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I. Interval linear systems

and their solvability



Interval linear systems of equations































a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,
... . . . ...

am1x1 + am2x2 + . . . + amnxn = bm,

or, briefly,

Ax = b

with an interval m× n-matrix A = (aij) and m-vector b = ( bi).



Interval systems of linear equations

Ax = b

— a family of point linear systems Ax = b with A ∈ A and b ∈ b.

Solution set

to the interval system of linear equations is

Ξ(A, b) =
{

x ∈ R
n | (∃A ∈ A)(∃ b ∈ b)(Ax = b )

}

Also united solution set . . .



Solvability of interval equations

= nonemptyness of the solution set, i. e. Ξ(A, b) 6= ∅

Strictly speaking, there are strong solvability and weak solvability . . .

In general, recongnition of the solvability is NP-hard

Anatoly V. Lakeyev — 1993

Vladik Kreinovich

Jǐri Rohn



Example: Hansen system





[2,3] [0,1]

[1,2] [2,3]



x =





[0,120]
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Example: almost disconnected solution set





[2,4] [−1,1]

[−1,1] [2,4]



x =





[−3,3]

0
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Example: “bobtail cat”
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[0.8,1.2] [0.8,1.2] 1

[0.8,1.2] [1.8,2.2] 1

[0.8,1.2] [2.8,3.2] 1

[1.8,2.2] [0.8,1.2] 1

[1.8,2.2] [1.8,2.2] 1

[1.8,2.2] [2.8,3.2] 1

[2.8,3.2] [0.8,1.2] 1

[2.8,3.2] [1.8,2.2] 1

[2.8,3.2] [2.8,3.2] 1
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[1,3]

[2,4]

[3,5]

[2,4]

[3,5]

[4,6]

[3,5]

[4,6]

[5,7]











































IntLinInc3D package by Irene A. Sharaya

http://www.nsc.ru/interval/Programing

http://www.nsc.ru/interval/sharaya



Example: one row

x3

x2 x1

(

[1.8,2.2] [2.8,3.2] 1
)

x =
(

[4,6]
)

IntLinInc3D package by Irene A. Sharaya

http://www.nsc.ru/interval/Programing

http://www.nsc.ru/interval/sharaya



II. Recognizing functionals

of the solution sets



Characterization of points from the solution set

x ∈ Ξ(A, b) ⇔ Ax ∩ b 6= ∅

— Beeck characterization

for the solution set to interval linear systems.

Beeck H. Über die Struktur und Abschätzungen der Lösungsmenge

von linearen Gleichungssystemen mit Intervallkoeffizienten //

Computing. –1972. – Vol. 10. – P. 231–244.



Characterization of points from the solution set

Testing Beeck characterization amounts to recognition whether Ax and b

intersect with each other

Ax

b

Ax

b

— intersection measure is an analog of the defect



Characterization of points from the solution set

a ∩ b 6= ∅ ⇔ |mid a−mid b| ≤ rad a+ rad b

R

rad a
rad b

|mid b−mid a|

a
b

This is why

Ax ∩ b 6= ∅ ⇔ rad(Ax)i + rad bi −
∣

∣

∣mid(Ax)i −mid bi

∣

∣

∣ ≥ 0,

i = 1,2, . . . ,m.



Compatibility measure for interval linear systems

As the “compatibility / consistency measure”, we can take

min
1≤i≤m

{

rad(Ax)i + rad bi −
∣

∣

∣mid(Ax)i −mid bi

∣

∣

∣

}

To simplify the expression, we notice that

mid(Ax) = (midA) x rad(Ax) = (radA) |x|,



Recognizing functional of the solution set

Theorem

Let A be an interval m×n-matrix and b be an interval m-vector. Then the

expression

Uss (x,A, b) = min
1≤i≤m







rad bi +
n
∑

j=1

(rad aij) |xj| −

∣

∣

∣

∣

∣

∣

mid bi −
n
∑

j=1

(mid aij) xj

∣

∣

∣

∣

∣

∣







defines such a functional Uss : Rn → R that the membership of a point x ∈ R
n

in the solution set Ξ(A, b) to the interval linear system Ax = b is equivalent

to non-negativity of the functional Uss at x,

x ∈ Ξ(A, b) ⇐⇒ Uss (x,A, b) ≥ 0.



Recognizing functional of the solution set

The solution set Ξ(A, b) to an interval linear system is a level set

{

x ∈ R
n | Uss (x,A, b) ≥ 0

}

of the functional Uss .

. . . by the sign of its values, the functional Uss “recognizes” (decides on)

the membership of a point in the set Ξ(A, b). This is why we use the term

“recognizing”



Properties of recognizing functional

Proposition 1

The functional Uss (x,A, b) is Lipschitz continuous.

Proposition 2

The functional Uss (x,A, b) is concave with respect to x in each orthant

of the space R
n.

If, in the interval matrix A, some columns are entirely non-interval,

then Uss (x,A, b) is concave within unions of several

orthants.

Proposition 3

The functional Uss (x,A, b) is polyhedral, i. e. its hypergraph is a polyhedral

set.



An example

Given the interval linear system





[2,4] [−1,1]

[−1,1] [2,4]









x1

x2



 =





[−3,3]

0



 ,

we have, for its solution set, . . .
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Properties of recognizing functional

Proposition 4

If the solution set Ξ(A, b) is bounded, then the functional Uss (x,A, b) attains

a finite maximum over the entire space R
n.

Proposition 5

If Uss (x,A, b) > 0, then x is a point from the topological interior int Ξ(A, b)

of the solution set.

Proposition 6

Let the interval linear system Ax = b be such that its augmented matrix

(A, b) does not contain rows all whose elements have zero endpoints.

Then the membership x ∈ intr
(

Ξ(A, b) ∩ O
)

, where O is an orthant

of the space R
n, implies the strict inequality Uss (x,A, b) > 0.



Solvability examination

for interval linear systems of equations

Given an interval linear system Ax = b, we solve unconstrained

maximization problem for the recognizing functional Uss (x,A, b).

Suppose U = maxx∈Rn Uss (x,A, b) and it is attained at a point τ ∈ R
n. Then

• if U ≥ 0, then τ ∈ Ξ(A, b) 6= ∅, i. e. the interval linear system Ax = b

is solvable and τ lies within the solution set;

• if U > 0, then τ ∈ intΞ(A, b) 6= ∅, and the membership of the point τ

in the solution set is stable under small perturbations of A and b ;

• if U < 0, then Ξ(A, b) = ∅, i. e. the interval linear system Ax = b

is unsolvable.



Correction of interval systems of equations

Uss (x,A, b) = min
1≤i≤m







rad bi +
n
∑

j=1

(rad aij) |xj| −

∣

∣

∣

∣

∣

∣

mid bi −
n
∑

j=1

(mid aij) xj

∣

∣

∣

∣

∣

∣







— the values rad bi occur additively in all the generators

Therefore, if

e =
(

[−1,1], . . . , [−1,1]
)⊤

,

then, for the system Ax = b+ Ce with a widened right-hand side, there holds

Uss (x,A, b+ Ce) = Uss (x,A, b) + C

max
x

Uss (x,A, b+ Ce) = max
x

Uss (x,A, b) + C



III. Data fitting

under interval uncertainty



Data fitting problem

Given an empirical data, we have to construct a functional relationship,

of a prescribed form, between “input” and “output” variables

We consider

b = x0 +
n
∑

i=1

aixi

with unknown coefficients xi that should be determined (estimated)

from the sets of values

a11, a21, . . . , an1, b1,

a12, a22, . . . , an2, b2,
... ... . . . ... ...

a1m, a2m, . . . , anm, bm



Data fitting problem

We get a system of equations































x0 + a11x1 + a12x2 + . . . + a1nxn = b1,

x0 + a21x1 + a22x2 + . . . + a2nxn = b2,
... ... . . . ...

x0 + am1x1 + am2x2 + . . . + amnxn = bm,

or, briefly,

Ax = b

with an m×(n+1)-matrix A = ( aij) and an m-vector b = ( bi).

Its solution, either common or in a generalied sense,

is taken as an estimate of the parameters x0, x1, . . . , xn



Data fitting problem for uncertain data

It is convenient to describe data uncertainty and inaccuracy by intervals

We are given intervals that enclose true values of the quantities under study,

i. e. memberships of aij and bi in some intervals,

aij ∈ aij = [aij,aij] and bi ∈ bi = [ bi, bi] ,

and these intervals include both random and systematic errors.

Leonid Kantorovich — 1962

F.C. Schweppe, P.L. Combettes, J.P.Norton,

M.Milanese, G. Belforte, L. Pronzato, E.Walter, L. Jaulin, . . .

M.L. Lidov, A.P. Voshchinin, S.I. Spivak, N.M.Oskorbin, S.I. Zhilin, . . .





Data fitting problem for interval data

A set of parameters x0, x1, . . . , xn of an object is consistent

with interval experimental data (ai1, ai2, . . . , ain, bi), i = 1,2, . . . ,m,

if, for every observation i, there exist such representatives ai1 ∈ ai1,

ai2 ∈ ai2, . . . , ain ∈ ain and bi ∈ bi that

x0 + ai1x1 + ai2x2 + . . .+ ainxn = bi .

a

b



Data fitting problem for uncertatin data

The set of parameters consistent with the data can be defined formally as

{

x ∈ R
n+1

∣

∣

∣

(

∃(aij) ∈ (aij)
)(

∃(bi) ∈ (bi)
)(

Ax = b
)

}

where A is an m×(n+1)-matrix having 1’s in the first column and aij’s

at the rest places, b = (bi), i. e., all x’s form solution set to interval linear

system of equations.

In data fitting theory, it is called parameter uncertainty set,

set of possible values of the parameters, information set, etc.



IV. Maximum consistency

method



Data fitting under intervally uncertainty

A general way:

1) we assign

a “consistency measure”,

2) we maximize it . . .

a

b

An estimate of the parameters is a point

that maximizes the “consistency measure”



Data fitting under intervally uncertainty

What “consistency / inconsistency measure” should we take?

� It must be positive (non-negative) for points from non-empty

information set, where the desired “consistency” takes place.

� At the boundary of a non-empty information set, it must be

no greater than in its interior.

� Outside the information set, it must be negative, signalling

on absence of the “consistency”.

The recognizing functional Uss suits for our purpose



Maximum Consistency Method

As an estimate of the parameters, we take a point

that provides maximum of the recognizing functional Uss

• If max Uss ≥ 0, the the point lies in the set of parameters

consistent with the data (i.e., in the information set).

• If max Uss < 0, then set of parameters consistent with the data

is empty, but the point minimizes inconsistency.



Maximum Consistency Method

A practical interpretation:

argmaxUss is the first point that appears in the solution set

in the course of uniform widening of the right-hand side vector

with respect to its midpoint, since

max
x

Uss (x,A, b+ Ce) = max
x

Uss (x,A, b) + C,

where e =
(

[−1,1], . . . , [−1,1]
)⊤



Maximum Consistency Method

Yet another practical interpretation:

argmaxUss gives parameters of a regression line that should be widened in

the smallest possible amount to produce a “regression strip” that intersects

all data boxes.

a

b



V. Practical implementation



Practical implementation

Overall efficiency crucially depends on efficiency of computing max Uss

In the general case, it is a global optimization problem

with non-smooth objective function

• global optimization methods for Lipschitz continuous functions

taking into account specificity of the functional Uss

• besides, Uss can be separately maximized in every orthant of R
n



An important particular case

— values of the input variables a are exact,

interval uncertainty is in the output variable b only



An important particular case

— values of the input variables a are exact,

interval uncertainty affects only the output variables b

The interval linear system

Ax = b

with a point matrix A = (aij), which leads to

Uss (x,A, b) = min
1≤i≤m







rad bi −

∣

∣

∣

∣

∣

∣

mid bi −
n
∑

j=1

aij xj

∣

∣

∣

∣

∣

∣







⇒ the recognizing functional Uss is globally concave



So, instead of
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— graph of the recognizing functional

for the solution set to the interval linear system
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x1
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 =













[−2,2]

[0,1]

[−1,0]













Exact input variables correspond to applicability conditions of the traditional

regression analysis, for which the most powerful results on the least squares

optimality have been obtained (Gauss-Markov theorem, etc.).



A practical implementation

In the case of point matrix A, maximization of Uss

can rely on the developed convex nonsmooth optimization techniques

(N.Z. Shor’s subgradient algorithms, etc.)

A Matlab code lintreg that implements maximum consistency method based

on the nonsmooth optimization algorithm ralgb5 by Dr. P. Stetsyuk (Institute

of Cybernetics, Kiev, Ukraine) is freely downloadable from

http://www.nsc.ru/interval

Russian web-site “ Interval Analysis and its Applications ”



Results and conclusions

� For interval linear systems, introduction of the recognizing

functional reduces the problem of solvability recognition

to a convenient analytical form.

� Maximum Consistency Method is a new and promising

technique for data processing under interval uncertainty

based on maximization of the recognizing functional.

It is going to be a good alternative to the traditional

Least Squares Method.



I appreciate your attention



VI. Maximum Consistency

vs

Least Squares

An example of the least squares failure



An example of the least squares failure

. . . an example by Irene A. Sharaya

where the least squares estimate

does not lie in the information set

Let a variable y ∈ R depends linearly on a variable x ∈ R, so that

y = αx+ β.

The unknown values of α and β should be determined from the results

of the following measurements

Measurement 1 2 3

x 0 1 2

y 1 2 −0.5



An example of the least squares failure

In the experiments,

• the variable x is measured without errors,

• for the variable y, the measurements produce intervals

such that

– their centers are given in the table,

– all their radii are equal to 1,

– the true value of y may be any number

from the interval (no probabilistic assumptions!)



An example of the least squares failure

Information set, i. e. the set of all the pairs α and β,

consistent with the measurements is described by the system











0 1

1 1

2 1















α

β



 ∈











1 + [−1,1]

2 + [−1,1]

−0.5+ [−1,1]











,

being intersection of three stripes in R
2:

(I) β ∈ [0,2],

(II) β ∈ −α+ [1,3],

(III) β ∈ −2α+ [−1.5,0.5].



α

β

(I)
(II)

(III)

1 2−1−2

1

2

3

−1

— information set is marked in green.

This is a triangle with the vertices (−1,2), (−0.5,1.5) and (−0.75,2)



An example of the least squares failure

The least squares estimate for α and β can be computed

from the normal equations system

(

0 1 2

1 1 1

)









0 1

1 1

2 1









(

α⋆

β⋆

)

=

(

0 1 2

1 1 1

)









1

2

−0.5









.

We have
(

5 3

3 3

)(

α⋆

β⋆

)

=

(

1

2.5

)

.

det

(

5 3

3 3

)

= 6,

(

5 3

3 3

)−1

=
1

6

(

3 −3

−3 5

)

,

so that the estimate is equal to
(

α⋆

β⋆

)

=
1

6

(

3 −3

−3 5

)(

1

2.5

)

=
1

6

(

−4.5

9.5

)

=

(

−3/4

19/12

)

=

(

−0.75

1.5833 . . .

)

.



α

β

(I)
(II)

(III)

1 2−1−2

1

2

3

−1

In the space of variables α and β, the LSQ estimate (red point)

does not lie in the information set (green triangle)



Comparison of the LSQ estimate with the set of regression lines

consistent with the data

x

y

1 2 3−1−2

1

2

3

−1

In the space of pairs (x, y), the straight line y = α⋆x+ β⋆ does not lie

in the set of all the lines passing through the data intervals



Maximal consistency estimate

max Uss = 0.125,

which means that the set of parameters

consistent with the data is not empty

The values of the parameters

argmax Uss =

(

−0.75

1.875

)

correspond to a green line inside the yellow tube at the picture



α

β

(I)
(II)

(III)

1 2−1−2

1

2

3

−1

. . . maximum consistency estimate

lies within the information set


