11. ФИЗИКА ПЛАЗМЫ И УПРАВЛЯЕМЫЙ ТЕРМОЯДЕРНЫЙ СИНТЕЗ

Программа 11.1. Физика высокотемпературной термоядерной плазмы (Координатор академик Э. П. Кругляков)

В Институте ядерной физики им. Г. И. Будкера в результате испытаний пилотной версии источника для нагрева плазмы в газодинамической ловушке получен протонный пучок с током 50 А, энергией 25 кэВ и длительностью импульса 3 мс. Перезаряженный в нейтрализаторе пучок атомов фокусируется на расстоянии 120 см от источника. Радиус сфокусированного пучка составляет 2,5 см, что соответствует интегральной угловой расходимости $2 \cdot 10^{-2}$ рад. Плотность потока атомов в фокусе составляет 2,5 А/см². Мощность полученного пучка быстрых атомов составила 0,9 МВт. Полученная плотность атомарного тока является рекордной.

На установке ГОЛ-3 в режиме с многопробочным удержанием плазмы и улучшенным нагревом достигнут прогресс в увеличении ионной температуры и времени удержания плазмы. При плотности плазмы (0.2 -6,0) 10¹⁵см⁻³ найдены условия для макроскопической стабилизации плазмы, полученное время жизни плазмы (0,5—1,0 мс) соответствует расчетному для многопробочной ловушки в оптимальных условиях. Ионная температура, измеренная по спектру нейтралов перезарядки, доплеровскому уширению линии бальмеральфа и эмиссии термоядерных нейтронов, достигает 2 кэВ в области оптимального нагрева (рис. 1). На рис. 2, а приведен полный поток нейтронов и гамма-квантов, образующихся в результате реакций синтеза в плазме. На рис. 2, б приведена только нейтронная компонента, выделенная с помощью метода цифровой дискриминации по форме импульса. Каждый пик на рисунке соответствует отдельной частице. В предположении о максвелловской функции распределения и однородном распределении эмиссии по сечению горячей области плазмы оценка ионной температуры дает величину 1-2 кэВ. Как видно из рисунка, длительность нейтронной эмиссии превышает 1 мс

Проведены первые эксперименты по созданию локального сгустка ионно-горячей плазмы большого давления в небольшом дополнительном пробкотроне установки «Газодинамическая ловушка» (ГДЛ) (рис. 3). Вблизи концевой пробки ГДЛ была установлена дополнительная вакуумная камера с катушками, формирующими в ней локальный пробкотрон относительно малого объема. Это позволит получить сгусток ионно-горячей плазмы с плотностью ~10²⁰ м⁻³ и средней энергией, которая близка к предполагаемой в нейтронном источнике на основе ГДЛ. Это обстоятельство делает данные эксперименты чрезвычайно важными для моделирования поведения плазмы в нейтронном источнике.

Рис. 1. Ускоряющий электрод инжектора на основе молибденовой сетки высокой прозрачности.

Fig. 1. High Transparency Molybdenum grid of the source accelerating electrode.

Рис. 2. Результат измерения временной эволюции потока DD нейтронов во время импульса на установке ГОЛ-3 с помощью сцинтилляционного детектора на основе кристалла стильбена.

Fig. 2. Time evolution of DD neutrons measured by stilbene scintillate detector.

 Рис. 3. Схема эксперимента с дополнительным пробкотроном.

 Fig. 3. Layout of the experiment with additional mirror cell.

Программа 11.2. Физика низкотемпературной, в том числе ионосферной и космической, плазмы

(Координатор докт. физ.-мат. наук Ю. Д. Королев)

Учеными Института сильноточной электроники впервые продемонстрирована возможность многократного снижения доли капельной фракции эрозии катодов вакуумных дуговых разрядов за счет интенсивного испарения капель в полете. Показано, что достигнутое в эксперименте эффективное испарение капель происходит за счет зажигания капельных пятен — термоэмиссионных униполярных дуг на каплях.

Рис. 4. Расчетные кривые стационарной температуры капель от концентрации окружающей плазмы: *I* — вольфрам, *kT_e* = 4 эВ; *2* — медь, *kT_e* = 4 эВ; *3* — цирконий, *kT_e* = 4 эВ; *4* — цирконий, *kT_e* = 8 эВ.

- Fig. 4. Calculated dependencies of steady-state temperature of drops on concentration of the ambient plasma:
- *I* Tungsten, $kT_e = 4 \text{ eV}$; 2 Copper, $kT_e = 4 \text{ eV}$; 3 Zirconium, $kT_e = 4 \text{ eV}$; 4 — Zirconium, $kT_e = 8 \text{ eV}$.

Создана и экспериментально подтверждена теоретическая модель процесса взаимодействия капли с плазмой, самосогласованно учитывающая зарядку капли и ее нагрев и испарение. Обнаружены два принципиально различных квазистационарных режима теплообмена капли и плазмы: так называемый «термоэмис-

Рис. 5. Осциллограмма напряжения на основном промежутке V_d , тока разряда i_d и тока электронного пучка на цилиндр Фарадея V_F , иллюстрирующие выброс напряжения на промежутке и появление пучка электронов на оси разряда в стадии обрыва тока.

Fig. 5. Waveform of voltage across the main gap (V_d) , discharge current (i_d) , and electron beam current measured with Faraday cup (V_F) showing the voltage surge at the gap and generation of electron beam in the discharge axis during the current break.

сионный или высокотемпературный» режим и обычный режим «ленгмюровского зонда», который имеет место при сравнительно невысоких температурах капли (рис. 4). Полученные результаты открывают путь существенного снижения загрязнения плазмы вакуумных дуговых разрядов капельной фракцией, что имеет

Рис. 6. Изображение излома твердого сплава ВК8 с напыленным на него свехтвердым наноструктурным покрытием типа Ti—Cu—N, полученное в сканирующем электронном микроскопе. Состав катода Ti — 12 % Cu. *a* — подложка расположена перпендикулярно потоку плазмы; *б* — параллельно потоку плазмы.

Fig. 6. Scanning electron microscopy image of break of BK8 hard alloy with deposited superhard nano-structured Ti—Cu—N coating. Composition of cathode: Ti — 12 % Cu. a — substrate is perpendicular to plasma flow; δ — substrate is parallel to plasma flow.

принципиальное значение для развития пучково-плазменных технологий.

В этом же Институте обнаружены импульсные электронные пучки, формирующиеся при кратковременных обрывах тока (рис. 5), детально исследованы их характеристики. Дана интерпретация механизма возникновения таких пучков. Такая разновидность импульсного тлеющего разряда с полым катодом позволит получать плотности тока свыше сотен килоампер на квадратный сантиметр.

Учеными того же Института в результате исследования влияния элементного состава катода из сплава Ti—Cu на характеристики покрытия состава Ti—Cu—N (рис. 6), нане-

сенного на подложки из твердого сплава типа WC—Со, методом вакуумного электродугового распыления композиционного катода в атмосфере ионизованного азота получены наноструктурированные покрытия толщиной в несколько микрон с микротвердостью до 50 ГПа. Определено, что одной из причин деградации механических свойств синтезированных покрытий является кристаллизация аморфных прослоек меди с последующим выделением меди в виде частиц, расположенных по границам кристаллитов нитрида титана. Оптимизирован состав катода, что позволило получать покрытия со стабильными механическими свойствами.