
NF: A Natural Framework for Checking Proofs

Masahiko Sato

Graduate School of Informatics,

Kyoto University

masahiko@kuis.kyoto-u.ac.jp

May 22, 2005

Abstract

We propose a natural framework, called NF, which supports development of formal
proofs on a computer. NF is based on a theory of Judgments and Derivations.

NF is designed by observing how working mathematical theories are created and
developed. Our observation is that the notions of judgmens and derivations are the two
fundamental notions used in any mathematical activity. We have therefore developed
a theory of judgments and derivations and desginged a framwork in which the theory
provides a uniform and common play ground on which various mathematical theories can
be defined as derivation games and can be played, namely, can write and check proofs.

1 Introduction

The Curry-Howard isomorphism enables us to identify programs with proofs. Therefore,
simply by developing a formal computer enviornment for checking proofs, we also obtain an
environment for checking the correctness of programs. The NF/CAL system which we have
been developing provides such a computer environment. Although there are already several
powerful environments with the same objective, such as Coq [1], Isabelle [3], our system is
unique in that general forms of proofs are uniformly and formally defined and can be treated
as first class objects of the system.

Another objectives for developping our system are foundation and education. To achieve
these objectives, our system is based on a theory of judgments and derivations introduced in
[5]. The theory is later modified by changing the basic data structure of expressions. This
new data structure of expressions was introduced in [6].

In this paper, we outline the current status of NF/CAL with examples.

1

2 Expressions

Proofs as well as judgments are lingustic objects. We need expressions as a means to
represent such linguistic objects in a uniform manner. The expressions we introduce here
can be used to define various linguistic objects uniformly, and we can define higher order
abstract syntax by using them.

The key idea behing the following definition of expressions is the usage of arity. Namely,
any variable or constant will have a fixed arity n. If a variable x has a positive arity n then x

standing by itself is not an expression, but x[e1, . . . , en] becomes a valid expression provided
that e1, . . . , en are expression. Thus, x is an unsaturated entity and it expects n arguments
to become a saturated object. So, x is a variable ranging over higher order abstracts.

We define expressions slightly informally by taking the notion of α-equivalence for granted.
For each n (n = 0, 1, 2, · · ·), we assume a countably infinite set Vn of variables (x, y, z).

For each n (n = 0, 1, 2, · · ·), we assume a countably infinite set Cn of constants (c, d). We
assume that all these sets are mutually disjoint, so that given any variable x (or constant c)
we can uniquely determine a natural number such that x ∈ Vn (c ∈ Cn, resp.).

We will say that a variable (constant) is of arity n if it is in Vn (Cn, resp.). A variable
is higher-order if its arity is positive and it is first-order if its arity is 0, and similarly for a
constant.

We define expressions as follows, where e : exp will mean that e is an expression.
We identify α-equivalent expressions.

x ∈ Vn a1 : exp · · · an : exp

x[a1, . . . , an] : exp
var

c ∈ Cn a1 : exp · · · an : exp

c[a1, . . . , an] : exp
const

x ∈ Vn a : exp

(x)a : exp
abs

We will understand that x[a1, . . . , an] (c[a1, . . . , an]) stands for x (c, resp.) when n = 0.
We will write (x1, · · · , xn)a for (x1) · · · (xn)a, and when n = 0, this stands for a. We will
also write (x)[a] for (x)a when we wish to emphasize that x is the binding variable and its
scope is a.

Note that a variable standing by itself is not an expression if its arity is positive.

2.1 Environments and isntantiation

We define environments which are used to instantiate abstract expressions and also to
define substitution. Let x be an n-ary variable. We say that an expression e is substitutable

2

for x if e is of the form (x1, . . . , xn)a where x1, . . . , xn are all 0-ary variables. So, any
expression is substitutable for a 0-ary variable, but, only expressions of the form (x, y)e (x, y

are 0-ary) are substitutable for 2-ary variables.
If x is a variable of arity n and e is substitutable for x, then x = e is a definition, and

a set of definitions ρ = {x1 = e1, . . . , xk = ek} is an environment if x1, . . . , xk are distinct
variables, and its domain |ρ| is {x1, . . . , xk}.

Given an expression e and an environment ρ, we define an expression [e]ρ as follows. We
choose fresh local variables as necessary.

1. [x]ρ :≡ e if x is of arity 0 and x = e ∈ ρ.

2. [x[a1, . . . , an]]ρ :≡ [e]{x1=[a1]ρ,...,xn=[an]ρ} if n > 0 and x = (x1, . . . , xn)e ∈ ρ.

3. [x[a1, . . . , an]]ρ :≡ x[[a1]ρ, . . . , [an]ρ] if x 6∈ |ρ|.

4. [c[a1, . . . , an]]ρ :≡ c[[a1]ρ, . . . , [an]ρ].

5. [(x)[a]]ρ :≡ (x)[[a]ρ].

An environment ρ is first-order if all the variables in |ρ| are first-order, and it is higher-
order if |ρ| contains at least one higher-order variable. If the given environment is first-order,
then the above definition is an ordinary inductive definition.

It is essential to distinguish first-order variables and higher-order variables. Without the
distinction, evaluation of expressions may fail to terminate as can be seen by the following
example.

[x[x]]{x=(y)y[y]} ≡ [y[y]]{y=[x]{x=(y)y[y]}} ≡ [y[y]]{y=(y)y[y]} ≡ · · ·
However, since we do have the distinction of first-order and higher-order variables, the above
computation is not possible. Namely, by our definition of environment, y must be of arity
0, since y occurs as a binder in (y)y[y]. But y must be also of arity 1 because of the first
occurrence of y in y[y]. This is a contradiction.

3 Natural Framework

In this section we introduce the Natural Framework (NF) which was originally given in
Sato [5]. In [5], NF was developed based on a restricted theory of expressions. In this section
we revise and extend NF by using the simple theory of expressions we have just defined.

NF is a computational and logical framework which supports the formal development
of mathematical theories in the computer environment, and it has been implemented by
the author’s group at Kyoto University and has been successfully used as a computer aided
education tool for students [4].

3

Based on the theory of expressions we just presented we can define judgements and
derivations. We also have the notion of derivation game. Namely, a derivation roughly
corresponds the notion of a theory, and each derivation game has a unique set of constants
and inference rules which characterizes the game. Thus, the notion of derivation games is
the key notion of natrual framework and this notion is based on more fundamental notions
of judgment and derivation.

Here, we give a very simple derivation game Nat which defines natural numbers induc-
tively as follows.

Nat :≡ < zero :: 0 : Nat, succ :: (n)[n : Nat⇒ s(n) : Nat] >,

where the games has three constants Nat, zero and succ of arity 0, 0 and 2, respcetively.
That the rule succ has arity 2 means that it is a rule (abstract) which accepts two expressions,
namely, a natural number n and a derivation whose conclusion is the judgment n : Nat ⇒
s(n) : Nat.

By using obvious notational convention, we can display the two rules of this game as
follows. We write s(x) for s[x].

0 : Nat zero()
n : Nat

s(n) : Nat
succ(n)

In Nat, we can have the following derivation

`Nat D :: s(s(0)) : Nat.

where D is a derivation which is obtained by combining the two infrence rules of the game,
and which proves the judgment s(s(0)) : Nat.

NF provides another notation which is conveniently used to input and display derivations
on a computer terminal. In this notation, instead of writing Γ `G D :: J we write:

Γ ` J in G since D.

Also, when writing derivations in this notation, a derivation of the form

D1 · · · Dn

J
R(e1, . . . , em)

will be written as:
J by R(e1, . . . , em) {D1; . . . ;Dn}

Here is a complete derivation in Nat in this notation.

` (x)[x:Nat ⇒ s(s(x)):Nat] in Nat since

(x)[(X::x:Nat)[

4

s(s(x)):Nat by succ(s(x)) {

s(x):Nat by succ(x) {X}

}

]]

The conclusion of the above derivation asserts that for any expression x, if x is a natu-
ral number, then so is s(s(x)), and the derivation shows us how to actually construct a
derivation of s(s(x)):Nat given a derivation X of x:Nat.

References

[1] Y. Bertot and P. Castéran, Interactive Theorem Proving and Program Development,
Coq’Art: The Calculus of Inductive Constructions, Texts in Theoretical Computer Sci-
ence, Springer, 2004.

[2] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, W. Wind-
steiger, The Theorema Project: A Progress Report, in Symbolic Computation and Auto-
mated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on the Integration
of Symbolic Computation and Mechanized Reasoning, August 6-7, 2000, St. Andrews,
Scotland), M. Kerber and M. Kohlhase (eds.), A.K. Peters, Natick, Massachusetts, pp.
98-113.

[3] T. Nipkow, L.C. Paulson and M. Wenzel, Isabelle/HOL — A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, 2283, Springer 2002.

[4] M. Sato, Y. Kameyama and I. Takeuti, CAL: A computer assisted learning system for
computation and logic, in Moreno-Diaz, R., Buchberger, B. and Freire, J-L. eds., Com-
puter Aided Systems Theory – EUROCAST 2001, Lecture Notes in Computer Science,
2718, pp. 509 – 524, Springer 2001.

[5] M. Sato, Theory of Judgments and Derivations, in Arikawa, S. and Shinohara, A. eds.,
Progress in Discovery Science, Lecture Notes in Artificial Intelligence 2281, pp. 78 –
122, Springer, 2002.

[6] M. Sato, A Simple Theory of Expressions, Judgments and Derivations, in Maher,
M. J. ed., ASIAN 2004, Lecture Notes in Computer Science 3321, pp. 437 – 451,
Springer, 2004.

5

