

Объединённый ученый совет СО РАН по физическим наукам

Отчет о деятельности бюро Объединенного ученого совета СО РАН по физическим наукам в 2015 году

Докладчик:

ученый секретарь Совета

к.ф.-м.н. А.В. Аникеев

ОТЧЕТ о деятельности бюро ОУС по ФН в 2015 г.

В 2015 году Постановлением СО РАН № 174 от 15.10.2015 был утвержден новый состав Объединенного ученого совета по физическим наукам. В него вошли 43 ученых из 13 научных организаций СО РАН. Из них:

Членов РАН	23
Директоров Институтов, не членов РАН	4
Представителей Институтов	15
По должности (уч. секретарь ОУС)	1

Объединенный ученый совет на своем заседании 3 декабря 2015 года избрал новый состав бюро ОУС, в который вошли 15 членов ОУС. Постановлением президиума СО РАН № 225 от 24.12.2015 новый состав бюро был утвержден.

Таким образом, на сегодняшний день состоялось всего 3 заседания Бюро ОУС по физическим наукам в обновленном составе (одно в 2015 и 2 в 2016 г.)

В докладе будет представлен отчет о деятельности как нового, так и предшествующего состава Бюро ОУС за период с января 2015 года по сегодняшний день.

ОТЧЕТ о деятельности бюро ОУС по ФН в 2015 г.

январь-февраль 2015 г.

Отбор и экспертиза важнейших достижений научных организаций СО РАН в области физики для направление материалов в доклад Правительству РФ об итогах реализации в 2014 г. Программы ФНИ государственных академий наук на 2013-2020 гг.

Формирование перечня проектов по физическим наукам, рекомендуемых к поддержке в рамках Комплексной программы СО РАН в составе программ Президиума РАН и тематических отделений РАН 2015 года.

март-апрель 2015 г.

Оценка результатов и экспертиза отчетов Институтов за 2014 год.

Подготовка и проведение собрания ОУС 17 марта 2015 года.

Утверждение состава редакционной коллегии журнала «Оптика атмосферы и океана». Кадровые вопросы (ходатайства о награждении, согласование кандидатур на выборы директора в ИЯФ СО РАН).

май-июль 2015 г.

Обсуждение программы развития Федерального исследовательского центра «Красноярский научный центр СО РАН».

Представление на премию им. академика В.А.Коптюга цикла научных работ коллективов ИФ СО РАН (г. Красноярск) и ГО "НПЦ НАН Беларуси по материаловедению" (Минск, Республика Беларусь).

Формирование нового персонального состава ОУС по физическим наукам (письмо председателя ОУС от 20.07.2015).

Кадровые вопросы (ходатайства о награждении, кандидатуры на выборы директора в ИСЗФ СО РАН).

ОТЧЕТ о деятельности бюро ОУС по ФН в 2015 г.

сентябрь-октябрь 2015 г.

Формирование предложений по кандидатурам экспертов по физическим наукам от СО РАН в Реестр экспертов РАН.

Кадровые вопросы (ходатайства о награждении, согласование кандидатур на выборы директора ИСЭ).

ноябрь-декабрь 2015 г.

Рассмотрение и согласование планов НИР и госзаданий Институтов на 2016 год.

Рассмотрение "наиважнейших" результатов исследований в 2015 году, рекомендуемых в доклад Президенту РФ (по п.1 РСО №15000-203 от 03.11.2015).

Обсуждение кандидатур на звание "Профессор РАН", выдвинутых членами РАН входящих в ОУС.

Проведении заседания Объединенного ученого совета (первое в обновленном составе) 3 декабря 2015 года.

Формировании нового состава Бюро ОУСа

Проведение конкурса на лучшее издание СО РАН по физическим наукам.

Рассмотрения вопроса о реформировании Красноярского научного центра СО РАН **январь-март 2016 г.**

Отбор и экспертиза важнейших достижений научных организаций СО РАН в области физики для доклада Правительству РФ об итогах реализации в 2015 г. Программы ФНИ государственных академий наук на 2013-2020 гг.

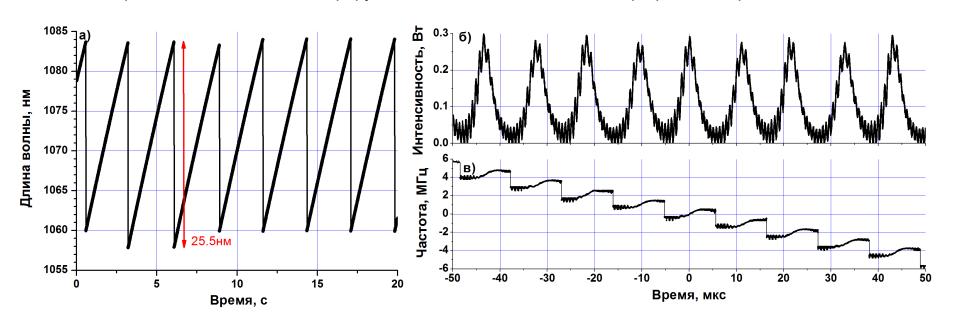
Формирование перечня проектов по физическим наукам, рекомендуемых к поддержке в рамках Комплексной программы СО РАН в составе программ Президиума РАН и тематических отделений РАН 2016 года.

Согласование отчетов Институтов по госзаданию за 2015 год в системе ФАНО.

Важнейшие результаты исследований Институтов в 2015 г., рекомендованные в доклад Президенту РФ

Одночастотный волоконный лазер с самосканированием частоты

И.А. Лобач, Е.В. Подивилов, С.И. Каблуков, С.А. Бабин


Продемонстрирован волоконный лазер с перестройкой частоты на новых физических принципах - за счет формирования в активной среде полем стоячей волны динамических пространственных решеток усиления и показателя преломления.

Достоинства:

- ✓ Отсутствие перестроечных элементов;
- ✓ Большой диапазон сканирования > 20 нм;
- ✓ Ширина спектра излучения <1 МГц;
- ✓ Линейная поляризация излучения;
- ✓ Связь фаз последовательно генерируемых мод.

Потенциальные применения:

- ✓ Опрос волоконных датчиков;
- ✓ Характеризация оптических компонент;
- ✓ Синтез коротких импульсов;
- ✓ Оптическая когерентная томография;
- ✓ Частотная рефлектометрия.

Долговременная динамика длины волны (а), динамика интенсивности (б) и соответствующая мгновенная динамика частоты генерации (в) в одночастотном волоконном лазере с самосканированием частоты.

Институт сильноточной электроники СО РАН

Мощные источники сверхширокополосного излучения

Созданы мощные источники сверхширокополосного излучения с мегавольтным эффективным потенциалом и частотой повторения импульсов 100 Гц на основе решеток комбинированных антенн, возбуждаемых биполярными импульсами напряжения длительностью 0.2—3 нс.

возбуждаемых биполярными импульсами напряжения длительностью 0.2—3 нс. Источники предназначены для исследований в области радиолокации с высоким пространственным разрешением и испытаний электронных систем на устойчивость к воздействию сильных электромагнитных полей.

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ФИЗИКИ ПОЛУПРОВОДНИКОВ ИМ. А.В. РЖАНОВА Сибирского отделения Российской академии наук

Двумерный топологический изолятор со сложным объемным спектром

Предсказана и обнаружена новая разновидность двумерного топологического изолятора - двумерный топологический изолятор, сформированный на основе зон с **p-p** инверсией (рис.1) благодаря использованию широких HgTe квантовых ям, тогда как ранее исследованный формировался на основе зон с **s-p** инверсией. Сравнение локального и нелокального сопротивлений позволяет сделать вывод о наличии электронного транспорта по краевым состояниям в образцах размером порядка 1 мм при температурах ниже 1К. В образцах с размерами менее 10 мкм наблюдался квазибаллистический транспорт по краевым состояниям (Рис.2), свидетельствующий о топологической защите этих состояний.

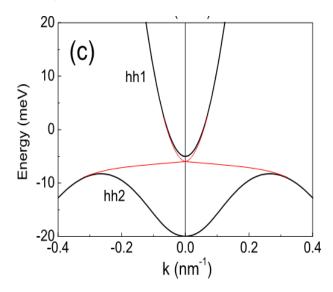


Рис.1. Энергетический спектр двумерного топологического изолятора с **р-р** инверсией

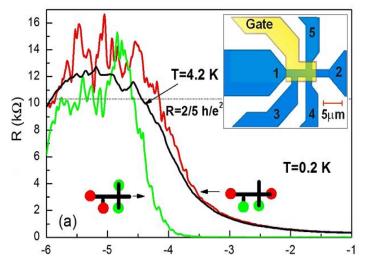
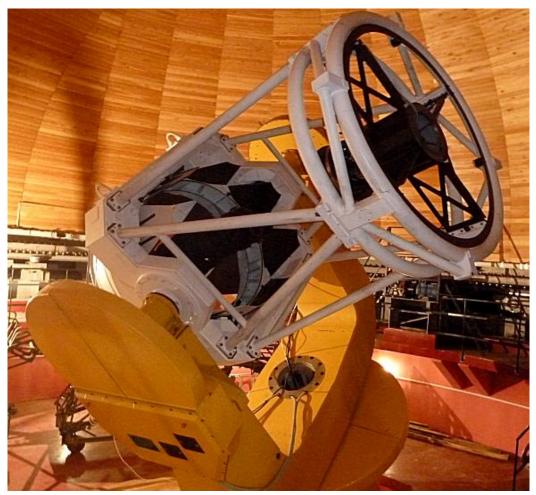



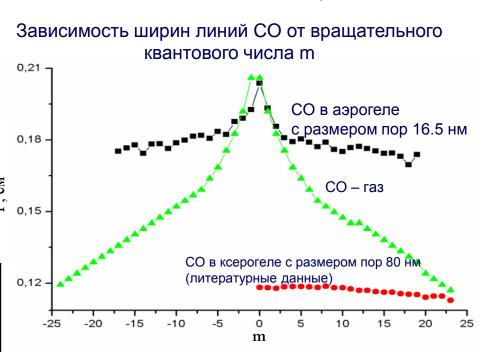
Рис.2. Квазибаллистический краевой транспорт: локальное сопротивление при 4.2 К (черная кривая) и при 0.2 К (красная кривая) и нелокальное сопротивление (зеленая кривая) при 0.2 К. Точечная линия - значение сопротивлений, предсказываемое теорией баллистического краевого транспорта

Введен в опытную эксплуатацию в Саянской обсерватории ИСЗФ СО РАН первый в России широкоугольный телескоп A3T-33 BM скоростного обзора неба с высокой проницающей способностью для решения фундаментальных проблем строения Вселенной, практических задач контроля околоземного космического пространства, информационного обеспечения функционирования группировок космических аппаратов, техногенного засорения космического пространства и задач астероиднокометной опасности.

Телескоп создавался в тесной кооперации с Министерством обороны, Роскосмосом и рядом предприятий промышленности.

Спектроскопическая нанопорометрия аэрогеля

Впервые определены значения диаметров нанопор в аэрогелях и их зависимости от плотности образца по измеренным ширинам спектральных линий поглощения СО. Впервые экспериментально обнаружена сильная зависимость полуширин спектральных линий СО, находящегося в нанопорах, от вращательных квантовых чисел. Учет этой зависимости необходим для повышения точности метода спектроскопической нанопорометрии. Авторы: Пономарев Ю.Н., Солодов А.А. Солодов А.М., Петрова Т.М.



Внешний вид аэрогеля и его внутренняя структура

Определение диаметров пор в аэрогелях

плотность аэрогеля, г/см ³	Г (см-1)	диаметр пор, определенный из Г, нм	диаметр пор, определенный по адсорбции азота (77 К), нм
0.245	0.155(2) – 0.171(2)	22.0(3) – 24.3(3)	19,6
0.250	0.173(2) – 0.204(3)	18.4(3) – 21.7(3)	16,5

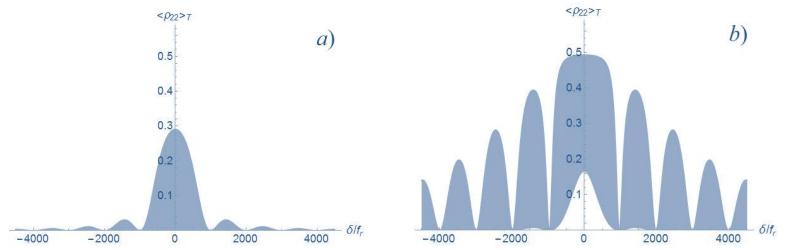
1. A.A. Solodov, T.M. Petrova, Yu.N. Ponomarev, A.M. Solodov. Chem Phys Lett. 637 (2015), 18-21 (WoS, IF=1.9). 2. Т. М. Петрова, Ю. Н. Пономарев, А. А. Солодов, А. М. Солодов, А. Ф. Данилюк. Письма в ЖЭТФ. 101 (2015), 68–70 (WoS, IF=1.36).

В ИЯФ СО РАН разработана и создана принципиально новая нерезонансная фотонная ловушка, с помощью которой получена конверсия пучка отрицательных ионов в нейтралы с эффективностью, близкой к 100%.

Этот результат открывает возможность создания непрерывных мощных инжекторов атомарных пучков для нагрева и диагностики термоядерной плазмы, а также использования фотонной ловушки в фотохимии, спектроскопии и других приложениях.

Инжектор отрицательных ионов водорода

Фотонная ловушка, состоящая из цилиндрических и плоских зеркал, расположена внутри вакуумного объема


Устройство ввода излучения стационарного волоконного лазера (2 кВт) в ловушку

Пучок отрицательных ионов водорода проходит через фотонную ловушку длиной 20см. В ловушку через отверстие в зеркале вводится лазерное излучение, которое многократно (до 1000 раз) отражается от поверхности зеркал и адиабатически удерживается в ловушке.

Институт лазерной физики СО РАН

В ИЛФ СО РАН впервые теоретически доказано существование динамического стационарного состояния открытой квантовой системы в произвольном периодически модулированном поле (например, ансамбль атомов или молекул во внешнем резонансном поле, амплитуда, фаза и поляризация которого могут содержать периодические модуляции произвольной формы). Разработан алгоритм расчета матрицы плотности этого стационарного состояния без использования разложения Фурье, т.е. с учетом всех частотных гармоник. Полученные результаты имеют обширную область приложений в лазерной физике, нелинейной спектроскопии, в частности, при разработке и создании атомных часов и магнитометров.

Форма линии при возбуждении двухуровневых атомов бесконечной последовательностью прямоугольных импульсов при различной безразмерной площади импульсов: $\pi/15$ (a), $\pi/2$ (b). Для расчета этих графиков стандартным методом Фурье потребовалось бы учесть 10^5 гармоник.

[V.I. Yudin, A.V. Taichenachev, M.Yu. Basalaev, D. Kovalenko, Dynamic steady-state of periodically driven quantum systems, accepted for publication in Phys. Rev. A, arXiv: 1506:06725 (2015).]

МФТИ; НИТУ «МИСиС»; Институт биохимической физики РАН,

Институт Физики им. Л.В. Киренского, Россия

Tulane University, CIIIA.

Исследование свойств новой двумерной пленки состава Nb₃SiTe₆.

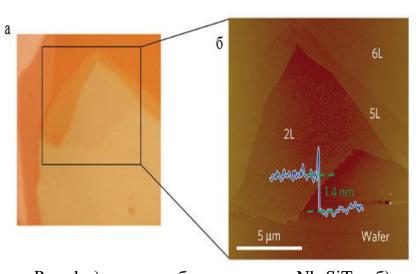


Рис. 1 а) снимок образца пленки Nb_3SiTe_6 , б) изображение выбранного участка в атомно-силовом микроскопе; 2L, 5L и 6L – число слоев; вставка показывает высоту би-слоя (~ 1.4 nm).

Проведено исследование свойств новой двумерной пленки состава Nb₃SiTe₆.

Результаты исследования опубликованы в высокорейтинговом журнале Nature Physics [1].

Экспериментально и теоретически получено, что при уменьшении толщины пленки в ней появляется эффект слабой антилокализации в магнитосопротивлении, что позволило сделать заключение о подавлении электрон-фононного взаимодействия, вызванного модификацией фононного спектра при переходе от трехмерной к двумерной системе.

1. Nature Physics J. Hu, X. Liu, C. L. Yue, J. Y. Liu, H. W. Zhu, J. B. He, J. Wei, Z. Q. Mao, L. Yu. Antipina, Z. I. Popov, P. B. Sorokin, T. J. Liu, P. W. Adams, S. M. A. Radmanesh, L. Spinu, H. Ji & D. Natelson. Enhanced electron coherence in atomically thin Nb3SiTe6 // **Nature Physics. -2015**.—V.11.—P.471 — 476. [doi:10.1038/nphys3321]

ТЕЛЕСКОПИЧЕСКАЯ СПИЦА ДЛЯ КРУПНОМАСШТАБНЫХ РЕФЛЕКТОРОВ КОСМИЧЕСКИХ АППАРАТОВ

В КТИ Научного приборостроения СО РАН разработаны научно-технические основы создания не имеющей мировых аналогов телескопической спицы в интересах ОАО «Информационные спутниковые системы» им.М.Ф.Решетнёва», используемой в качестве несущего и формообразующего элемента в конструкции крупногабаритного трансформируемого рефлектора диаметром 48 м для работы на космических аппаратах в условиях геостационарной орбиты. Основой разработки является оригинальный, высоконадежный и универсальный механизм выдвижения промежуточного и концевых звеньев спицы, который может использоваться не только для любых телескопических систем, но и как средство перемещения различных устройств в сверхдлинных трубопроводах. По итогам НИР в результате ОКР создан опытный образец такой спицы, который успешно прошел производственные испытания в АО «ИСС».

Монтаж и испытания СПИЦЫ в КТИ НП

Производственные испытания СПИЦЫ в АО «ИСС»

Результат исследований успешно доложен на Решетневских чтениях в ноябре 2015 г.

СПАСИБО ЗА ВНИМАНИЕ!