ПРИОРИТЕТНОЕ НАПРАВЛЕНИЕ II.14. Современные проблемы астрономии, астрофизики и исследования космического пространства, в том числе происхождение, строение и эволюция Вселенной, природа темной материи и темной энергии, исследование Луны и планет, Солнца и солнечно-земных связей, исследование экзопланет и поиски внеземных цивилизаций, развитие методов и аппаратуры внеатмосферной астрономии и исследований космоса, координатно-временное обеспечение фундаментальных исследований и практических задач

Программа II.14.1. Физические процессы на Солнце, в околоземном космическом пространстве и солнечно-земные связи (координатор акад. Г. А. Жеребцов)

Анализ наблюдений многих солнечных событий, проведенный в Институте солнечноземной физики, привел к обобщенной картине процессов, происходящих во время коронарных выбросов плазмы, основанной на новом подходе к процессу формирования и распространения ударной волны. Выведены аналитические выражения, описывающие распространение ударного возмущения от момента его зарождения ускорением эруптивного волокна до трансформации в поршневую волну в солнечном ветре (рис. 55). Результаты важны для понимания природы коронарных выбросов массы (КВМ) и прогноза мощности и времени прихода возмущений солнечного ветра на орбиту Земли.

В этом же Институте была решена задача о переносе момента движения из солнечного ветра в геомагнитный хвост потоком магни-

Рис. 55. Эрупция протуберанца на исходном (слева) и разностном (справа) изображениях.

Белая полусфера — магнитная оболочка будущего КВМ. Овал — фронт ударной волны (УВ), возбужденной эруптивным протуберанцем (вверху). УВ прошла через оболочку КВМ (второй кадр), скачком увеличив ее скорость на 150 км/с. Воздействуя на корональные лучи (третий кадр, желтые стрелки), УВ вызывает радиовсплеск II типа. Внизу — спектрограммы с расчетным частотным дрейфом.

Рис. 56. Модель геомагнитного хвоста, обтекаемого солнечным ветром, и распределение скорости движения плазмы, формируемого под действием магнитозвуковых волн.

тозвуковых волн (рис. 56). Быстрые магнитозвуковые волны, проникающие в магнитосферу из магнитослоя, возбуждают внутри геомагнитного хвоста медленные магнитозвуковые волны на резонансных магнитных оболочках. Резонансные колебания взаимодействуют с фоновой плазмой, передавая ей момент движения. Показано, что в этом процессе в долях гео-

Рис. 57. Последовательность микроволновых спектров коронального источника в начале вспышки 23 июля 2002 г. Точками показаны данные наблюдений. Сплошные линии — результаты моделирования излучения. Тонкие линии показывают вклад излучения горячей тепловой плазмы.

магнитного хвоста формируется поток плазмы, направленный к Земле, средняя скорость которого в прилегающей к магнитопаузе области составляет 50—150 км/с.

В результате совместных исследований Института солнечно-земной физики СО РАН и Физико-технического института им. А. Ф. Иоффе было обнаружено, что в горячих корональ-

Рис. 58. Горизонтальные течения плазмы в активной области, возникающей на краю солнечного диска. Синяя изолиния (-500 м/с) — отрицательный доплеровский сдвиг, красная (+500 м/с) — положительный доплеровский сдвиг, желтая — положение разреза пространственно-временных диаграмм. Обозначения на схеме: V_{up} — скорость подъема магнитного потока, V_{down} — скорость стекания плазмы, выносимой в атмосферу Солнца всплывающим магнитным потоком, V_{exp} — скорость горизонтального расширения магнитного потока, V_{dir} — скорость направленных течений плазмы внутри всплывающей магнитной структуры.

Рис. 59. Карты корреляций между сглаженными значениями температуры поверхности океана и АА-индексом геомагнитной активности для климатических эпох: *а* — 1868—1910 гг.; *б* — 1910—1948 гг.; *в* — 1948—1976 гг.; *г* — 1976—2000 гг.

ных источниках, появляющихся за несколько минут до взрывной стадии роста жесткого рентгеновского излучения, уже реализуются условия для ускорения электронов до релятивистских энергий. Это обусловлено тем, что в начальной стадии таких вспышек идет преимущественно нагрев плазмы в корональных источниках до температур в десятки миллионов градусов, а эффективность ускорения электронов критически зависит от процесса инжекции частиц в режим ускорения (рис. 57).

В ИСЗФ СО РАН впервые измерены горизонтальные доплеровские скорости фотосферных течений плазмы в активных областях, возникающих на краю солнечного диска. На большом материале (54 активные области) обнаружена связь между значениями доплеровских скоростей и скоростью роста магнитного потока активных областей в первые часы их появления (рис. 58). Установлено, что основной вклад в наблюдаемые скоростные структуры дает стекание выносимой в атмосферу Солнца плазмы. Обнаружена асимметрия в значениях доплеровских скоростей, времени жизни и размерах скоростных структур ведущей и последующей полярностей. Полученные результаты имеют важное значение для развития теоретических моделей выхода магнитного потока в атмосферу Солнца.

В этом же Институте получены новые доказательства влияния солнечной активности на климатические процессы в тропосфере и океане (рис. 59). Выявлен достоверный отклик в основных климатических характеристиках приземной температуре воздуха, температуре поверхности океана и осадках на воздействие солнечной активности. Установлено, что климатический отклик на воздействие солнечной и геомагнитной активности характеризуется значительной пространственно-временной неоднородностью и носит региональный характер. Показано, что пространственная структура отклика зависит от климатической эпохи. Полученные результаты полностью подтверждают основные положения развиваемой в ИСЗФ СО РАН модели влияния солнечной активности на погодно-климатические характеристики.

Программа II.14.2. Актуальные проблемы физики космических лучей и гелиосферы (координатор член-корр. РАН Е. Г. Бережко)

На основе измерений, выполненных на Якутской установке широких атмосферных ливней (ШАЛ) Института космофизических исследований и аэрономии СО РАН в период 1982—2012 гг., впервые установлено, что интенсивность космических лучей с энергией 10^{17} — 10^{18} эВ, а также содержание мюонов в ШАЛ испытывают статистически значимые временные вариации (рис. 60): в период 1997— 2006 гг. интенсивность космических лучей на $36 \pm 3,5 \%$, а содержание мюонов на $33 \pm 3 \%$ выше по сравнению с периодом 1982—1995 гг.

На основе измерений массового состава космических лучей с энергией $E > 10^{15}$ эВ, выполненных на Якутской установке ШАЛ, получено свидетельство того, что переход от галактической к внегалактической компоненте в наблюдаемом спектре космических лучей происходит в области энергий 10^{17} — 10^{18} эВ. На

рис. 61 представлены результаты расчета, соответствующие предположению о том, что галактическая компонента, произведенная галактическими остатками сверхновых, вплоть до энергии $E \sim 10^{17}$ эВ, а внегалактическая компонента преобладает при энергиях $E >> 10^{17}$ эВ. Приведены также результаты измерений, выполненных в экспериментах ATIC-2, JACEE, KASKADE, HiRes, Auger, Yakutsk.

На основе анализа измерений интенсивности свечения ночного неба, выполненных сотрудниками Института космофизических исследований и аэрономии в 1994—2008 гг. в авроральных широтах (Жиганск, Тикси), впервые установлено, что крупномасштабные волны диффузного свечения атмосферы наблюдаются не только во время магнитных бурь, как считалось ранее, но и в периоды их отсутствия (рис. 62).

Рис. 60. Интенсивность космических лучей с энергией $E_0 = 10^{17} - 10^{18}$ эВ (*a*) и содержание мюонов с энергией E > 1 ГэВ (б) в зависимости от времени. Плотность мюонов µ измерена на расстоянии 300 м от оси ШАЛ; сплошные горизонтальные линии — результаты расчетов по модели QGSJET содержания мюонов в ливнях, порожденных протонами (р) и ядрами железа (Fe).

Рис. 61. Среднее значение логарифма массового числа космических лучей как функция их энергии.

Рис. 62. Псевдоцветные изображения распределения яркости свечения ночного неба над Жиганском, выполненные камерой всего неба, для трех последовательных моментов времени в событии 09.03.1999 г.

Узкая полоса красного цвета на северном горизонте камеры — дискретная дуга сияний. В зените станции наблюдения видно наличие волновой структуры свечения (четыре «языка», помеченных цифрами *1*—4, вытянутых в меридиональном направлении), окрашенной в синий цвет, и ее перемещение в направлении на запад со скоростью *V*~800 м/с.

Для экспериментальных исследований методов фотометрии в ИК-диапазоне на телескопе АЗТ-33ИК Саянской обсерватории Институтом космофизических исследований и аэрономии разработан комплекс аппаратнопрограммных средств в составе ИК-фотометра на спектральный диапазон 1—5 мкм и ИК-камеры на спектральный диапазон 8—10 мкм (рис. 63). При измерении с ИК-фотометром предельной проницающей способности системы показано, что чувствительность фотометра близка к предельной для телескопов 1,5-метрового класса. С использованием доработанной ИК-камеры были проведены фотометрические измерения звезд, а также наблюдения тел солнечной системы и космических аппаратов на низких орбитах (рис. 64).

Рис. 63. Фотометр диапазона 1—5 мкм (слева) и камера диапазона 8—10 мкм (справа) (совместно с КТИ ПМ ИФП СО РАН).

Рис. 64. Наблюдения с камерой диапазона 8—10 мкм на телескопе АЗТ-ЗЗИК. Слева: изображение международной космической станции (МКС). Справа: измеренный поток излучения (кружки) и расчетная звездная величина (сплошная линия) для одного из пролетов МКС над пунктом наблюдений.