CONTINGENCY IN S4

S. Kralin (Ekaterinburg)

0 . In every modal system expression $Q p$ ("it's contingent, that p ") can be introduced as the abbreviation for such the expressions as $P p \wedge P \neg p$, or $P p \wedge \neg N p$, or $\neg N p \wedge \neg N \neg p$, or $\neg(P p \Rightarrow N p)$, where $P p$ and $N p$ means "it's possible, that p " and "it's necessary, that p " respectively. Conversely, if operator Q is considered as primitive, then expressions $N p$ and $P p$ will be the abbreviations for $p \wedge \neg Q p$ and $p \vee Q p$ respectively. According to these definitions one can discover some "natural" properties of the contingency operator. For instance, it's obvious, that $Q p \equiv Q \neg p$.

However, the explication of the "purely mathematical" properties (i. e., of such the properties, which are used in a daily language occasionally) of this operator depends on the choice of some definite modal system. Here we consider S4, partly because of its extreme closeness to "the natural language".

1. Does Q distributes over the connectors $\wedge, \vee, \Rightarrow$, and \equiv ? Only one of the eight implications, which express these distributivities, is derivable (note that in the case of N five of these implications are derivable):

$$
S 4 \vdash Q(p \vee q) \Rightarrow(Q p \vee Q q)
$$

Different "deontic-like" modifications of the property of distributivity are underivable as well, but:

$$
S 4 \vdash \neg Q(p \equiv q) \Rightarrow(Q p \equiv Q q)
$$

2. Iterated Q demonstrates the behavior, which is analogous to the behavior of the necessity operator N in $S 3$. Namely,

$$
S 4 \vdash Q Q Q p \equiv Q Q p
$$

but only

$$
S 4 \vdash Q Q p \Rightarrow Q p
$$

(Recall that $S 4 \vdash N N p \equiv N p$.)
Let's define as a modality any expression of a kind $X_{1} X_{2} \ldots X_{n} p$, where p is a propositional variable, $X_{i} \in\{N, P, Q, \neg\}$. Then, the number of the irreducible modalities is finite. The following theorems of reduction are useful:

$$
\begin{aligned}
& S 4 \vdash P Q p \equiv Q p \\
& S 4 \vdash N Q Q p \equiv \perp
\end{aligned}
$$

(i.e. $S 4 \vdash \neg N Q Q p$. Formula $\neg Q Q p$ is underiveble in S 4 , though it is derivable in S 5).

Some implications are also interesting:

$$
\begin{aligned}
& S 4 \vdash Q N \Rightarrow \neg N p, \\
& S 4 \vdash Q P p \Rightarrow Q p, \\
& S 4 \vdash P Q p \Rightarrow P p .
\end{aligned}
$$

3. The main result here is that derivable S 4 formula with Q as a main sign doesn't exists. Moreover, if $X_{1} X_{2} \ldots X_{n} A$ is a derivable substitution into any modality, and there exists m $(1<m \leq n)$ such that X_{m} is Q, then there exists $k(1 \leq k<m)$ such that X_{k} is \neg.
