Спектроскопия комбинационного

рассеяния света в замораживаемых

<u>биологических клетках и</u>

мембранах

Н.В. Суровцев

Институт автоматики и электрометрии СО РАН <u>Лаборатория «Спектроскопия конденсированных сред»</u> <u>Институт автоматики и электрометрии СО РАН</u>

> Экспериментальные исследования конденсированных сред методами: Комбинационное рассеяния света и рассеяние Мандельштама-Бриллюэна (включая ГГц и ТГц диапазоны)

Неупругое рассеяние света как аналитический метод Неупругое рассеяние света как «проба» динамического отклика

+ вспомогательные методики (спектры поглощения, калориметрия, диэлектрика, генерация второй гармоники)

Спектроскопия конденсированных сред

Объекты исследований

а применять его!

Спектроскопия комбинационного

рассеяния света (КРС)

- описание спектра КРС
- идентификация вещества, его фазового состояния

Проблема больших молекул при детальной идентификации и при определении конформационного состояния Развитие новых методических приемов?

Фосфолипидные мембраны

При контакте с водой молекулы фосфолипида объединяются в бислой (мембрана)

Клеточные мембраны исследования механизма воздействия различных веществ на мембраны клеток

Многослойные везикулы (липосомы) контейнеры для лекарств, нанореакторы

Фазовый переход фосфолипидных мембран

Как конформационные состояния неполярных хвостов меняются при изменении температуры ниже T_m ?

Можно ли на этот вопрос ответить с помощью спектроскопии КРС?

<u>Колебательная задача</u>

«Дискретная» характеризация

конформационного состояния

Есть наиболее выгодные взаимные ориентации мономеров углеводородной цепочки

СС моды –зависимость от конформации

спектры КРС С-С мод фосфолипидных мембран

Использование идеи об основном конформационном состоянии как о состоянии с максимальным числом *trans* связей и эксклюзивным образом дающих вклад в

КР-интенсивность высокочастотной СС моды melted позволило описать температурную зависимость конформационных состояний неполярных kink хвостов фосфолипидных мембран

ground

Исследование дрожжевых клеток методом КРС

Спектр КРС дрожжевой клетки

<u>Влияние зарядового состояния цитохромов на</u>

интенсивность КРС

[Kakita M et. al. J Biophotonics 5(1):20-24 (2012)] [Spiro TG & Strekas TC, J Am Chem Soc 96: 338–345 (1974)]

Зависимость интенсивность резонансного КРС

цитохрома в клетках дрожжей от времени облучения

Влияние мощности излучения на скорость фотовыцветания линий цитохрома

16

Зависимость скорости окислительно-

восстановительных реакций от температуры

восстановительных реакций в клетке

Применение спектроскопии КРС для биологических объектов требует преодоления некоторых экспериментальных трудностей и развития методических приемов,

Но спектроскопия КРС способна бесконтактным неразрушающим способом получить новую информацию о структуре объекта и биологических процессах, протекающих в нем.

Применение спектроскопии КРС для

характеризации замораживаемых эмбрионов мыши

Совместно с Сектором криоконсервации и репродуктивных технологий ИЦиГ СО РАН

Изменение зарядового состояния цитохромов в эмбрионах при изменении температуры

<u>Изменение фазового состояние мембранных</u> структур в эмбрионах при изменении температуры

применения экспериментальных методов, развитых в физике конденсированных сред, и, в частности, для спектроскопии комбинационного рассеяния света.

Это открывает широкие перспективы для

Процессы, происходящие в биологических объектах, остаются в многом неописанными на микроскопическом уровне.

