An uncountably categorical theory whose only computably presentable model is saturated

Denis R. Hirschfeldt, Bakhadyr Khoussainov, Pavel Semukhin

Abstract

An important theme in computable model theory is the study of computable models of complete first-order theories. More precisely, given a complete first-order theory T, one would like to know which models of T have computable copies and which do not. A special case of interest is when T is an \aleph_1 -categorical theory. In this paper we are interested in computable models of \aleph_1 -categorical theories.

A complete theory T in a language L is \aleph_1 -categorical if any two models of T of power \aleph_1 are isomorphic. We say that a model \mathcal{A} of T is computable if its domain and its atomic diagram are computable. A model \mathcal{A} is computably presentable if it is isomorphic to a computable model, which is called a computable presentation of \mathcal{A} .

In [1], Baldwin and Lachlan developed the theory of \aleph_1 -categoricity in terms of strongly minimal sets. They showed that the countable models of an \aleph_1 -categorical theory T can be listed in an $\omega + 1$ chain

$$\mathcal{A}_0 \preccurlyeq \mathcal{A}_1 \preccurlyeq \cdots \preccurlyeq \mathcal{A}_{\omega},$$

where the embeddings are elementary, \mathcal{A}_0 is the prime model of T, and \mathcal{A}_{ω} is the saturated model of T. The following definition is given in [5]:

Definition. Let T be an \aleph_1 -categorical theory and let $\mathcal{A}_0 \preccurlyeq \mathcal{A}_1 \preccurlyeq \cdots \preccurlyeq \mathcal{A}_{\omega}$ be the countable models of T. The spectrum of computable models of T is the set $\{i : \mathcal{A}_i \text{ has a computable presentation}\}$.

If $X \subseteq \omega + 1$ is the spectrum of computable models of some \aleph_1 -categorical theory, then we say that X is *realized as a spectrum*.

There has been some previous work on the possible spectra of computable models of \aleph_1 -categorical theories. For example, Nies [7] gave an upper bound of $\Sigma_3^0(\emptyset^{\omega})$ for the complexity of the sets realized as spectra. Interestingly, the following are the only subsets of $\omega + 1$ known to be realizable as spectra: the empty set, $\omega + 1$ itself ([3], [4]), the initial segments $\{0, \ldots, n\}$, where $n \in \omega$ ([2], [6]), the sets $(\omega + 1) \setminus \{0\}$ and ω ([5]), and the intervals $\{1, \ldots, n\}$, where $n \in \omega$ ([7]). Our main result is the following

Theorem. There exists an \aleph_1 -categorical but not \aleph_0 -categorical theory whose only computably presentable model is the saturated one.

Thus $\{\omega\}$ is also realized as a spectrum.

References

 J. T. Baldwin and A. H. Lachlan, "On strongly minimal sets", J. Symbolic Logic 36 (1971), pp. 79–96.

- [2] S. S. Goncharov, "Constructive models of ℵ₁-categorical theories", Mat. Zametki 23 (1978), pp. 885–889 (English translation: Math. Notes 23 (1978), pp. 486–488).
- [3] L. Harrington, "Recursively presentable prime models", J. Symbolic Logic 39 (1974), pp. 305–309.
- [4] N. G. Khisamiev, "On strongly constructive models of decidable theories", *Izv. Akad. Nauk Kaz. SSR, Ser. Fiz.-Mat.* 1974, pp. 83–84.
- [5] B. Khoussainov, A. Nies, and R. A. Shore, "Computable models of theories with few models", Notre Dame J. Formal Logic 38 (1997), pp. 165-178.
- [6] K. Kudeibergenov, "On constructive models of undecidable theories", Sib. Math. J. 21 (1980), pp. 155-158.
- [7] A. Nies, "A new spectrum of recursive models", Notre Dame J. Formal Logic 40 (1999), pp. 307–314.