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We will discuss Craig’s interpolation property (CIP), deductive interpolation property
(DIP), pseudo-relevance property (PRP), principle of variable separation (PVS) and Halldén
completeness (HC) of substructural logics, and give algebraic characterizations of these prop-
erties. These characterizations have been studied for modal and superintuitionistic logics,
e.g. in Maksimova (1977), [2] etc., Wroński [3] and so on. Our main aim is to show relations
among these properties in substructural logics and to clarify how structural rules affect al-
gebraic characterizations of them. This study comes out of my joint work with N. Galatos
[1] and H. Kihara (in preparation).

1 Interpolation Property and Pseudo-Relevance Property

In the following, by a substructural logic we mean a substructural logic over FL, i.e. a
set of formulas containing all formulas provable in FL, which is closed under modus ponens,
adjunction, conjugates and substitution. We assume that our language consists of logical
connectives ∧,∨, ·, \, / and constants >,⊥, 1, 0. When it is commutative, i.e. it is closed
under exchange rule, formulas ϕ\ψ and ψ/ϕ become equivalent and are expressed usually
as ϕ → ψ. The constant 0 is used for defining negation(s). The least commutative sub-
structural logic is denoted by FLe. Also, the least substructural logic which is closed under
weakening rule (closed under both exchange and weakening rules) is denoted by FLw (FLew,
respectively). For the precise definition, see [1].

Algebraic structures for substructural logics are called FL-algebras, which are defined
as follows. Let us first define a residuated lattice to be an algebra of the form A =
〈A;∨,∧, ·, \, /, 1〉 such that

1. 〈A;∨,∧〉 is a lattice,

2. 〈A; ·, 1〉 is a monoid with the unit 1,

3. xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y for all x, y, z ∈ A.

An FL-algebra is a RL A with an (arbitrary) element 0 ∈ A. (In the present paper, we
assume always that each RL is a bounded lattice with the greatest element > and the least
⊥.) An FLe-algebra (FLw-algebra) is an FL-algebra with a commutative monoid operation
(and an FL-algebra such that 1 = > and 0 = ⊥, respectively.) An FLew-algebra is an
FLe-algebra which is at the same time an FLw-algebra.

It is shown that there is a one-to-one correspondence between the class of substructural
logics and the class of subvarieties of the variety FL, which consists of all FL-algebras. More
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precisely, for each substructural logic L, define a class V(L) of FL-algebras as follows: An
algebra A is in V(L) iff A |= ϕ for every ϕ ∈ L. Here, A |= ϕ means that w(ϕ) ≥ 1 in A

for any valuation w on A. Then, V(L) forms a variety. Conversely, for each class V of FL,
define a set L(V) of formulas as follows: ϕ ∈ L(V) iff A |= ϕ for every A ∈ V . Then L(V) is
shown to be a substructural logic. In particular, when V consists of a single algebra A, we
write the logic L(V) simply as L(A). These correspondences V(∗) and L(∗) form mutually
dual lattice isomorphisms between the lattice of all substructural logics and the lattice of all
subvarieties of FL. For the details, see [1].

For each substructural logic L, we can introduce the deducibility relation `L of L as
follows: Γ `L ϕ iff w(α) ≥ 1 for all α ∈ Γ implies w(ϕ) ≥ 1, for each A ∈ V(L) and for each
valuation w on A. We can show the algebraization and the (parametrized) local deduction
theorem for the deducibility relation `L for every substructural logic L ([1]).

A substructural logic L has the Craig interpolation property (CIP), if for all formulas
ϕ,ψ, if ϕ\ψ ∈ L, there exists a formula σ such that (1) both ϕ\σ and σ\ψ belong to L, and
(2) V ar(σ) ⊆ V ar(ϕ)∩ V ar(ψ), where V ar(φ) denotes the set of propositional variables in
a formula φ. Also, L has the strong deductive interpolation property (SDIP), if for all sets of
formulas Γ ∪ Σ ∪ {ψ}, if Γ,Σ `L ψ, then there exists a formula δ such that (1) Γ `L δ and
δ,Σ `L ψ, and (2) V ar(δ) ⊆ V ar(Γ) ∩ V ar(Σ ∪ {ψ}). When Γ is restricted to a singleton
set of a formula and Σ is to the empty set in the above, we say that L has the deductive
interpolation property (DIP).

A subvariety V of FL has the congruence extension property (CEP), if for every A ∈ V,
every subalgebra B of A and for every congruence θ on B, there exists a congruence θ′ on A

such that θ′∩B2 = θ. It is well-known that V(L) has the CEP if and only if a local deduction
theorem holds for L. Thus, V(L) has the CEP for every commutative substructural logic
L. Also, a variety V has the amalgamation property (AP), if for all A,B,C in V and for
all embeddings f : A → B, g : A → C, there exists an algebra D in V and embeddings
f ′ : B → D, g′ : C → D such that f ′ ◦ f = g′ ◦ g. Then the following can be shown (see [1]).

Theorem 1 1. CIP implies SDIP for commutative substructural logics.
2. L has the SDIP iff V(L) has both AP and CEP.
3. SDIP implies DIP for every L, while the converse holds whenever V(L) has the CEP.

A substructural logic L has the strong pseudo-relevance property (SPRP), if for all sets
of formulas Γ∪Σ∪{ψ} with V ar(Γ)∩V ar(Σ∪{ψ}) = ∅, Γ,Σ `L ψ implies either Γ `L ⊥ or
Σ `L ψ. When Γ is restricted to a singleton set and Σ is to the empty set in this definition,
L is said to have the pseudo-relevance property (PRP). Algebras B,C are jointly embeddable
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into an algebra D, if there exists embeddings h : B → D and j : C → D. Then, we have the
following (cf. Maksimova [2]).

Theorem 2 1. L has the SPRP iff every pair of subdirectly irreducible (s.i.) algebras in
V(L) are jointly embeddable into an algebra in V(L).
2. SPRP implies PRP for every L, while the converse holds when V(L) has the CEP.
3. If a subvariety V of the variety of all FLw-algebras has the AP, then all pairs of s.i.
algebras in V are jointly embeddable into an algebra in V. Thus, the DIP implies the PRP
for every substructural logic over FLw.

The implication in the above 3 doesn’t hold always, if we drop either of conditions 1 = >
and 0 = ⊥. For instance, FLe has the CIP and hence the DIP, but it doesn’t have the
PRP. We can show the following in the same way as a result by Komori (1978), by using an
extension of Glivenko’s theorem obtained by Galatos-Ono (2005).

Theorem 3 Every extension of the logic FLew with the axiom ¬(α ∧ ¬α) has the SPRP.

2 Halldén Completeness and Principle of Variable Separation

In this section we consider only commutative substructural logics and FLe-algebras. We
note first that for any FLe-algebra A, A is s.i. if and only if there exists an element a ∈ A

such that a 6≥ 1 and for any x 6≥ 1 there exists a natural number m such that (x ∧ 1)m ≤ a.
Such an element a in a s.i. algebra A is called an opremum of A.

A substructural logic L is Halldén complete (HC), if for all formulas ϕ and ψ which have
no variables in common, `L ϕ∨ψ implies `L ϕ or `L ψ. Obviously the disjunction property
implies the HC. As the following theorem shows, we can extend results by both Lemmon
(1966) and Wroński [3], for substructural logics over FLew.

Theorem 4 The following conditions are equivalent for every substructural logic L over
FLew.
1. L is Halldén complete,
2. L is meet irreducible in the lattice of all substructural logics over FLew, i.e, L cannot be
represented as the intersection of two incomparable logics,
3. L = L(A) for some well-connected FLew-algebra A, i.e, an FLew-algebra such that
x ∨ y = 1 implies x = 1 or y = 1.

On the other hand, if we try to show the similar result for substructural logics over FLe,
a certain modification becomes necessary since the unit 1 is not always equal to the greatest
>. If we keep the condition of the meet irreducibility of a logic L and compare it with other
conditions, then we have the following.
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Theorem 5 The following conditions are equivalent for every substructural logic L over
FLe.
1. L is weakly Halldén complete, i.e. for all formulas ϕ and ψ which have no variables in
common, `L (ϕ ∧ 1) ∨ (ψ ∧ 1) implies `L ϕ or `L ψ,
2. L is meet irreducible in the lattice of all substructural logics over FLe,
3. L = L(A) for some weakly well-connected FLe-algebra A, i.e, an FLe-algebra such that
x ∨ y = 1 implies x = 1 or y = 1 for all x, y ≤ 1.

In [3], it is shown that for superintuitionistic logics the third condition (and hence also
other conditions) in Theorem 4 is equivalent to the following.

L = L(A) for some s.i. Heyting-algebra A.

It seems that the similar equivalence doesn’t hold in general even for substructural logics
over FLew. On the other hand, if we assume that the axiom of n-potency, i.e, αn → αn+1,
holds for some n in L over FLe, the following condition is also equivalent to any of conditions
in Theorem 5.

L = L(A) for some s.i. FLe-algebra A.

Let us consider next principle of variable separation(PVS). A substructural logic L has
the PVS if for all sets of formulas Γ∪ {ϕ} and Σ∪ {ψ} such that Γ∪ {ϕ} and Σ∪ {ψ} have
no variables in common, Γ, Σ `L ϕ ∨ ψ implies Γ `L ϕ or Σ `L ψ. It is easy to see that
we can always assume that both Γ and Σ are singleton sets of formulas, and also that the
condition γ, σ `L ϕ ∨ ψ is equivalent to the condition γ ∧ σ `L ϕ ∨ ψ. The PVS for basic
substructural logics is studied syntactically by Naruse-Bayu Surarso-Ono (1998).

Obviously, both Halldén completeness and the SPRP of a given logic follow from the
PVS by either taking the empty set for both Γ and Σ, or taking ⊥ for ϕ. In the same way
as Theorem 4.3 in Maksimova [2] we can show the following.

Theorem 6 The following conditions are equivalent for every substructural logic L over
FLew.
1. L has the PVS,
2. all pairs of s.i. algebras in V (L) are jointly embeddable into a well-connected (or even a
s.i.) algebra in V (L).

By comparing this with Theorem 2, we can see how the PVS relates to the HC seman-
tically. On the other hand, it is not so obvious how the second condition of Theorem 6
implies the third condition of Theorem 4, while the PVS implies trivially the HC. To show
this, we need an argument using ultraproduct construction. The proof, though we omit here,
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show why we have some difficulties in replacing the well-connectedness by the subdirect ir-
reducibility in the third condition of Theorem 4, while we can do so in the second condition
of Theorem 6. The reason is that the well-connectedness of FLew-algebras is a first-order
property, while the subdirect irreducibility is not. Therefore, the latter is not preserved
under ultraproduct. On the other hand, if we assume the axiom of n-potency for some n,
the latter becomes also a first-order property.

Also to substructural logics over FLe, a similar result to Theorem 6 holds by modifying
definitions of the PVS just as we have done in the case of the HC, and taking weak well-
connected algebras instead of well-connected algebras. Also, we can give also an algebraic
characterization of the PVS (in the original form) for these logics, as shown below.

Theorem 7 The following conditions are equivalent for every substructural logic L over
FLe.
1. L has the PVS,
2. for all s.i. algebras B,C in V (L) and for all oprema x ∈ B, y ∈ C, there exist a s.i.
algebra D in V (L), and embeddings h : B → D and j : C → D such that h(x) ∨ j(y) 6≥ 1.

It is interesting to compare the above theorem with Theorem 2.1 of Maksimova [2]. In
the theorem, our second condition is given for characterizing the HC of normal modal logics.
This happened since the HC is equivalent to the PVS for them. On the other hand, as
shown in Chagrov-Zakharyaschev (1993) there exist uncountably many superintuitionistic
logics with the HC but without the PVS.
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