Общее собрание Сибирского отделения РАН

19 апреля 2012 г.

г. Новосибирск

О РАБОТЕ СИБИРСКОГО ОТДЕЛЕНИЯ РАН В 2011 г. И ЗАДАЧАХ НА 2012 г.:

- РЕЗУЛЬТАТЫ ФУНДАМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ
 И РАБОТ ПО ИНТЕГРАЦИОННЫМ ПРОЕКТАМ;
- ИННОВАЦИОННАЯ ДЕЯТЕЛЬНОСТЬ;
- РАБОТЫ В ИНТЕРЕСАХ ОБОРОНЫ И БЕЗОПАСНОСТИ.

академик А.Л. Асеев председатель Сибирского отделения РАН

МАТЕМАТИКА И ИНФОРМАТИКА

Новая методика численного моделирования упругопластических деформаций при воздействии взрывных нагрузок

Метание пластин осуществляется в результате детонации накрывающих слоев

Расчет в рамках упругопластической модели – моделирование гиперболических уравнений (ИМ). Цвет характеризует интенсивность пластической деформации

Область сварного шва при сварке двух пластин взрывом (эксперимент, ИГиЛ)

Расчет методом молекулярной динамики автоколебания кумулятивных струй (ИТПМ)

Универсальная библиотека PARMONC для распараллеливания трудоёмких приложений метода Монте-Карло (ИВМиМГ СО РАН)

Библиотека PARMONC (сокращение от **PARallel MONte Carlo**) предназначена для распараллеливания трудоёмких приложений метода Монте-Карло. При распараллеливании используется «естественная» крупноблочная фрагментированность алгоритмов метода Монте-Карло. Для получения независимых параллельных потоков базовых псевдослучайных чисел используется тщательно протестированный, быстрый и надежный длиннопериодный генератор. Число используемых в PARMONC вычислительных ядер практически не ограничено и зависит только от используемой ЭВМ.

Длина периода $L \approx 10^{38}$.

Формула длиннопериодного генератора псевдослучайных чисел и распределение параллельных потоков псевдослучайных чисел между ядрами

Система имитационного моделирования алгоритмов и структур с мелкозернистым параллелизмом WinALT (ИВМиМГ СО РАН)

Институт систем информатики им. А.П. Ершова СО РАН

- Разработан и реализован метод определения координат с высокой точностью для одночастотных приемников спутниковой навигации ГЛОНАСС/GPS при дополнительном использовании инерциальных датчиков (акселерометра, гироскопа, магнитометра). Для коррекции ионосферной задержки используются данные IONEX о состоянии ионосферы с международных серверов.
- Проведены полевые испытания разработанного метода для прибора спутниковой навигации Ublox Antaris LEA-6T и комплекса инерциальных датчиков IMU Sparkfun 9DOF. Достоверность полученных данных подтверждается параллельными измерениями на двухчастотном приемнике Trimble 5700.

Разработанный метод позволяет определять координаты с точностью менее 1 метра. Данный метод может широко применяться в области мобильной картографии, когда не надо сантиметровой точности в определении местоположения (например, для нанесения дороги на карту или ее строительстве достаточно точности 0,5 – 1 м), и целесообразно использовать дешевое оборудование. Разработана двухуровневая технология интеллектуальной поддержки принятия решений в исследованиях и обеспечении энергетической безопасности (ИДСТУ, ИСЭМ)

Интеллектуальная ИТ-среда

Практическое применение

Результаты проекта вклюсостав чены В программнорешения, технического поданного в Правительство Иркутской области и признанного Министерством СВЯЗИ и массовых коммуникаций РФ, как одно из пилотных решений для развития электронного правительства.

ФИЗИЧЕСКИЕ НАУКИ

Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН

Детектор КЕДР на е⁺е⁻ коллайдере ВЭПП-4М

Физическая программа

 Измерение масс и лептонных ширин очарованных мезонов (выполнено на 90 %)
 Измерение массы тау-лептона (выполнено)
 Двухфотонная физика (идет набор данных)

В период с 2002 по 2011 годы с детектором КЕДР на ВЭПП-4М проведена серия прецизионных экспериментов, в которых с лучшей в мире точностью измерены параметры семейства очарованных мезонов и тау-лептона.

В результате экспериментов с детектором КЕДР на е⁺е⁻ коллайдере ВЭПП-4М в таблицы свойств элементарных частиц Particle Data Group внесено **10 результатов**, имеющих лучшую в мире точность.

Институт ядерной физики им. Г.И. Будкера Сибирского отделения РАН

Стационарный источник отрицательных ионов водорода с током 25 мА

Приложения: Ядерная медицина Ускорительная техника Ядерная физика Термоядерный синтез Максимальный ток стационарных источников, функционирующих сегодня в мире - 15 мА (впервые получен в ИЯФ).

Получен рекордный для стационарных источников ток пучка отрицательных ионов 25 мА.

Свечение атомов (р ~ 10⁻² тор) при прохождении пучка ускоренных ионов Н⁻

Параметры пучка отрицательных ионов водорода

Энергия ионов, кэВ	32
Эмиссионная апертура, мм	5
Нормализованный эмиттанс, л. мм.мрад	< 0.5

Научный координатор: член-корреспондент РАН, д.ф.-м.н. В.В. Пархомчук Институты соисполнители ИЯФ им. Г.И. Будкера, ИГМ им. В.С. Соболева

Ускорительная масс-спектрометрия (УМС) органических образцов в ЦКП «Геохронология кайнозоя», интеграционный проект № 14

УМС основана на подсчете отдельных ионов С¹⁴ полученных из образца. Ускоритель нужен для подавления фона изобар С¹³Н С¹²Н₂ Были проведены измерения возраста донных осадков в озерах Шира и Телецком (Институт Геологии). Показано, что скорость накопления осадков около 0.5 мм/год. Проведена калибровка УМС по измерению содержания С¹⁴ в годовых кольцах старого дерева, исследованы раннее датированные образцы археологических находок в Новосибирской обл. Институт Археологии. Измерен возраст кости бизона 27000 лет найденной под ИЯФ, проведено исследования содержания С¹⁴ в годовых кольцах кольцах дерева в Академгородке.

Содержание С14 в образцах с известным возрастом. В «О» показан стандарт щавелевой кислоты с повышенным содержанием С14 (>1).

Проявление «бомбового пика» (увеличение концентрации С14 почти в 2 раза в 1965г) в годовых кольцах дерева, растущего в Академгородке (ул. Золотодолинская).

Для сравнения показаны уровни содержания углерода в атмосфере северного и южного полушария Земли.

Проект е+е- суперколлайдера – Чарм/тау фабрики в ИЯФ СО РАН

<u>Преимущества:</u>

Светимость на два порядка выше, чем у существующих и планируемых установок

- >Поляризация пучков в месте встречи
- >Широкий энергетический диапазон
- >Часть инфраструктуры существует

Фундаментальная физика:

 физика чармония и тау-лептона
 спектроскопия состояний из легких кварков

 физика очарованных барионов и мезонов

D-

 >измерение сечения е+е- → адроны
 >взаимодействие антинейтронов с веществом

>двухфотонная физика

Физическая программа Чарм/тау фабрики направлена, в основном, на поиск явлений, выходящих за рамки Стандартной модели, дополняет и обогащает программу поиска "Новой" физики, реализуемую на Большом адронном коллайдере

Чарм/тау фабрика - источник синхротронного излучения высокой яркости - создаст качественно новые условия для междисциплинарных исследований в Сибирском центре СИ

<u>Технологии, создаваемые и развиваемые</u> при реализации проекта, обладают высоким инновационным потенциалом и будут способствовать развитию всех приоритетных направлений науки и технологии РФ • Дубна (О́ИЯ́И) <u>Обсуждаются</u> <u>соглашения</u> с Англией, США, Израилем, Польшей и др. странами

Подписаны

Соглашения:

Италия (INFN)

• Япония (КЕК)

<u>Бюджет проекта – 17,4 млрд. рублей,</u> В том числе 13,1 млрд. руб. – требуемое бюджетное финансирование

Специализированный источник синхротронного Излучения четвертого поколения на основе многооборотного ускорителя-рекуператора (MARS) (мегапроект)

- Диапазон длин волн: *0.03 10 нм*
- Монохроматичность: $\Delta \lambda / \lambda \sim 10^{-4}$
- Полная пространственная когерентность
- Длительность импульса *0.1 1 пс*

Диапазон энергий: 5,6; 3,8, 3; 1,2 ГэВ 7 ондуляторов на 5,6 ГэВ 4 ондулятора на 3,8 ГэВ 4 ондулятора на 3 ГэВ 4 ондулятора на 1,2 ГэВ 30 каналов вывода излучения

Национальный гелиогеофизический центр на базе ИСЗФ СО РАН

Создание Центра одобрено решениям Президента и Правительства РФ

ИФРАКРАСНЫЙ ТЕЛЕСКОП АЗТ33-ИК

D=1,7 м, F=30 м Диапазон скоростей 0,1"/с-5'/с Относительное отверстие в кассегреновском фокусе 1:20

Оборудование АЗТЗЗ-ИК: -болометр ИК- диапазона (8-14 мкм); -камера ИК-диапазона (3,7-5,5 мкм) с ФПУ 256х256эл.;

-ПЗС-камера с ФПУ 1024х1024 эл.; -фотометр ИК-диапазона (1-5 мкм); -фотометр-поляриметр видимого диапазона;

-вакуумная станция

ТЕЛЕСКОП АЗТ-14А

D=0.5 м

V=0,25"/c-1,5°/c

λ=0,4-0,85 мкм

 $m_{R}=15 (10 c)$

Широкоугольная камера 1,5°х2,0°,

ТЕЛЕСКОП Цейсс-600

Астрофизический комплекс телескопов предназначен для контроля космического пространства и наблюдения за космическими объектами.

> Обеспечение оптической информацией по высокоапогейным космическим объектам. Получение специальных рядов некоординатной информации по КА в нештатной и аварийной ситуации.

D=0,6 м V=0,25"/c-0,5°/c λ=0,3-1,1 мкм ПЗС-камера 1040х1160рх, m_R=19 (3 мин)

Измерение параметров орбиты и отражательноизлучательных характеристик космических объектов на высотах от 200 км в видимом и ИК диапазонах спектра (0,3-25 мкм). Дистанционный контроль теплового состояния поверхности КА с ЯДУ. Контроль над развертыванием и пополнением стратегических группировок космических аппаратов специального назначения. Измерение физических характеристик и орбитальных параметров астероидов и комет, сближающихся с землей.

Институт лазерной физики СО РАН

В ИЛФ СО РАН впервые предложен революционный метод существенного (вплоть до трех порядков от своей величины) подавления сдвига частоты «часового» перехода в атоме или ионе, связанного с тепловым излучением окружающей среды (т.н. «blackbody radiation shift»). Метод основан на том, что в атомной системе с двумя часовыми переходами с частотами v_1 и v_2 существует некоторая «синтетическая» частота v_3 , которая весьма слабо зависит от окружающего теплового излучения. Например, для иона ¹⁷¹Yb⁺, оказалось возможным подавить тепловой сдвиг до уровня 10⁻¹⁸ в достаточно широком диапазоне комнатных температур (300±15 K). В настоящее время, в ИЛФ СО РАН совместно с Физико-техническим Институтом (РТВ, Брауншвейг, Германия) ведутся работы по созданию ¹⁷¹Yb⁺- оптического стандарта частоты со стабильностью 10⁻¹⁶ – 10⁻¹⁷

¹⁷¹Yb⁺ ионная ловушка и вакуумная система откачки.

γ ~ 2 Гц

 $\Delta v / v \sim 2 \cdot 10^{-16}$

v.I. Yudin, A.V. Taichenachev, M.V. Okhapkin, S.N. Bagayev, Chr. Tamm, E. Peik, N. Huntemann, T.E. Mehlstäubler, F. Riehle, "Atomic clocks with suppressed blackbody radiation shift", Phys. Rev. Lett., Vol. 107, 030801 (2011). Разработана схема стандарта частоты на основе ультрахолодных атомов магния в оптических решетках с относительной погрешностью ∆v/v < 10⁻¹⁶

Л1 -п/п накачка Nd:YVO4 914 нм/ГВГ Л2,Л3 - п/п лазер 766нм/ГВГ Л4 -п/п лазер 864 нм/ГВГ Л5 - п/п накачка Nd:LuVO4 916 нм/ГВГ

ИАиЭ, ИВТ, ИТПМ Координаторы: чл.-корр. РАН С. А. Бабин, проф. М. П. Федорук

Проект N42 «Разработка мощных волоконных лазеров и их применение для микрообработки...»

Энергия импульса при различных длинах резонатора

4.5

4

Установка по микрообработке

Основные результаты:

Автокорреляционная функция

чирпованного и сжатого

импульса

Впервые построена аналитическая модель фемтосекундного волоконного лазера и установлены причины ограничения энергии импульсов

Предложены способы увеличения энергии импульсов

>Получено эффективное удвоение и утроение частоты генерации импульсного волоконного лазера

УИмпульсные лазеры применены для прецизионной микрообработки Публикации: Квант. электр. 2009, Laser Phys. 2010, 2011, J. Opt. Soc. Am. B 2011, 2012 и др.

Физические основы электронно-пучковой наноструктуризации металлов и сплавов

Впервые продемонстрировано многократное (до 3,5 раз) повышение усталостной долговечности сталей аустенитного и мартенситного классов при обработке поверхности материала плотным низкоэнергетическим электронным пучком субмиллисекундной длительности и вскрыты физические механизмы этого явления, заключающиеся в измельчении зеренной и субзеренной структуры, растворении субмикронных и повторном выделении равномерно распределенных наноразмерных частиц карбидной фазы.

Импульсная электроннопучковая установка «СОЛО»

Метод может быть применен для обработки ответственных малоразмерных деталей, либо критических мест крупных деталей, работающих в условиях знакопеременных вибрационных или термомеханических нагрузок.

КВАНТОВЫЕ ТЕХНОЛОГИИ

Интеграционный проект № 67: первое наблюдение резонансного диполь-дипольного взаимодействия двух ридберговских атомов

Управляемое взаимодействие двух ридберговских атомов требуется для реализации квантовых компьютеров. Резонанс Фёрстера при диполь-дипольном взаимодействии холодных атомов Rb в начальном состоянии 37P_{3/2} достигался в электрическом поле 1,79 B/cм. В результате взаимодействия атомы переходили в конечные состояния 37S и 38S. Получены спектры S_N для N=1-5 зарегистрированных атомов. Спектры S₁ и S₂ соответствуют взаимодействию всего двух холодных ридберговских атомов в объеме возбуждения.

Интеграционный проект № 67: получение первого в России бозе-эйнштейновского конденсата (БЭК) атомов Rb

Свободное падение и разлет теплового облака с температурой 600 нК (слева) и БЭК с температурой 350 нК (справа) после выключения магнитной ловушки

> П.Л.Чаповский, Письма в ЖЭТФ, 2012, т.95, в.3, c.148-152.

БЭК из 10⁵-10⁶ атомов Rb был получен на основе нескольких последовательных стадий лазерного охлаждения в магнитооптической ловушке (до температуры ~200 мкК) и специальной магнитной ловушке с испарительным охлаждением (вплоть до температуры конденсации ~350 нК). Наблюдались три ключевых признака БЭК: 1) резкое возрастание фазовой плотности; 2) появление двух фракций в облаке атомов Rb; 3) анизотропный разлет БЭК при свободном падении конденсированных атомов.

Экспериментальная система для генерации квантового ключа в оптоволоконной линии связи (разработка ИФП СО РАН)

Длина оптической линии 25-50 км Частота лазерных импульсов 5 - 20 МГ Среднее число фотонов в импульсе 0,1 - 0,3 Квантовая эффективность 10 - 20% Скорость генерации ключа 1-10 кбит

25-50 км (*до100 км в перспективе*) 5 - 20 МГц 0,1 - 0,3 10 - 20% 1-10 кбит/с

В.Л.Курочкин, А.В.Зверев, Ю.В.Курочкин, И.И.Рябцев, И.Г.Неизвестный, Микроэлектроника, 2011, т.40, №4, с.264-273.

Детерминированное возбуждение одиночных ридберговских атомов на основе дипольной блокады и лазерных импульсов с чирпом частоты

I.I.Beterov et al., Phys. Rev. A, 2011, v.84, p.023413

отстройка

МЕХАНИКА И ЭНЕРГЕТИКА

В ИТПМ СО РАН впервые проведена лазерная сварка несвариваемых традиционными методами материалов и получена прочность до 400 МПа

Сварное соединение «титан – медь – сталь 12Х18Н10Т»

На рисунке представлена микроструктура различных участков сварного шва титан – медь – сталь. В центральной части наплавленного металла его микроструктура представляет композиционный материал, состоящий из медной матрицы и пластинчатых выделений, рис. *а*. В корневой части сварного соединения упрочняющие частицы представлены в двух морфологических формах: пластинчатые и округлые выделения, рис. *б*. Данный композиционный материал имеет повышенный уровень микротвердости по сравнению с титановым сплавом и сталью 12Х18Н10Т.

Наноструктурирование конструкционной стали для повышения ее эксплуатационных свойств

Диспергирование структуры стали при интенсивной деформации равноканальным угловым прессованием

ИСХОДНАЯ СТРУКТУРА

НАНОСТРУКТУРИРОВАННАЯ СТАЛЬ СРЕДНИЙ РАЗМЕР ЗЕРНА 10 мкм СРЕДНИЙ РАЗМЕР КАРБИДОВ ~60 нм

Повышение прочности, износостойкости стали в нано-, субмикрокристаллическом состоянии

Сохранение пластичности при снижении температуры испытания

Температура нопытаний	Хоподное РКУП	Хоподкое РКУП +ТО при 350° С	Хопациое РКУП +ТО при 450° С
+20° C	4	3	3
-40°C	2	4	3

К практическому применению сталей с нано-, субмикронной структурой

а

б

Изменение микротвердости в зоне реза (а), шпилька м10 (б), и механические свойства шпилек (в) в зависимости от структурного состояния стали 09г2с

Особенности развития переходных процессов при кипении в наножидкостях в условиях нестационарного тепловыделения

Зависимость скорости распространения парового фронта от температурного напора во фреоне-21 и наножидкости (фреон-21 + 0.1% мольн. наночастиц SiO₂, размер наночастиц-25 нм, модификация с гидрофильными свойствами)

Получены принципиально новые результаты по влиянию наноразмерных добавок в жидкости на динамику распространения самоподдерживающихся фронтов испарения при высокоинтенсивных набросах тепла.

Теоретические основы оперативного и противоаварийного управления интеллектуальными электроэнергетическими системами ИСЭМ – ФСК ЕЭС

Исследование перспектив обеспечения энергетической безопасности России ИСЭМ-МЭ

НАНОТЕХНОЛОГИИ

Интеграционный проект № 24 ИФП, ИЯФ, ИНХ

Впервые созданы ТГц метаматериалы с трехмерными элементами, обладающие с гигантской оптической активностью, круговым дихроизмом, отрицательным коэффициентом преломления. Дешевая массовая технология. Основа нового направления в передаче информации и в оптоэлектронике.

Сформировано семь новых прецизионных метаматериалов, которые

невозможно изготовить какой-либо другой известной технологией "In the specially assigned `breakthrough' talk Victor Prinz, Russian Academy of Sciences, introduced a novel class of metamaterials based on three-dimensional semiconductor nanostructures" J. Opt. A: Pure Appl. Opt. 11 110202 (2009)

Изменение структуры наноглобулярного углерода под воздействием высокоэнергетического облучения

Полученные материалы перспективны для создания аккумуляторов и суперконденсаторов

ЭМ-снимки фрагментов частиц образца Т900, образующихся после облучения пучком электронов с плотностью энергии 10 Дж/см² и 25 Дж/см²

ЭМ-снимки нанокапсул, образующихся после облучения образцов технического углерода пучком электронов с плотностью энергии 50 Дж/см² П 145 (слева) и П324 (справа)

Фазовое АСМ-изображение участка поверхности комплекта с мерой 18,53 нм (слева). Спектр высот меры (справа) демонстрирует множество пиков, соответствующих отдельным атомно-гладким террасам между моноатомными ступенями, - перепад высот между максимальными пиками составил величину 18,53 0,05 нм, что соответствует высоте 59 моноатомных ступеней на поверхности кремния (111).

Д.В.Щеглов, С.В.Ситников, С.С.Косолобов, А.В.Латышев

ISSN 0957-4484

VOLUME 23 NUMBER 9 9 MARCH 2012

Институт физики полупроводников СО РАН – лидер в исследовании нанотехнологий в России среди академических институтов (по данным www.portalnano.ru)

iopscience.org/nano

Featured article Quantum interferential Y-junction switch O A Tkachenko, V A Tkachenko, Z D Kvon, A L Aseev and J-C Portal

IOP Publishing