min
1≤i≤n

{
rad yi −

∣∣∣∣∣ mid yi −
m∑
j=1

xijβj

∣∣∣∣∣
}
.

The quantities rad yi enter, as summands, in all expressions over which we take min1≤i≤n when
calculating the final value of the functional. Therefore, if we denote

e =
(
[−1, 1], . . . , [−1, 1]

)>
,

then, for the interval system Xβ = y + Ce with a widened right-hand side, we have

Tol (β,X,y + Ce) = Tol (β,X,y) + C,

since all the radii of the right-hand side components become equal to rad yi+C, i = 1, 2, . . . , n.
Consequently,

max
β

Tol (β,X,y + Ce) = max
β

Tol (β,X,y) + C.

Expansion of the interval relative to the center is, actually, an increase in its uncertainty
with the invariable value of the most representative point of the interval, its midpoint. As we
can see, argument of the maximum of the recognizing functional is really the most promising
one, if we consider it from the point of view of the variation in the accuracy of the output
interval data.

5.3 The maximum compatibility method
generalizes Chebyshev data approximation

In the limit case where there is no interval uncertainty in our measurements and we have usual
point data, any good interval method should turn into a reasonable data fitting method for such
data. The strong version of the maximum compatibility method, like the weak one, coincides
with the so-called Chebyshev data smoothing, which has long been successfully applied to data
processing (see, for example, [18]).

In fact, if the data matrix X and the data vector y are point (non-interval), i. e. X = X =
(xij) and y = y = (yi), then for all i, j

rad yi = 0, mid yi = yi, xij = xij.

Then the recognizing functional of the solution set (which is both united and tolerable simul-
taneously) takes the form

Tol (β,X, y) = min
1≤i≤n

{
−
∣∣∣∣ yi − m∑

j=1

xijβj

∣∣∣∣
}

= − max
1≤i≤n

∣∣∣∣ yi − m∑
j=1

xijβj

∣∣∣∣
= − max

1≤i≤n

∣∣ (Xβ)i − yi
∣∣ = −‖Xβ − y ‖∞ .

Here ‖ · ‖∞ denotes the Chebyshev norm of a vector in the finite-dimensional space Rn, which
is defined as

‖z‖∞ = max
1≤i≤n

|zi|
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(it is also called ∞-norm, uniform norm, or maximum norm). Therefore,

max Tol (β) = max
β∈Rm

(
−‖Xβ − y ‖∞

)
= − min

β∈Rm
‖Xβ − y ‖∞,

as long as max (−f(β)) = −min f(β). Thus, the maximization of the recognizing functional
is equivalent in this case to minimization of the Chebyshev norm of the residual, i. e., of the
difference between the left-hand and right-hand sides of the equation system.

5.4 Bounded variance of the strong compatibility estimates

From a practical point of view, a strong version of the maximum compatibility method is more
favorable for the solution of the data fitting problem with “overlapping” uncertainty boxes. The
strong version allows to obtain a reasonable and bounded set of alternatives in such complex
cases when the uncertainty boxes intersect each other.

x

y

Figure 11: The intersection of boxes may result in total indeterminacy of the angular
coefficient of the line passing through the boxes in the sense of “weak compatibility”.

Let us consider the situation when two uncertainty boxes intersect so that their intersection
is solid, i. e., it is a box whose width is non-zero in each dimension, as shown at Fig. 11. Then,
within this solid intersection, we can always take two points from the uncertainty boxes that
have arbitrary mutual position, so that the straight line y = β0 +β1x passing through them will
have the angular coefficient β1 equal to any real number (or infinity as well). As a consequence,
the set of parameters (β0, β1) compatible, in the sense of Definition 1, with the data from Fig. 11
is unbounded.

At the same time, the tolerable solution set for interval linear systems with essentially
interval matrix should be bounded, which follows from the Irene Sharaya boundedness criterion
(see Section 3.3). Therefore, the set of parameters strongly compatible with the data (i. e., in
the sense of Definition 2) is bounded for the case depicted at Fig. 11. This helps to reduce
indeterminacy and ambiguity in estimating the parameters of the functional dependence, that
is, to choose the solution more definitely from a narrow collection of alternatives rather than
from an unbounded set.

These ideas can be given a different form. The important concepts of variance and standard
deviation are known to be one of the main characteristics of statistical estimates obtained
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using the methods of probability theory (see e. g. [3]). They characterize the dispersion or
variability of the estimate, or, put it differently, its possible range of values. The analog of
the variance and standard deviation in the statistics of interval data can be the size of the
set of parameters compatible with the data, i. e. the size of the corresponding solution set to
an interval equation system constructed from measurement data. Computation of enclosures
of the solution sets to interval systems of equations can be performed using interval methods
described in [11, 13, 15, 20, 35].

The relation (9), i. e., the property that the tolerable solution set is always included in
the united solution set can be interpreted as the fact that estimates in the sense of ordinary
weak compatibility always have a greater “variance” than estimates in the sense of strong
compatibility. In addition, the “variance” of the strong compatibility estimates is almost always
finite, as follows from Irene Sharaya’s criterion of boundedness of the tolerable solution set (see
Section 3.3).

The above phenomenon is, in effect, a manifestation of the so-called “regularizing properties”
of the tolerable solution set for interval systems of equations. It turns out that the tolerable
solution set is the “most stable” among all the solution sets to the interval system of linear
equations, which is discussed in detail in [36].

5.5 Strong compatibility and the Demidenko paradox

The “Demidenko paradox” is a paradoxical statement about the properties of the solution to
the data fitting problem under interval uncertainty, first noted by E.Z. Demidenko in [4] (see
also [10, 32, 37]). Its essence can be expressed by the phrase “the worse, the better”. More
precisely, the wider the intervals of data uncertainty, i. e., the more uncertainty they represent,
the easier it is to draw through them the graph of the constructed function.

x

y

?

x

y

Figure 12: Wide uncertainty boxes enable us to construct many models compatible with
the data. For narrow uncertainty boxes, a model compatible with the data may not exist.

Data uncertainty is undesirable because it distorts the true picture of reality. Therefore,
reducing uncertainty, that is, reducing the size of data uncertainty boxes, is a boon that should
be welcomed in practice. On the other hand, for wider intervals of data, the united solution set
of the interval equation system built from this data is also wider and, therefore, there are more
opportunities to select model parameters from it, than for the case of narrow interval data.
Thus, the higher the accuracy of the data, the lower the interval uncertainty and the worse it
is to estimate the parameters. Conversely, the wider the interval uncertainty and the worse we
know the exact values of the measured variables, the better the parameter estimation process
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and the richer the set of results that can be obtained. This situation is depicted in Fig. 12
where the uncertainty intervals at the right picture are obtained by contracting the intervals of
the left picture. At the same time, the opportunity to draw a straight line passing through all
uncertainty boxes is lost.

There are two basic ways to overcome the Demidenko paradox. The first one is based
on the assumption that the intervals of the data adequately represent the boundaries of the
measurement errors, so that the reduction of their width-uncertainty is positive. Hence, the
impossibility to choose the model parameters compatible with these interval data (where the
solution set of the interval equation system is empty) indicates the inadequacy of the model used
to describe the object. As a result, the model must be changed, and the process of parameter
estimation repeated using another model.

The second way assumes that the uncertainty intervals of the data do not represent exactly
the set of possible values of the corresponding variables. Therefore, one does not have to obtain
full compatibility with the experimental data for the selected model of the object. As in the
traditional case of noisy point (noninterval) data, a certain incompatibility (inconsistency) is
acceptable, and then the problem of minimizing this incompatibility needs to be solved. Yet
another situation where one has to go this way stems from the need to retain the selected
model, form of the functional dependence between the considered variables about which it is
a priori known that “this must be the case”. Following this way, one has to select a numerical
“incompatibility measure” between the data and model parameters. Then, for example, a point
of the parameter space where the incompatibility (inconsistency) is minimal can be taken as
the desired estimate.

Anyway, the Demidenko paradox is not fully applicable to the situation of strong com-
patibility between parameters and data, since the tolerable solution set, when changing data
intervals, behaves quite differently from the united solution set.

As we already noted in Section 3.1, the tolerable solution set shrinks as the width of the
intervals in the matrix of the equation system increases. Then, it becomes more difficult
to construct a straight line that passes through the uncertainty boxes in the strong sense of
Definition 2. This fact is well understood intuitively, from the consideration of Fig. 4 and Fig. 5
in which the widths of the boxes grow along the axis Ox. Thus, here we are in a situation
where the increase of interval uncertainty at the input leads to the similar deterioration in
the solution of the problem (it becomes more difficult to choose the desired function). The
Demidenko paradox does not work.

6 Implementation

The theory developed in the preceding sections will be practical and really useful only if we
have at our disposal effective methods for finding the maximum of the recognizing functional
of the tolerable solution set, i. e., max Tol . The properties of the recognizing functional are
considered in Section 4, and they are favorable for applying efficient numerical optimization
methods.

In the general case, the problem of computing max Tol is the problem of unconstrained
maximization of a concave non-smooth objective function. Its solution can be found by non-
smooth optimization methods, which many researchers have been intensively developing for
several decades. We successfully used the algorithms designed by N.Z. Shor and his co-workers
in Kiev (see [39, 40]).

For the last years, the author freely circulates the program tolsolvty, accessible from
the website “Interval analysis and its applications” — http://www.nsc.ru/interval (sec-
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tion “Software”, subsections “Some interval programs on Scilab” or “Some interval programs
on Matlab”). The program is designed to numerically determine the unconditional maxi-
mum of the recognizing functional Tol and uses, as a basis, the code ralgb5 developed by
P.I. Stetsyuk (Institute of Cybernetics of the National Academy of Sciences of Ukraine; see
the article [41] specially devoted to this algorithm). In fact, tolsolvty is a very good and
time-tested implementation of the maximum compatibility method in the “strong sense” that
can be recommended for solving practical problems. Under the name TOLSOLVTY2, the inter-
national version of this program is also uploaded to the author’s page of ResearchGate (see
https://www.researchgate.net).

Recently, it has become possible to use the separating planes methods to find the maximum
of the recognizing functional Tol. These methods were proposed by E.A. Nurminski [16] and
further developed and adapted by E.A. Vorontsova [42, 43]. The free program tolspaclip for
maximizing the recognizing functional Tol that implements the separating planes method with
additional clipping is posted on the website “Interval Analysis and its Applications”. It is
intended for the same purposes as tolsolvty and has approximately the same functionality.

7 An example

As a specific illustrative numerical example, we construct a homogeneous linear dependence of
the form

y = y(x1, x2, x3) = β1x1 + β2x2 + β3x3 (13)

from the observation data presented in the following table:

Observation x1 x2 x3 y

#1 [11, 12] [13, 14] [15, 16] [18, 22]

#2 [21, 22] [23, 24] [25, 26] [28, 32]

#3 [31, 32] [33, 34] [35, 36] [38, 42]

#4 [41, 42] [43, 44] [45, 46] [48, 52]

(14)

To determine the coefficients β1, β2, and β3, we have to consider the interval linear 4×3-system
of equations 

[11, 12] [13, 14] [15, 16]

[21, 22] [23, 24] [25, 26]

[31, 32] [33, 34] [35, 36]

[41, 42] [43, 44] [45, 46]


 β1
β2
β3

 =


[18, 22]

[28, 32]

[38, 42]

[48, 52]

 (15)

The united solution set to the system (15) is unbounded (see Fig. 13), and the usual compat-
ibility between data and parameters (in the sense of Definition 1) leads to a large indeterminacy
in the choice of parameters we can take for the linear function (13). Obviously, most of the
triples (β1, β2, β3)

> that are present in the unbounded solution set will not have a physical
meaning due to their large values. In essence, we have here a situation with “infinite variance”
of the estimate described earlier in Section 5.4.

At the same time, the tolerable solution set to the system (15), depicted at Fig. 14, is
bounded.2 It provides us with quite a limited collection of values for the coefficients of the
linear function (13).

2Again, the pictures of the solution sets are produced by the package IntLinInc3D [25].
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β1
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β3

Figure 13: The unbounded united solution set to the interval linear system (15).

The numerical results produced by the program tolsolvty (with all the stopping criteria
of the order 10−10) are the following:

max
β∈R3

Tol (β) = 0.375, and it is attained at the point

 −1.125

4.4 · 10−12

2.125

 . (16)

Then the best fit linear function (13) for the interval data (14) should be

y = −1.125x1 + 4.4 · 10−12 x2 + 2.125x3.

We may see that the second coefficient is almost zero, and Fig. 14 shows that the second
component of points from the tolerable solution set is relatively small and varies around zero.
One can even construct an inner interval box within the tolerable solution set, taking the point
(16) as its center and using the methods described in [14, 29, 31, 35]:[−1.1278409,−1.1221591]

[−0.0028409, 0.0028409]

[2.1221591, 2.1278409]

 .

The above indicates a low significance of this coefficient in the linear function (13). If we were
to consider a real problem, then the corresponding factor, perhaps, should be recognized in no
way influencing the phenomenon we are studying.

8 Generalizations

Let us imagine a situation where, in some measurements, strong compatibility of parameters
with the data is required, while the usual “weak” compatibility is sufficient in the other mea-
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Figure 14: The tolerable solution set to the interval linear system (15).

surements. In formal mathematical language, this means that the logical quantifiers “∀” are
applied to a part of the input variables xij’s, and the logical quantifiers “∃” are applied to the
other part of xij’s in formula (7).

Then, instead of the united or tolerable solution sets, we naturally arrive at the solution
sets in which quantifiers of different meanings acting on different input variables are intermixed.
These are the so-called “quantifier solution sets” for the interval system of equations constructed
from the data of the problem (see e. g. [30, 26]). It can be shown that, in fact, the most general
quantifier solutions do not arise in this situation, and we will have to do with their particular
case, the so-called AE-solutions of the interval systems of equations [30, 35].

For AE-solution sets, it is also possible to construct “recognizing functionals” having prop-
erties that are analogous to the properties of the functional Tol for the tolerable solution set.
This work has been done in [27], where the general recognizing functionals are constructed
based of the idea of considering the “reserve” of the so-called characteristic inclusion for the
corresponding AE-solution sets. These functionals can serve to measure the degree of com-
patibility (consistency) between parameters and data in the case of more general requirements
on the solution. Having found the unconditional maximum of such a recognizing functional,
we obtain the point at which the maximum of compatibility is achieved, and this point can
be taken as the desired estimate of the parameters. That is the general scheme for solving
the problem, which, of course, needs to be specified and supplied with efficient computational
algorithms.

9 Conclusions

In data fitting problems under interval uncertainty, it is necessary to distinguish between differ-
ent types of compatibility (consistency) between interval data and parameters of the constructed
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functional dependence. In particular, it makes sense to introduce the concepts of “strong” and
“weak” compatibility of data and parameters that correspond to the different roles of input
(predictor) variables and output (criterion) variables in the measurement process.

The maximum compatibility method is a promising method for parameter identification
and data fitting under interval uncertainty, which is based on maximizing the recognizing
functional of the solution set for the problem. It is a generalization of the Chebyshev data
approximation and can serve as a good alternative to traditional methods of regression analysis
using probabilistic models of data errors. In this paper, a modification is suggested for the case
of “strong” compatibility (consistency) between parameters and data.

The strong version of the maximum compatibility method has several advantages over the
usual “weak” version. First, strong compatibility estimates have a polynomial computational
complexity. Second, these estimates are robust and their variance is finite. Third, the strong
compatibility estimation is only partially subject to the “Demidenko paradox”, being in better
agreement with the intuitive understanding of the meaning of estimates in interval data fitting.

An interesting open question: what is the probabilistic interpretation of the maximum
compatibility method for the “strong case”?

For the case of weak compatibility between parameters and data, a probabilistic interpre-
tation of the maximum compatibility method was given in the work [10]. It was shown that
the estimates produced by the maximum compatibility method coincide with those obtained
from the maximum likelihood method for uniform distributions over data intervals. It would
be extremely useful to derive a similar result for the strong compatibility.
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