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I. Interval linear systems

and their solvability



Interval linear systems of equations
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or, briefly,

with an interval m x n-matrix A = (a;;) and m-vector b = (b;).



Interval systems of linear equations

Ax=0b
— a family of point linear systems Az = b with A€ A and b € b.

Solution set
to the interval system of linear equations is

Z(A,b) = {xGR" | (HAGA)(Hbeb)(Ax:b)}

Also united solution set . ..




Solvability of interval equations

— nonemptyness of the solution set, i.e. Z(A,b) = O

Strictly speaking, there are strong solvability and weak solvability . ..

In general, recongnition of the solvability is NP-hard

Anatoly V. Lakeyev — 1993
Viadik Kreinovich
Jiti Rohn



Example: Hansen system

2,3] 0,11\ [ [0,120)
1,2] 2,31 )\ [60,240]
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Example: almost disconnected solution set

2,4] [-1,11) [ [-33]
—1.1] 24 ) | o |1
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IntLinInc3D package by Irene A. Sharaya

http://www.nsc.ru/interval/Programing
http://www.nsc.ru/interval/sharaya




Example: one row

([1.8,2.2] [2.8,3.2] 1):1;:([4,6])

IntLinInc3D package by Irene A. Sharaya

http://www.nsc.ru/interval/Programing
http://www.nsc.ru/interval/sharaya



II. Recodgnizing functionals

of the solution sets



Characterization of points from the solution set

re Z(A,b) & AxNbF* o

— Beeck characterization
for the solution set to interval linear systems.

Beeck H. Uber die Struktur und Abschitzungen der Losungsmenge
von linearen Gleichungssystemen mit Intervallkoeffizienten //
Computing. —1972. — Vol. 10. — P. 231244



Characterization of points from the solution set

Testing Beeck characterization amounts to recognition whether Ax and b
intersect with each other

— intersection measure is an analog of the defect



Characterization of points from the solution set

anNb#*o & Imid a — mid b| <rada+radb

rad b

-

rad a

Imid b — mid a|

This is why

AzrNb# 2 < rad(Azx); +rad b, — | mid (Az); — mid b;| > 0,

1=1,2,...,m.



Compatibility measure for interval linear systems

As the “compatibility / consistency measure”, we can take

12}‘£‘m{ rad (Az); + rad b; — | mid (Az); — mid b,

j

To simplify the expression, we notice that

mid (Az) = (MidA) x rad (Ax) = (rad A) |z|,



Recognizing functional of the solution set

T heorem

Let A be an interval m xn-matrix and b be an interval m-vector. Then the
expression

n n
Uss (z, A, b) = 12inm{ rad b, + > (rad a;;) |z;| — | mid b; — > (mid a;;) z;

|

defines such a functional Uss : R™ — R that the membership of a point x € R"
in the solution set =Z(A,b) to the interval linear system Ax = b is equivalent
to non-negativity of the functional Uss at x,

x € Z(A,b) <— Uss (z, A,b) > 0.



Recognizing functional of the solution set

The solution set Z(A,b) to an interval linear system is a level set
{:1: € R" | Uss(x,A,b) > O}

of the functional Uss.

. by the sign of its values, the functional Uss “recognizes” (decides on)
the membership of a point in the set Z(A,b). This is why we use the term
“recognizing”



Properties of recognizing functional

Proposition 1
The functional Uss (x, A,b) is Lipschitz continuous.

Proposition 2

The functional Uss (x, A,b) is concave with respect to x in each orthant
of the space R".

If, in the interval matrix A, some columns are entirely non-interval,
then Uss (xz, A,b) is concave within unions of several
orthants.

Proposition 3

The functional Uss (x, A,b) is polyhedral, i. e. its hypergraph is a polyhedral
set.



An example

Given the interval linear system
[2,4] [—1,1] 1\ [—3, 3]
[—1,1] [2,4] ) \ o )

we have, for its solution set, ...



Values of the functional
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Properties of recognizing functional

Proposition 4

If the solution set Z(A,b) is bounded, then the functional Uss (x, A,b) attains
a finite maximum over the entire space R™.

Proposition 5

If Uss(x,A,b) >0, then x is a point from the topological interior int Z(A, b)
of the solution set.

Proposition 6

Let the interval linear system Ax = b be such that its augmented matrix
(A,b) does not contain rows all whose elements have zero endpoints.
Then the membership x € intr (E(A, b) N O), where O is an orthant

of the space R", implies the strict inequality Uss (xz, A,b) > 0.



Solvability examination
for interval linear systems of equations

Given an interval linear system Ax = b, we solve unconstrained
maximization problem for the recognizing functional Uss (x, A,b).

Suppose U = maX,rn Uss (z, A,b) and it is attained at a point 7 € R". Then

if U >0, then € Z(A,b) # @, i.e. the interval linear system Az = b
IS solvable and 7 lies within the solution set;

if U >0, then r€int=Z(A,b) # @, and the membership of the point 7
in the solution set is stable under small perturbations of A and b;

e if U<O, then 2(A,b) = @, i.e. the interval linear system Ax = b
IS unsolvable.



Correction of interval systems of equations

n

n
Uss(z,A,b) = 12inm{ rad b, + > (rad a;;) |z;| — | mid b; — > (mid a;;) z;

|

— the values rad b; occur additively in all the generators

T herefore, if
e = ([—1, 1],...,[-1, 1])T,
then, for the system Ax = b+ Ce with a widened right-hand side, there holds
Uss(x,A,b+Ce) = Uss(xz,A,b)+C

max Uss (z, A,b+ Ce) = mMax Uss (z,A,b) + C



III. Data fitting
under interval uncertainty



Data fitting problem

Given an empirical data, we have to construct a functional relationship,
of a prescribed form, between “input” and “output” variables

We consider

n
b = xg-+ Z a;T;
1=1

with unknown coefficients x; that should be determined (estimated)
from the sets of values

ai11, a»1, --., Qpil, b1,
ai2, a2, ..., Qp2, by,

A1m, A2m, ---5 QGnm, Om



Data fitting problem

We get a system of equations

i

xo+ aij1x1 + aipxo + ... + ayjprn = b1,

|
S
"

ro + a21T1 + a22x2 + ... + axnpTn

o + am1r1 + amox2 + ... + amnTn = bm,

\

or, briefly,

Ax = 0b

with an mx (n + 1)-matrix A = (a;;) and an m-vector b = (b;).

Its solution, either common or in a generalied sense,

IS taken as an estimate of the parameters zg, =1, ...

13377,



Data fitting problem for uncertain data
It is convenient to describe data uncertainty and inaccuracy by intervals

We are given intervals that enclose true values of the quantities under study,
I.e. memberships of a;; and b; in some intervals,

a;; € a;; = |a;5,a;4] and bi € b, = [b;,bi],
and these intervals include both random and systematic errors.

L_eonid Kantorovich — 1962
F.C.Schweppe, P.L. Combettes, J.P.Norton,

M. Milanese, G. Belforte, L. Pronzato, E. Walter, L. Jaulin, ...
M.L. Lidov, A.P.Voshchinin, S.I. Spivak, N.M. Oskorbin, S.I. Zhilin, ...



CHEHPCKHA MATEMATHYECKHA XY¥PHAN
Tom 111, MNe G Centabfipe — Ouradpp 1962 r.

d1. B. KAHTOPOBHY

O HEKOTOPBIX HOBBIX MOAXOAAX K BHIMHCITHTE/IbHBIM
METOILAM H OBPABOTKE HABJIOILEHHA *.

Hae,u,emle.

HMEHI.LIIIE MECTO CIABHIH B PA3RHTHH MATCMATHEHA H BLEIMHCANTEAR R X
CPeACTs MOMMHE HMETh CHACHCTBHEM KOpeHHbIC MAMEHEeHHWS B TeXHuke, a
BOSMOMKHO H TEOPHH YHCACHHKWX MeTofon W ofpaGorkw waGaioaenuid, B rolt
#an nuoft hopMe OTASABHEE BRCKAILIBACMEIE HHMKE COOOPAIKEHHA BCTPEYa-
JUCH B JIMTEPATYPE, HO He paspabaruiBANHCh CHCTeMaTHueckd. B uacthocTy,
Mbl CHHTAEM, YTO CYULECTBEHHO® 3HAYEHHE HMEIOT CAeLYIOULHE MOMEeHTH:

|. Bénpluas OTHETCTBEHHOCTH 34 PEayAbTATH PACUETOH, 114 KOTOPHIX
cefivac Hepeako GAIHPYIOTCH pPelleHHSN, KACAKUIHECHA CAOMHLX A0POrocTon-
WX 0fbeKTOB COBPEMEHHOH (DPHIMKH H TeXHHKM, Haanune OOJALIUMX HE HAa-
ﬁﬂJDAEEMHK Franos npd MallHHHBX BhIYHCAEHHAX NOBWISIOT TPEﬁﬂHHHHH
K HAAEHKHOCTH OKOHMATENLHEIX W NPOMEKYTOMHLIX J@HHKWX, MOAyYaemMulx B
npouecce NPUMEHEHHS YHCJCHHBIX MeTofos W npu ofipaforke HanHbIX HA-
Gmoaennit. 3to ofycnasnHBaeT CHCTEMATHMECKHA Nepexoa oT HOCTPOCHHA
ﬂp:l-lﬁ-JlHH[EHIIha.‘{ EH.Ell-IEIIHﬂ H 'pEEFJIhTﬂTﬂB, K I'I{IJ'I}"‘IEHHID TOUHBIX AHFIETD'
POHHHX FPAHHL AJA HCKOMBIX BeJHYHH HJH, eCAH FOBOPHTE O HEYHCJOBbLIX
pennunHax, obnacrefl pacnofloMeHHA HCKOMBX H HaO0AW0aeMuIX BeJHYHH;
HHaYE ropopd BOIHHKAST d3ajava BOIMOMHO fGoaee TOUHOMD ONHCAHWWH
pPACNONOMEHHA ITHX BEJHYHH B COOTBETCTBYWOLIHX NPOCTPAHCTBAX HX 3HA-
weunil, Huen teopufi nonyynopaioueHHEIX MPOCTPAHCTE W ONEpaliil B HMX,
a Takwke HEKOTOPHIX APYrHX abcTpakTHeIX cHeTreM OObEKTOB 130T onpene-
AEHHEYI TEODAETHUACHYIO 99y OAN DEgAHIAHHE STOH TOUKH INEHWHT.



Data fitting problem for interval data

A set of parameters zxzqg, 1, ..., xn Of an object is consistent
with interval experimental data (a;1, a;>, ..., a;,, b;), 1 =1,2,...,m,
if, for every observation iz, there exist such representatives a;1 € a;1,
app> € a;o, ..., a;p, € a;, and b; € b; that

xo + a;1x1 + appxo> + ... + a;pTn = 0b;.

A\




Data fitting problem for uncertatin data

The set of parameters consistent with the data can be defined formally as

{oe ™| (3(ay) € (@) ) (3 € ) ) (As=1) |

where A is an mx (n + 1)-matrix having 1's in the first column and a;;'s
at the rest places, b = (b;), i.e., all x's form solution set to interval linear

system of equations.

In data fitting theory, it is called parameter uncertainty set,
set of possible values of the parameters, information set, etc.



IV. Maximum consistency

method



Data fitting under intervally uncertainty

A general way: I

1) we assign
a ‘‘consistency measure’ |

2) we maximize it ...

An estimate of the parameters is a point
that maximizes the “consistency measure”



Data fitting under intervally uncertainty

What ‘“consistency / inconsistency measure” should we take?

¢ It must be positive (non-negative) for points from non-empty
information set, where the desired ‘consistency’” takes place.

¢ At the boundary of a non-empty information set, it must be
no greater than in its interior.

¢ Outside the information set, it must be negative, signalling
on absence of the *consistency' .

The recognizing functional Uss suits for our purpose



Maximum Consistency Method

As an estimate of the parameters, we take a point

that provides maximum of the recognizing functional Uss

e If max Uss > 0, the the point lies in the set of parameters
consistent with the data (i.e., in the information set).

e If max Uss < 0, then set of parameters consistent with the data
IS empty, but the point minimizes inconsistency.




Maximum Consistency Method

A practical interpretation:

arg max Uss is the first point that appears in the solution set
in the course of uniform widening of the right-hand side vector
with respect to its midpoint, since

mMax Uss (z, A, b+ Ce) = mMax Uss (z,A,b) + C,

where e = ([-1,1],...,[-1, 1])T



Maximum Consistency Method

Yet another practical interpretation:

arg max Uss gives parameters of a regression line that should be widened in
the smallest possible amount to produce a ‘regression strip’” that intersects

all data boxes.




V. Practical implementation



Practical implementation

Overall efficiency crucially depends on efficiency of computing max Uss

In the general case, it is a global optimization problem
with non-smooth objective function

o global optimization methods for Lipschitz continuous functions
taking into account specificity of the functional Uss

° besides, Uss can be separately maximized in every orthant of R"



An important particular case

— values of the input variables a are exact,

interval uncertainty is in the output variable b only

l |




An important particular case

— values of the input variables a are exact,
interval uncertainty affects only the output variables b

The interval linear system
Ar = 0b

with a point matrix A = (a;;), which leads to

N
1<:<m

Uss (x,A,b) = r<ni {rad b; —
<1

|

j the recognizing functional Uss is globally concave

n
mid bi — Z g5 Tj
=1
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we have
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— graph of the recognizing functional

for the solution set to the interval linear system

[ 3 —1) [ [-2,2]

~1 2 (ml)z [0, 1]
)

\ 12 \ [-1.0]

Exact input variables correspond to applicability conditions of the traditional
regression analysis, for which the most powerful results on the least squares
optimality have been obtained (Gauss-Markov theorem, etc.).



A practical implementation

In the case of point matrix A, maximization of Uss
can rely on the developed convex nonsmooth optimization techniques
(N.Z. Shor’s subgradient algorithms, etc.)

A Matlab code lintreg that implements maximum consistency method based
on the nonsmooth optimization algorithm ralgb5 by Dr. P. Stetsyuk (Institute
of Cybernetics, Kiev, Ukraine) is freely downloadable from

http://www.nsc.ru/interval

Russian web-site “Interval Analysis and its Applications”



Results and conclusions

¢ For interval linear systems, introduction of the recognizing
functional reduces the problem of solvability recognition
to a convenient analytical form.

¢ Maximum Consistency Method is a new and promising
technique for data processing under interval uncertainty
based on maximization of the recognizing functional.

It is going to be a good alternative to the traditional
Least Squares Method.



I appreciate your attention



VI. Maximum cConsistency
VS
Least Squares

An example of the least squares failure



An example of the least squares failure

. an example by Irene A. Sharaya
where the |least squares estimate
does not lie in the information set

Let a variable y € R depends linearly on a variable x € R, so that

y = ax + B.

The unknown values of a and 3 should be determined from the results
of the following measurements

Measurement 1 2 3




An example of the least squares failure

In the experiments,

e the variable z is measured without errors,

e for the variable y, the measurements produce intervals
such that

— their centers are given in the table,
— all their radii are equal to 1,

— the true value of y may be any number
from the interval (no probabilistic assumptions!)



An example of the least squares failure

Information set, i.e. the set of all the pairs o and g,
consistent with the measurements is described by the system

0 1 14 [—1,1]

1 1 (a>e 24+ [—-1,1] :
—0.5+[-1,1]

being intersection of three stripes in R2:

(1) Bel0,2],
(II} BE —O£—|—[1,3],
(II1) g€ —2a+ [-1.5,0.5].



— information set is marked in green.
This is a triangle with the vertices (—-1,2), (-0.5,1.5) and (—0.75,2)



An example of the least squares failure

The least squares estimate for « and g can be computed
from the normal equations system

)= =,
53 () =)
(3= (33 =2 7).

so that the estimate is equal to

() =65 2) (o) = 6 (55) = (sornz) = (12am... )

N = O
e

We have

W
W



In the space of variables a and 3, the LSQ estimate (red point)
does not lie in the information set (green triangle)



Comparison of the LSQ estimate with the set of regression lines
consistent with the data

| ///

In the space of pairs (x,vy), the straight line y = o™z + 8* does not lie
in the set of all the lines passing through the data intervals



Maximal consistency estimate

max Uss = 0.125,

which means that the set of parameters
consistent with the data is not empty

The values of the parameters

—0.75
arg max Uss =
1.875

correspond to a green line inside the yellow tube at the picture



... maximum consistency estimate
lies within the information set



