
Techniques for Verifying Prolog Implementations

Keehang Kwon, Jang-Wu Jo and Sanghoon Kim
Department of Computer Engineering, DongA University

840 Hadan, Pusan 604-714, Korea
{ khkwon, jwjo, shkim }@daunet.donga.ac.kr

Abstract. This paper presents some techniques that reduce the complexity of the verification of Pro-
log implementations. Two key techniques are stepwise refinements and bisimulation. The method of
stepwise refinements captures various optimization techniques employed in the implementation pro-
cess. The correctness of each refinement is justified using a notion called bisimulation. Our definition
of bisimulation makes use of the notion of essential states in a machine. The notion of essential states
further reduces the complexity of the proof. We illustrate our method by presenting two equivalent
machines: a nondeterministic interpreter for Prolog and its refinement that executes compiled codes.

Keywords: Prolog, compilers, bisimulation

1 Introduction

An implementation of a programming language typically employs various optimization techniques such as
compilation, sharing, etc. Consequently, the resulting bytecode is significantly different from its original
semantics and implementation verification is therefore essential to bridge this gap.

There have been previous works to proving implementation correctness related to Prolog [1, 2, 9]. However,
most of these works have relied on an ad hoc method and do not provide much insight regarding a general
strategy towards implementation verification. In this paper, we present a general framework that can be
applied to verifying most implementations. Our approach is based on the notions of stepwise refinements
and bisimulation. The method of stepwise refinements shows how a bytecode of a Prolog can be arrived at
logically from its operational semantics. Thus, starting from a state transition machine that corresponds to
an operational semantics of a language, we build a hierarchy of equivalent machines to obtain a machine that
corresponds to a final bytecode. This method thus captures all the techniques employed in the implementation
process. Furthermore, it provides a direct proof of the correctness of the bytecode provided each refinement
step is verified.

The equivalence of the refined machine to the earlier one is shown by using a framework called bisimula-
tion. Such a framework has been previously studied in computability theory [4]. We demonstrate here that
this framework is well-suited to verifying Prolog implementations as well.

We illustrate our method by presenting two implementations of Prolog: an original interpreter for the
language and its bytecode that are obtained by compiling the source language. While this example is of a
simple nature, it nevertheless permits all the important aspects of implementation verification.

The rest of this paper is organized as follows. Section 2 summarizes the important notions pertaining
to bisimulation and stepwise refinements. Section 3 presents how our approach can be applied to Prolog
implementations. Section 4 is the conclusion of this paper.

2 The Framework

Our framework is based on the notions of stepwise refinements and bisimulation. The method of stepwise
refinements is a useful tool for proving correctness of implementations. To achieve this task, one can build,
by the method of successive refinements, a series of more concrete machines M1, . . . ,Mn where M1 is the
original high-level specification and Mn is the target implementation. The equivalence of Mn with respect
to M1 naturally follows from the equivalence of Mi+1 with respect to Mi, for 1 ≤ i ≤ n− 1.

1

Most equivalences in this context can be shown by the notion that Mi+1 and Mi are bisimilar to each
other. The notion of one machine simulating another has been previously studied (e.g., see [4, 5, 8]) and is
formulated as follows.

Definition 2.1. A state z in machine M1 simulates a state x in machine M2, written as z ∼ x, if the
following hold:

(a) If x is a final state, then z is a final state with identical observable outputs, and
(b) For any state y of M2 that can be reached by a single transition α from x, there is a state w of M1

that similates y and that can be reached by a finite (possibly empty) sequence of transitions β∗ from z
in M1.

z is said to be bisimilar to x, written as z ≈ x, if z simulates x and x simulates z.

There are different notions of simulations. A simplest kind of this framework is called strong simulation
in which the behaviours of two machines corresponds step for step. A more general framework is called weak
simulation in which one step in a machine corresponds to multiple steps in another machine.

In applying simulation by subprogram to real-world examples, it is particularly useful to partition a
terminating transition sequence into subsequences. This technique greatly reduces the complexity of the
proof. To formulate this idea, we define the set of essential states of a machine that is a subset of states that
are reachable from an initial state such that any transition sequence from an initial state to a final state
in the machine can be decomposed into a sequence of transitions between essential states. Under this new
interpretation, x, z, y, w in Definition 2.1 are restricted to essential states.

3 Prolog

The language based on Horn clause logic (i.e., pure Prolog) can be described by two classes of formulas,
called G- and C-formulas. They are given by the syntax rules below:

G ::= A | G ∧G

C ::= A | G ⊃ A | ∀xC.

In the rules above, A represents an atomic formula. G-formulas will function as goals or queries and lists of
C-formulas (i.e., Horn clauses) will constitute programs. In the description that follows, we use the constant
nil, the infix symbol :: as list constructors, the infix symbol @ as the operator which appends two lists.
We often write a1 :: . . . :: an :: nil as [a1, . . . , an]. We also use the notation F(F) to denote the set of free
variables in a formula F , θ(F) to denote the application of a substitution θ to a formula F , and θ1 ◦ θ2 to
denote the the composition of θ1 and θ2, i.e., θ1 ◦ θ2(x) = θ1(θ2(x)). Further, we assume the existence of the
set W of the form {w(0), w(1), . . . , w(n), . . .} where each w(i), i ≥ 0, denotes a free variable.

We also need the notion of replacing variables in a goal with free variables relative to a base value. This
is made precise below.

Definition 3.1. Given a goal G, the function ΦG is defined as follows: ΦG(G, κ) = χ(G) where χ =
{〈xi, w(κ+i−1)〉 | xi ∈ F(G)}.

A nondeterministic interpreter for this language can be decribed by means of a transition system. The
states of this transition system are given by a tuple of the form 〈P,G, I, θ〉. In the tuple, P is a list of clauses,
G represents a list of goals, I represents an index to the set W, and θ denotes a substitution. Transition
rules in the system of interest are those given by the following definition.

Definition 3.2. Given a state 〈P1,G1, I1, θ1〉, the state 〈P2,G2, I2, θ2〉 can be obtained from it in one of the
following ways:

2

(1) Suppose that G1 is A :: G′ and that C is a clause ∀x1 . . .∀xnA′ in P1. Let ρ = {〈x1, w(I1)〉, . . ., 〈xn, w(I1+
n−1)〉} be a substitution. If θ1(A) and θ1 ◦ ρ(A′) are unifiable with a most general unifier σ, then the
new state may be obtained by setting G2 to G′, I2 to I1 + n and θ2 to σ ◦ θ1.

(2) Suppose that G1 is A :: G′, and that C is a clause ∀x1 . . .∀xn(G ⊃ A′) in P1. Let ρ = {〈x1, w(I1)〉, . . .,
〈xn, w(I1+n−1)〉} be a substitution. If θ1(A) and θ1 ◦ ρ(A′) are unifiable with a most general unifier σ,
then the new state may be obtained by setting G2 to ρ(G) :: G′, I2 to I1 + n and θ2 to σ ◦ θ1.

(3) If G1 is (G1 ∧G2) :: G′, then the new state may be obtained by setting G2 to G1 :: G2 :: G′.

Given an initial goal G such that F(G) = {x1, . . . , xm} and a program P, an initial state is given by
〈P, ΦG(G, 0),m, ∅〉. A final state is any state where the G component is an empty list. In this case, θ in a
final state is referred to as the corresponding answer substitution.

The refinement of M1 we consider below uses environments to permit a delaying of substitutions. Given a
a clause of the form ∀x1∀x2(p(x2) ⊃ p(x1)), a substitution can be implicitly performed by simply recording a
base value κ and by reading x1 as w(κ) and x2 as w(κ+1). Under this scheme, each state needs to maintain a
list of environments for the clauses that have been used along the path from the initial state. For this purpose,
a new component E is provided. When a clause is selected, a new environment (a natural number) for the
clause will be added to the front of E and, when this clause is “solved”, this environment will be removed
from E list. An instruction dealloc will be included in the the goal sequence to remove an environment.

On top of that, we consider a simple translation of clauses and goals into low-level instructions that are
intended to produce the same behavior. These instructions are straightforward. In particular, the translation
of ∧ will result in a sequence of instructions to be executed as such.

In order to treat the compilation process formally, we introduce the notion of compiled goals and compiled
clauses. These will be a sequence of instructions whose meaning should be clear from the informal discussion
above and will also be made precise by the transition rules we define in the next section.

Definition 3.3. Compiled goals, clauses and nonempty sequences of clauses are denoted by G and C
respectively and are given by the following syntax rules:

G ::= [call(A)] | call(A) :: G

C ::= [alloc(N), unify(A)]@G@[dealloc] | [alloc(N), unify(A), dealloc]

where A represents atomic formulas.

The intended correspondence between clauses and goals and their compiled versions is made clear by
defining compiling functions with respect to clauses and goals. These two functions are called compileC and
compileG respectively and are defined below. We also extend compileG and compileC to functions compileG
and compileP that takes a list of goals and clauses as input.

Definition 3.4.

(1) compileG(A) = [call(A)]
(2) compileG(G1 ∧G2) = compileG(G1)@compileG(G2)
(3) Let G be [G1, . . . , Gn]. Then compileG(G) = compileG(G1)@ . . .@compileG(Gn)
(4) Let C be ∀x1 . . .∀xn(G ⊃ A). Then compileC(C) = [alloc(n), unify(A)]@compileG(G)@[dealloc]
(5) Let C be ∀x1 . . .∀xnA. Then compileC(C) = [alloc(N), unify(A), dealloc]
(6) Let D be C1 :: . . . :: Cn :: nil. Then compileP(D) = [compileC(C1), . . . , compileC(Cn)]

These various changes are manifest in the state transition machine called M2. The states of this transition
system are given by a tuple of the form 〈P,G, I, θ, E , g〉. Transition rules in the new machine are given by
the following definition.

Definition 3.5. Given a state 〈P1,G1, I1, θ1, E1, g1〉, the state 〈P2,G2, I2, θ2, E2, g2〉 can be obtained from it
in one of the following ways:

3

(1) Suppose that G1 is call(A) :: G′ and that C is a compiled clause in P1. Let e be the first element of E1.
Then the new state may be obtained by setting G2 to C@G′, and g = θ1(ΦG(A, e)).

(2) Suppose that G1 is alloc(n) :: G′. Then the new state may be obtained by setting G2 to G′, I2 to I1 + n,
and E2 to I1 :: E1.

(3) Suppose that G1 is unify(A) :: G′. Let e be the first element of E1. If g and θ1(ΦG(A, e)) are unifiable
with a most general unifier σ, then the new state may be obtained by setting G2 to G′, and θ2 to σ ◦ θ1.

(4) If G1 is dealloc :: G′ and E1 is e :: E ′, then the new state may be obtained by setting G2 to G′, and E2 to
E ′.

Let G be a goal such that F(G) = {x1, . . . , xm} and P be a program. Then an initial state is given
by 〈compileP(P), compileG(G)@[dealloc],m, ∅, [0]〉. A final state in the transition system is any state where
the G component is an empty list. In this case, θ in a final state is referred to as the corresponding answer
substitution.

We now show that M1 and M2 are equivalent from the perspective of the computed substitution. To do
this, we need to define the notion of correspondence between (control) states of M2 and M1. In doing so, we
observe that an essential state in M1 is any state whose first goal is an atomic goal. Similarly, an essential
state in M2 is any state whose first goal is the instruction call . After that, we can treat each subprogram as
a single transition rule.

We make use of this observation in describing the correspondence. Now we need the notion of transforming
goal sequences in M2 into a decoded form as given below.

Definition 3.6. Let G be a goal sequence and let E be an environment sequence associated with a state of
M2. Then the function ΦG on G and E is defined as follows:

– ΦG(nil, nil) = nil
– ΦG(dealloc :: G, κ :: E) = ΦG(G, E)
– ΦG(G :: G, κ :: E) = ΦG(G, κ) :: ΦG(G, κ :: E)

The notion of correspondence between essential states of M2 and M1 is given as follows.

Definition 3.7. An essential state 〈P1,G1, I1, θ1〉 inM1 corresponds to an essential state 〈P2,G2, I2, θ2, E2, g2〉
in M2, if compileP(P1) = P2, I1 = I2, θ1 = θ2, and compileG(G1) = ΦG(G2, E2).

We note that the relation corresponds to is bijective and symmetric. The following lemma shows that
the notion of correspondence is preserved between intermediate states and indeed is a bisimulation. Its proof
follows from an observation that M1 and M2 simulate each other in lockstep under the decomposition of
the transition sequence in M2 as discussed.

Lemma 1. Let x be an essential state of M1 and let z be an essential state of M2 such that x corresponds
to z. If x′ and z′ are next states that M1 and M2 transit to from x and z respectively, then x′ corresponds
to z′.

Proof. We prove this lemma by an induction on the length of transitions between essential states.

Lemma 2. Let I1 be the initial state of M1 and let I2 be the initial state of M2. Then I1 is bisimilar to I2.

Proof. This lemma follows from the observation that the initial(final) state of M1 corresponds to the ini-
tial(final) state of M2 and from Lemma 1.

Theorem 1. The machine M1 with program P and goal G is equivalent to the machine M2 with program
P and goal G.

Proof. This theorem follows from the observation that the initial state of M1 is bisimilar to the initial state
of M2.

4

4 Conclusion

There have been two verifications of the WAM [10] Prolog implementations. One of them is due to Russinoff
[9], who employed the modified SLD refutation procedure which adopted “last call optimization” as an
intermediate specification. He then used this intermediate specification to prove the equivalence of source
and target specification. His work, while mathematically rigorous, is hard to follow due to the enormous
complexity of the proof. The other verification is due to Börger and Rosenzweig [2] who, in contrast to
Russinoff, employed stepwise refinements. Each refinement was followed by the verification that the resulting
machine was equivalent to its predecessor, making the verification much easier to follow. Beierle and Börger
in [1] also applied this framework to the verification of an implementation of an extension to Prolog with
polymorphism and subtypes. They describe a state map which requires a transition in one system to mapped
to a subprogram, i.e., a fixed sequence of transitions, in another system. However, this does not appear
to apply to a general case such as the example given in the previous section. Finally, a verification of a
closured-based compilation method for embedded implications in logic programming appears in [5] using the
framework proposed here.

Our proof method discussed in this paper can be applied in a natural way to implementing LogicWeb
[7], Semantic Web [3] or other abstract machines. In particular, our interests lie in the abstract machine
designed for dealing with a polymorphically typed version of Prolog [6].

5

References

1. Christopher Beierle and Egon Börger. Correctness proof for the WAM with types. In H. Kleine Büning E. Börger,
G. Jöger and M. Richter, editors, Computer Science Logic 91, volume 626. Springer-Verlag, 1992. Lecture Notes
in Computer Science.

2. Egon Börger and Dean Rosenzweig. The WAM — definition and compiler correctness. In L. C. Beierle and
L. Plümer, editors, Logic Programming: Formal Methods and Practical Applications, Studies in Computer Science
and Artificial Intelligence. North–Holland, 1994.

3. J. Davies, D. Fensel, and F. V. Harmelen. Towards the Semantics Web. John Wiley and Sons, 2003.
4. R. W. Floyd and R. Beigel. The Language of Machines: an Introduction to Computability and Formal Languages.

W. H. Freeman and Company, 1994.
5. Keehang Kwon. Towards a Verified Abstract Machine for a Logic Programming Language with a Notion of Scope.

PhD thesis, Duke University, December 1994. Also available as Technical Report CS–1994–36 from Department
of Computer Science, Duke University.

6. Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing polymorphic typing in a logic pro-
gramming language. Computer Languages, 20(1):25–42, 1994.

7. Seng Wai Lok and Andrew Davison. Logic Programming with the WWW. In Proceedings of the 7th ACM
conference on Hypertext. ACM Press, 1996.

8. Robin Milner. Communication and Concurrency. Prentice-Hall International, 1989.
9. David Russinoff. A verified Prolog compiler for the Warren abstract machine. Journal of Logic Programming,

13:367–412, 1992.
10. D.H.D. Warren. An abstract Prolog instruction set. Technical report, SRI International, October 1983. Technical

Note 309.

6

