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In rewriting theory, an abstract rewriting system (ARS) is a pair (A, —) where A is a
set (whose objects we call terms) and — is a binary relation on A. For any relation —,
we denote with = its reflexive-transitive closure. A sub-ARS of a given ARS is an ARS
whose set of terms is a subset of the original and closed by reduction and with its relation
being the restriction of the original ARSs relation to the latter. Sub-ARSs always inherit the
rewriting-related properties of the original ARS (such as being confluent, weakly confluent,
terminating, finitely branching, etc.) We intend to study sub-ARSs for term rewriting systems
(TRSs, rewriting over first-order signatures), context-sensitive rewriting systems (CSRSs,
where some function symbols do not allow rewriting under specific argument positions),
semi-Thue systems (STSs, rewriting over strings using pairs of strings as rules), and different
forms of lambda calculus; and to investigate a number of properties and relations between
ARSs and sub-ARSs for these rewriting formalisms.

ARSs are the objects of a cartesian category, where the sub-ARSs are the sub-objects,
and they form a complete lattice. Little or no work has been done in studying sub-ARSs,
ARSs products and ARSs of functions.

Since rewriting systems are essentially non-deterministic, there is interest in rewriting
strategies. Formally, and following a definition of Van Oostrom and de Vrijer, a reduction
strategy —s for a given ARS is any sub-ARS preserving the normal forms. Intuitively, a
strategy is a criterion on which to select a rewrite step over the existing ones (this is equivalent
to the other definition). If — is a function, we call it a functional (or deterministic) reduction
strategy.

A reduction strategy — is complete with respect to subset B of terms if, given any term
a, if @ = b with b € B, then a =4 b. For instance, it is known that in the usual lambda
calculus the leftmost-outermost reduction strategy is complete with respect to the set of
normal forms. We investigate some sets where (some) strategies are complete.

Given an ARS one would like to generate all its terms minimally. In this sense, we call
base to any minimal subset B of terms such that for every term b, there exists a € B such
that @ = b. We exhibit specific examples of sub-ARSs of the lambda calculus, and we show
that lambda calculus (and other reasonable rewriting systems) do not admit bases, finite nor
infinite. So, even though for any ARS the axiom of choice enables to have a minimal set B
with the property that each term is equivalent (modulo reduction) to a unique term in B,
the situation changes if arrow direction is considered.

There are relations between the rewriting formalisms. Every STS is isomorphic to a linear

TRS with only unary symbols. Every ground TRS (i.e. without variables) is isomorphic to



a sub-ARS of an STS. We prove that there are linear TRSs which are not isomorphic to
any sub-ARS of any STS, but every TRS is isomorphic to a sub-ARS of an augmented STS
(where rules can have variables denoting substrings). And, since there are ARSs which are
not isomorphic to any TRS, the tower of formalisms STS C TRS C ARS is proper. Every
n-sorted TRS is isomorphic to a sub-ARS of a one-sorted TRS which uses only one constant
and one binary symbol. Furthermore, given an ARS (A, —), new non-trivial ARSs can be
formed with the set of finite A-subsets, having (A, —) as one sub-ARS, and preserving some
of the rewriting properties of (A, —): confluence, weak and strong normalization, diamond
property, etc. This has some relation with residual aspects of rewriting.

We are also interested in the implementation of various rewriting systems. At present
there is a big number lambda calculus variations, in particular lambda calculi with explicit
substitutions (such as Ao, As, Av). Explicit substitutions constitute a way of implementing
lambda calculus. Since calculi of explicit substitution with de Bruijn indices are TRSs in
some sense, we implemented a code generator which (more generally) transforms a given
CSRS to a Haskell program implementing some specific strategy (so each function symbol
can be evaluated in an outermost or innermost way, and also the contextual rewriting can
be restricted to a given subset of its arguments). The idea of the implementation is to
find (and experiment with) appropriate strategies for (possibly context-sensitive) lambda
calculi with explicit substitution, where the strategy may depend on each function symbol.
For example, the Av-calculus (cf. Lescanne et al.) with open terms can be identified to a
sub-ARS of the one-sorted TRS with rules: { ap(la(z),y) — cl(x,sl(y)), cl(ap(z,y),s) —
ap(cl(x, s),cl(y, s)), cl(la(x),s) — la(cl(x,li(s))), cl(one, sl(x)) — x, cl(suc(n), sl(z)) — n,
cl(one,li(s)) — one, cl(suc(n),li(s)) — cl(cl(n,s), sh), cl(n,sh) — suc(n) }, where z,y,s,n
are variables. Moreover, from the above rules we can obtain Haskell code implementing
leftmost-outermost, leftmost-innermost, and other reduction strategies, given by the usual
two-sorted (terms and substitutions) algebra or as a sub-calculus of a one-sorted algebra.

This is work in progress and there are many research directions. Although for the sim-
plistic one-sorted two-symbol representations of a calculus there are many choices, we are
interested in determining natural or economic candidates. It could be interesting to explore
which known properties of a calculus are valid for the full TRS (apart from the sub-ARS
isomorphic to the calculus). Also, we look for other characterizations of sub-ARSs of dif-
ferent rewriting systems, the completeness of strategies and the study of history-dependent

strategies.
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